Characterization and Sensory Evaluation of a Cosmeceutical Formulation for the Eye Area with Roasted Coffee Oil Microcapsules
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Reagents, Standards, and Equipment
2.3. Characterization of the Fatty Acids Profile and Diterpenes of Microcapsules
2.4. Preparation of Cosmeceutical Formulations
2.5. Characterization of the Formulations
2.6. Sensory Analysis of the Formulations
Evaluation of Application and Allegation Characteristics
3. Results and Discussion
3.1. Characterization of the Fatty Acid and Diterpene Profiles of the Microcapsules
3.2. Characterization of the Formulations
3.3. Sensory Analysis of the Formulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalouta, K.; Eleni, P.; Boukouvalas, C.; Vassilatou, K.; Krokida, M. Dynamic mechanical analysis of novel cosmeceutical facial creams containing nano-encapsulated natural plant and fruit extracts. J. Cosmet. Dermatol. 2020, 19, 1146–1154. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.T.; Estevinho, B.N.; Santos, L. Application of microencapsulated essential oils in cosmetic and personal healthcare products—A review. Int. J. Cosmet. Sci. 2016, 38, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Reed, R. The definition of “cosmeceutical”. J. Soc. Cosmet. Chem. 1962, 13, 103–106. [Google Scholar]
- Newburger, A.E. Cosmeceuticals: Myths and misconceptions. Clin. Dermatol. 2009, 27, 446–452. [Google Scholar] [CrossRef]
- Taofiq, O.; Heleno, S.A.; Calhelha, R.C.; Fernandes, I.P.; Alves, M.J.; Barros, L.; González-Paramás, A.M.; Ferreira, I.C.F.R.; Barreiro, M.F. Mushroom-based cosmeceutical ingredients: Microencapsulation and in vitro release profile. Ind. Crops Prod. 2018, 124, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Abel, E.L.; Hendrix, S.O.; Mcneeley, S.G.; Johnson, K.C.; Rosenberg, C.A.; Mossavar-Rahmani, Y.; Vitolins, M.; Kruger, M. Daily coffee consumption and prevalence of nonmelanoma skin cancer in Caucasian women. Eur. J. Cancer Prev. 2007, 16, 446–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, H.M.; Lin, T.J.; Chiu, C.Y.; Chang, C.W.; Hsu, K.C.; Fan, P.C.; Wen, K.C. Coffea arabica extract and its constituents prevent photoaging by suppressing MMPs expression and MAP kinase pathway. Food Chem. Toxicol. 2011, 49, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Farris, P. Idebenone, green tea, and Coffeeberry® extract: New and innovative antioxidants. Dermatol. Ther. 2007, 20, 322–329. [Google Scholar] [CrossRef]
- Silverberg, J.I.; Patel, M.; Brody, N.; Jagdeo, J. Caffeine protects human skin fibroblasts from acute reactive oxygen species-induced necrosis. J. Drugs Dermatol. 2012, 11, 1342–1346. [Google Scholar]
- Oliveira, A.L.; Cruz, P.M.; Eberlin, M.N.; Cabral, F.A. Brazilian roasted coffee oil obtained by mechanical expelling: Compositional analysis by GC-MS. Ciênc. Tecnol. Alim. 2005, 25, 677–682. [Google Scholar] [CrossRef] [Green Version]
- Frascareli, E.C.; Silva, V.M.; Tonon, R.V.; Hubinger, M.D. Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food Bioprod. Process. 2012, 90, 413–424. [Google Scholar] [CrossRef]
- Deotale, S.M.; Dutta, S.; Moses, J.A.; Anandharamakrishnan, C. Coffee oil as a natural surfactant. Food Chem. 2019, 295, 180–188. [Google Scholar] [CrossRef]
- Calligaris, S.; Munari, M.; Arrighetti, G.; Barba, L. Insights into the physicochemical properties of coffee oil. Eur. J. Lipid Sci. Technol. 2009, 111, 1270–1277. [Google Scholar] [CrossRef]
- Wagemaker, T.A.L.; Carvalho, C.R.L.; Maia, N.B.; Baggio, S.R.; Filho, O.G. Sun protection factor, content and composition of lipid fraction of green coffee beans. Ind. Crops Prod. 2011, 33, 469–473. [Google Scholar] [CrossRef] [Green Version]
- Böger, B.R.; Mori, A.L.B.; Viegas, M.C.; Benassi, M.T. Quality attributes of roasted Arabica coffee oil extracted by pressing: Composition, antioxidant activity, sun protection factor and other physical and chemical parameters. Grasas Aceites 2021, 72, e394. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 2007, 40, 1107–1121. [Google Scholar] [CrossRef]
