Chemical Characterization and Bioactive Properties of Wine Lees and Diatomaceous Earth towards the Valorization of Underexploited Residues as Potential Cosmeceuticals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Winemaking Industry by-Products
2.2. Extraction of Compounds
2.3. Total Phenolic Content
2.4. Characterization of Phenolic Compounds by HPLC-DAD-ESI/MSn
2.5. Antioxidant Activity
2.6. Antibacterial Activity
2.7. Antifungal Activity
2.8. Cytotoxicity Assay in Skin Cell Lines
2.9. Tyrosinase Inhibitory Activity
2.10. Collagenase Activity Colorimetric Assay
2.11. Statistical Analysis
3. Results and Discussion
3.1. Chemical Characterization
3.1.1. Total Phenolic Compounds
3.1.2. Phenolic Compounds Profile
3.2. Bioactive Properties
3.2.1. Antioxidant Activity
3.2.2. Antimicrobial Assays
3.2.3. Cytotoxicity Assay in Skin Cell Lines
3.3. Anti-Tyrosinase and Anti-Ageing Activities
3.3.1. Tyrosinase Inhibition
3.3.2. Collagenase Inhibition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Troncozo, M.I.; Liesevic, M.; Beskoski, V.; Andelkovic, B.; Ballati, P.; Saparrat, M.C.N. Fungal Transformation and Reduction of Phytotoxicity of Grape Pomace Waste. Chemosphere 2019, 237, 124458. [Google Scholar] [CrossRef]
- Gomes, C.; Sadoyan, G.; Dias, R.C.S.; Costa, M.R.P.F.N. Development of Moleculary Imprinted Polymers to Target Polyphenols Present in Plant Extracts. Processes 2017, 5, 72. [Google Scholar] [CrossRef] [Green Version]
- Anastasiadi, M.; Pratsinis, H.; Kletsas, D.; Skaltsounis, A.L.; Haroutounian, S.A. Bioactive non-coloured Polyphenols Content of Grapes, Wine and Vinification by-products: Evaluation of the Antioxidant Activities of their Extracts. Food Res. Int. 2010, 43, 805–813. [Google Scholar] [CrossRef]
- Gerogiannaki-Christopoulou, M.; Kyriakidis, N.V.; Athanasopoulos, P.E. Effect of Grape Variety (Vitis vinifera L.) and Grape Pomace Fermentation Conditions on some Volatile Compounds of the Produced Grape Pomace Distillate. J. Int. Des Scien. De La Vigne Et Du Vin 2004, 38, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Fontana, A.R.; Bottini, R. High-throughput Method Based on Quick, Easy, Cheap, Effective, Rugged and Safe Followed by Liquid Chromatography-multi-wavelength Detection for the Quantification of Multiclass Polyphenols in Wines. J. Chrom. A 2014, 1342, 44–53. [Google Scholar] [CrossRef]
- Tao, Y.; Wu, D.; Qing-An, Z.; Da-Wen, S. Ultrasound-assisted Extraction of Phenolics from Wine Lees: Modeling, Optimization and Stability of Extracts During Storage. Ultra. Sonochem. 2014, 21, 706–715. [Google Scholar] [CrossRef]
- Abe, L.T.; Vieira da Mota, R.; Lajolo, F.M.; Genovese, M.I. Phenolic Compounds and Antioxidant Activity of Vitis labrusca and Vitis vinifera cultivars. Food Scien. Tech. 2007, 27, 394–400. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, F.R.T. Caracterização e Valorização Energética de Resíduos da Poda da Vinha. Master’s Thesis, Instituto Superior de Engenharia do Porto, Porto, Portugal, 2017. Available online: https://recipp.ipp.pt/bitstream/10400.22/11684/1/DM_FilipaSilva_2017_MES.pdf (accessed on 14 December 2022). (In Portuguese).