- Bakry, A.M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M.Y.; Mousa, A.; Liang, L. Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Comp. Rev. Food Sci. Food Saf. 2016, 15, 143–182. [Google Scholar] [CrossRef]
- Barel, A.; Paye, M.; Maibach, H. Handbook of Cosmetic Science and Technology, 1st ed.; Marcel Dekker: New York, NY, USA, 2001. [Google Scholar]
- Martins, I.M.; Barreiro, M.F.; Coelho, M.; Rodrigues, A.E. Microencapsulation of essential oils with biodegradable polymeric carriers for cosmetic applications. Chem. Eng. J. 2014, 245, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Casanova, F.; Santos, L. Encapsulation of cosmetic active ingredients for topical application—A review. J. Microencapsul. 2015, 33, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Frascareli, E.C.; Silva, V.M.; Tonon, R.V.; Hubinger, M.D. Determination of critical storage conditions of coffee oil microcapsules by coupling water sorption isotherms and glass transition temperature. Int. J. Food Sci. Technol. 2012, 47, 1044–1054. [Google Scholar] [CrossRef]
- Freiberger, E.B.; Kaufmann, K.C.; Bona, E.; Araújo, P.H.H.; Sayer, C.; Leimann, F.V.; Gonçalves, O.H. Encapsulation of roasted coffee oil in biocompatible nanoparticles. LWT Food Sci. Technol. 2015, 64, 381–389. [Google Scholar] [CrossRef]
- Getachew, A.T.; Chun, B.S. Optimization of coffee oil flavor encapsulation using response surface methodology. LWT Food Sci. Technol. 2016, 70, 126–134. [Google Scholar] [CrossRef]
- Noronha, R.L.F. Análise sensorial de produtos cosméticos. In Cosmetologia e Empreendedorismo: Perspectivas para a Criação de Novos Negócios, 1st ed.; Leonardi, G.R., Spers, V.R.E., Eds.; Pharmabooks: Rio de Janeiro, Brazil, 2015; pp. 289–311. [Google Scholar]
- Chiar, B.; Almeida, M.G.J.; Correa, M.A.; Isaac, V. Cosmetics’ Quality Control. In Latest Research into Quality Control, 1st ed.; Akyar, I., Ed.; IntechOpen Limited: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Del Castillo, A.; Pérez, M.J.; Falqué, E.; Domínguez, H. Stability of Sun Creams Formulated with Thermal Spring Waters from Ourense, Northwest Spain. Cosmetics 2016, 3, 42. [Google Scholar] [CrossRef] [Green Version]
- Böger, B.R.; Acre, L.B.; Viegas, M.C.; Kurozawa, L.E.; Benassi, M.T. Roasted coffee oil microencapsulation by spray drying and complex coacervation techniques: Characteristics of the particles and sensory effect. Innov. Food Sci. Emerg. Technol. 2021, 72, e102739. [Google Scholar] [CrossRef]
- Böger, B.R.; Bigotto, B.G.; Lonni, A.A.S.G.; Benassi, M.T. Eye cosmeceutical formulations with roasted coffee oil in free and microencapsulated forms: Development and preliminary stability study. Eur. J. Lipid Sci. Technol. 2022, 124, e2100168. [Google Scholar] [CrossRef]
- Böger, B.R.; Georgetti, S.R.; Kurozawa, L.E. Microencapsulation of grape seed oil by spray drying. Food Sci. Technol. 2018, 38, 263–270. [Google Scholar] [CrossRef] [Green Version]
- ISO 5509; Animal and Vegetable Fats and Oils: Preparation of Methyl Esters of Fatty Acids. International Organization for Standardization (ISO): London, UK, 1978.
- Dias, R.C.E.; Faria-Machado, A.F.; Mercadante, A.Z.; Bragagnolo, N.; Benassi, M.T. Roasting process affects the profile of diterpenes in coffee. Eur. Food Res. Technol. 2014, 239, 961–970. [Google Scholar] [CrossRef]
- Mori, A.L.B.; Kalschne, D.L.; Ferrão, M.A.G.; Fonseca, A.F.A.; Ferrão, R.G.; Benassi, M.T. Diterpenes in Coffea canephora. J. Food Compos. Anal. 2016, 52, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Statsoft. Statistica for Windows: Computer Program Manual, Versão 7.1; Software Inc.: Tulsa, OK, USA, 2006. [Google Scholar]
- Brasil, Ministério da Saúde; Agência Nacional de Vigilância Sanitária (ANVISA). Guia de Controle de Qualidade de Produtos Cosméticos—Uma Abordagem Sobre os Ensaios Físicos e Químicos, 2nd ed.; Agência Nacional de Vigilância Sanitária (ANVISA): Brasília, Brazil, 2007.
- Borghetti, G.S.; Knorst, M.T. Desenvolvimento e avaliação da estabilidade física de loções O/A contendo filtros solares. Rev. Bras. Ciênc. Farm. 2006, 42, 531–537. [Google Scholar] [CrossRef] [Green Version]
- Calixto, L.S.; Campos, P.M.B.G.M. Physical–mechanical characterization of cosmetic formulations and correlation between instrumental measurements and sensorial properties. Int. J. Cosmet. Sci. 2017, 39, 527–534. [Google Scholar] [CrossRef]
- Tai, A.; Bianchini, R.; Jachowicz, J. Texture analysis of cosmetic/pharmaceutical raw materials and formulations. Int. J. Cosmet. Sci. 2014, 36, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Noronha, R.L.F.; Braghetto, C.P.; Ferreira, L.D.; Passos, J.L. Comprovação de claims relacionados a benefícios sensoriais em produto de maquiagem. Braz. J. Food Technol. 2010, 1, 49–54. [Google Scholar]
- Kim, H.G.; Hwang, Y.P.; Jeong, H.G. Caveol blocks STAT3 phosphorylation and induces apoptosis in human lung adenocarcinoma A549 cells. Toxicol. Lett. 2009, 187, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Muriel, P.; Arauz, J. Coffee and liver diseases. Fitoterapia 2010, 81, 297–305. [Google Scholar] [CrossRef]
- Dangarembizi, R.; Chivandi, E.; Dawood, S.; Erlwanger, K.H.; Gundidza, M.; Magwa, M.L.; Muredzi, P.; Samie, A. The fatty acid composition and physicochemical properties of the underutilised Cassia abbreviata seed oil. Pak. J. Pharm. Sci. 2015, 28, 1005–1008. [Google Scholar]
- Leonardi, G.R.; Gaspar, L.R.; Campos, P.M.B.G.M. Estudo da variação do pH da pele humana exposta à formulação cosmética acrescida ou não das vitaminas A, E ou de ceramida, por metodologia não invasiva. An. Bras. Dermatol. 2002, 77, 563–569. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, H.; Marto, J.; Raposo, S.; Agapito, M.; Isaac, V.; Chiari, B.G.; Lisboa, P.F.; Paiva, A.; Barreiros, S.; Simões, P. From coffee industry waste materials to skin-friendly products with improved skin fat levels. Eur. J. Lipid Sci. Technol. 2013, 115, 330–336. [Google Scholar] [CrossRef]
- Santos, A.C.F.; Kalschne, D.L.; Viegas, M.C.; Vanini, L.S.; Benassi, M.T.; Lonni, A.A.S.G. Desenvolvimento de uma formulação cosmecêutica para região dos olhos com extrato padronizado de café. Vis. Academ. 2017, 18, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, B.K.; Martini, P.C.; Michelin, D.C. Desenvolvimento e estabilidade preliminar de um fitocosmético contendo extrato de chá verde (Camellia sinensis) (L.) Kuntze (Theaceae). Ver. Bras. Farm. 2014, 95, 770–788. [Google Scholar]
- Czepula, A.I.S. Desenvolvimento de Preparações Semi-Sólidas Contendo Extrato de Sphagneticola trilobata (L.) Pruski (Acmela brasiliensis, Wedelia paludosa) (ASTERACEAE) e Avaliação da Atividade Anti-Inflamatória Tópica in Vivo. Master’s Thesis, Pharmaceutical Sciences-Universidade do Vale do Itajaí, Itajaí, Brazil, 2006. [Google Scholar]
- Savian, A.L.; Varella, F.T.; Athayde, M.L.; Silva, C.D.B. Desenvolvimento e avaliação preliminar da estabilidade de emulsão não-iônica O/A contendo óleo de café verde como potencializador de fator de proteção. Rev. Bras. Farm. 2011, 91, 82–88. [Google Scholar]
- Pinto, D.; Braga, N.; Rodrigues, F.; Oliveira, M.B.P.P. Castanea sativa Bur: An undervalued by-product but a promising cosmetic ingredient. Cosmetics 2017, 4, 50. [Google Scholar] [CrossRef] [Green Version]
- Wagemaker, T.A.L.; Rosado, C.; Andrade, I.P.; Fernandes, A.S.; Rijo, P.; Campos, P.M.; Rodrigues, L.M. Evaluation of the sensory properties of a cosmetic formulation containing green coffee oil. Biomed. Biopharm. Res. 2013, 10, 101–108. [Google Scholar]
Phase | Ingredients | BF 1 | MOF 2 |
---|---|---|---|
1 | Distilled water | QS 3 100.00 | QS 100.00 |
Glycerin | 3.00 | 3.00 | |
2 | Cetearyl alcohol | 6.00 | 6.00 |
Ceteareth-20 | 3.00 | 3.00 | |
Glyceryl stearate | 2.00 | 2.00 | |
Shea butter | 2.00 | 2.00 | |
Caprylic/capric triglycerides | 3.00 | 3.00 | |
3 | Microcapsules | - | 3.00 |
Distilled water | - | 15.00 | |
4 | Phenogard | 0.40 | 0.40 |
5 | Pigment | 0.35 | 0.35 |
Propylene glycol | 7.00 | 7.00 | |
6 | Essence | 0.30 | 0.30 |
Characteristic | Definition | Evaluation | Scale |
---|---|---|---|
Spreadability | Easy spreading/splashing of the product on the skin | Visual and touch |
|
Tackiness | Intensity with which the finger adheres to the skin | Touch | |
Softness | Smooth skin feeling | Touch (glide through the fingers) |
|
Hydration | Hydrated skin feeling and appearance | Visual and touch (glide through fingers) | |
Firmness | Degree to which skin tone (rigidity) is maintained, as opposed to sagging | Touch (stretch the skin) | |
Elasticity | Capacity of the skin to return quickly to its initial point after its distension | Touch (stretch the skin) | |
Fatigue signs | Tired skin appearance | Visual | |
Wrinkles/ expression | Presence of grooves, depressions and fine lines | Visual (depth and number) | |
General appearance | Skin conditions regarding hydration, brightness/radiance, wrinkles/fine lines, oiliness and signs of fatigue | Visual |
|
Parameters | Microcapsule 1 | |
---|---|---|
Diterpenes (g 100 g−1) | Kahweol | 1.08 ± 0.08 |
Cafestol | 0.95 ± 007 | |
Fatty acid (% of the total) | Linoleic | 44.67 ± 0.38 |
Palmitic | 30.76 ± 0.07 | |
Oleic | 9.41 ± 0.14 | |
Stearic | 7.53 ± 0.11 | |
Arachnid | 2.27 ± 0.14 | |
Linolenic | 1.71 ± 0.04 | |
Others | 3.64 ± 0.46 | |
Saturated | 41.91 ± 0.14 | |
Monounsaturated | 9.41 ± 0.14 | |
Polyunsaturated | 48.67 ± 0.08 |
Parameters | BF | MOF | |
---|---|---|---|
pH 1 | 4.52 ª ± 0.07 | 4.52 ª ± 0.08 | |
L* | 65.41 b ± 0.13 | 66.38 ª ± 0.06 | |
Color 1 | C* | 23.80 ª ± 0.09 | 23.99 ª ± 0.10 |
h* | 60.89 b ± 0.23 | 64.33 a ± 0.26 | |
Density (g mL−1) 1 | 0.99 ª ± 0.00 | 0.99 ª ± 0.00 | |
Spreadability (mm2) 1,3 | 1689 ª ± 184 | 1114 b ± 34 | |
Firmness (N) | 0.83 a ± 0.03 | 0.77 b ± 0.03 | |
Cohesiveness (N) | 0.57 a ± 0.03 | 0.52 b ± 0.02 | |
Texture 2 | Consistency (N s) | 0.77 a ± 0.07 | 0.77 a ± 0.03 |
Viscosity Index (N s) | 0.25 a ± 0.02 | 0.24 ª ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Böger, B.R.; Lonni, A.A.S.G.; Benassi, M.d.T. Characterization and Sensory Evaluation of a Cosmeceutical Formulation for the Eye Area with Roasted Coffee Oil Microcapsules. Cosmetics 2023, 10, 24. https://doi.org/10.3390/cosmetics10010024
Böger BR, Lonni AASG, Benassi MdT. Characterization and Sensory Evaluation of a Cosmeceutical Formulation for the Eye Area with Roasted Coffee Oil Microcapsules. Cosmetics. 2023; 10(1):24. https://doi.org/10.3390/cosmetics10010024
Chicago/Turabian StyleBöger, Bruna Raquel, Audrey Alesandra Stinghen Garcia Lonni, and Marta de Toledo Benassi. 2023. "Characterization and Sensory Evaluation of a Cosmeceutical Formulation for the Eye Area with Roasted Coffee Oil Microcapsules" Cosmetics 10, no. 1: 24. https://doi.org/10.3390/cosmetics10010024
APA StyleBöger, B. R., Lonni, A. A. S. G., & Benassi, M. d. T. (2023). Characterization and Sensory Evaluation of a Cosmeceutical Formulation for the Eye Area with Roasted Coffee Oil Microcapsules. Cosmetics, 10(1), 24. https://doi.org/10.3390/cosmetics10010024