- Guchu, E.; Ebeler, S.E.; Lee, J.; Mitchell, A.E. Monitoring Selected Monomeric Polyphenol Composition in pre- and post- fermentation products of Vitis vinifera L. cv. Airén and cv. Grenache noir. LWT—Food Scien. Tech. 2015, 60, 552–562. [Google Scholar] [CrossRef] [Green Version]
- Ricci, A.; Mejia, J.A.A.; Versari, A.; Chiarello, E.; Bordoni, A.; Parpinello, G.P. Microencapsulation of Polyphenolic Compounds Recovered from Red Wine Lees: Process Optimization and Nutraceutical Study. Food Bioprod. Process. 2022, 132, 1–12. [Google Scholar] [CrossRef]
- Delgado de la Torre, M.P.; Priego-Capote, F.; Luque de Castro, M.D. Characterization and Comparison of Wine Lees by Liquid Chromatography—Mass Spectrometry in High-Resolution Mode. J. Agric. Food Chem. 2015, 63, 1116–1125. [Google Scholar] [CrossRef]
- Dujmic, F.; Ganic, K.K.; Curic, D.; Karlovic, S.; Bosiljkov, T.; Jezek, D.; Vidrih, R.; Hribar, J.; Zlatic, E.; Prusina, T.; et al. Non-Thermal Ultrasonic Extraction of Polyphenolic Compounds from Red Wine Lees. Foods 2020, 9, 472. [Google Scholar] [CrossRef] [Green Version]
- Giacobbo, A.; Dias, B.B.; Onorevoli, B.; Bernardes, A.M.; Norberta de Pinho, M.; Camarão, E.B.; Rodrigues, E.; Jacques, R.A. Wine Lees from the 1st and 2nd Rackings: Valuable By-Products. J. Food Sci. Tech. 2019, 56, 1559–1566. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Serradilla, J.A.; Luque de Castro, M.D. Microwave-assisted Extraction of Phenolic Compounds from Wine Lees and Spray-Drying of the Extract. Food Chem. 2011, 124, 1652–1659. [Google Scholar] [CrossRef]
- Wu, J.J.; Lin, J.C.; Wang, C.H.; Jong, T.T.; Yang, H.L.; Hsu, S.L.; Chang, C.J. Extraction of antioxidative compounds from wine lees using supercritical fluids and associated anti-tyrosinase activity. J. Supercrit. Fluids 2009, 50, 33–41. [Google Scholar] [CrossRef]
- Zhijing, Y.; Shavandi, A.; Harrison, R.; Bekhit, A.E. A Characterization of phenolic compounds in wine lees. Antioxidants 2018, 7, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barcia, M.T.; Pertuzatti, P.B.; Gómez-Alonso, S.; Godoy, H.T.; Hermosín-Gutiérrez, I. Phenolic Composition of Grape and Winemaking By-Products of Brazilian Hybrid Cultivars BRS Violeta and BRS Lorena. Food Chem. 2014, 159, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Bzainia, A.; Dias, R.C.S.; Costa, M.R.P.F.N. Enrichment of Quercetin from Winemaking Residual Diatomaceous Earth via a Tailor-Made Imprinted Adsorbent. Molecules 2022, 27, 6406. [Google Scholar] [CrossRef]
- Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Grape Pomace Valorization: A Systematic Review and Meta-Analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef]
- Bianchi, F.; Lomuscio, E.; Rizzi, C.; Simonato, B. Predicted Shelf-Life, Thermodynamic Study and Antioxidant Capacity of Breadsticks Fortified with Grape Pomace Powders. Foods 2021, 10, 2815. [Google Scholar] [CrossRef]
- Tolve, R.; Simonato, B.; Rainero, G.; Bianchi, F.; Rizzi, C.; Cervini, M.; Giuberti, G. Wheat Bread Fortification by Grape Pomace: Nutritional, Technological, Antioxidant, and Sensory Properties. Foods 2021, 10, 75. [Google Scholar] [CrossRef]
- Thakur, R.; Batheja, P.; Kaushik, D.; Michniak, B. Structural and Biochemical Changes in Aging Skin and Their Impact on Skin Permeability Barrier. In Skin Aging Handbook; Andrew, W., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 55–90. ISBN 9780815519799. [Google Scholar]
- Gilchrest, B.A.; Blog, F.B.; Szabo, G. Efects of Aging and Chronic Sun Exposure on Melanocytes in Human Skin. J. Investig. Dermat. 1979, 73, 141–143. [Google Scholar] [CrossRef] [Green Version]
- Wittenauer, J.; Mäckle, S.; Sußmann, D.; Schweiggert-Weisz, U.; Carle, R. Inhibitory Effects of Polyphenols from Grape Pomace Extract on Collagenase and Elastase Activity. Fitoterapia 2015, 101, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.S.; Chen, H.J.; Huang, J.P.; Lee, P.C.; Tsai, C.R.; Hsu, T.F.; Huang, W.Y. Kinetics of Tyrosinase Inhibitory Activity Using Vitis vinifera Leaf Extracts. BioMed Res. Int. 2017, 2017, 5232680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyda, J.H.; Fernandes, A.; Ferreira, F.D.; Alves, M.J.; Pires, T.C.S.P.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Chemical composition and bioative properties of the wild edible plant Rapahnus raphanistrum L. Food Res. Int. 2019, 121, 714–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Bioactivity and Chemical Characterization in Hydrophilic and Lipophilic Compounds of Chenopodium ambrosioides L. J. Funct. Foods 2013, 5, 1732–1740. [Google Scholar] [CrossRef]
- Alves, M.J.; Ferreira, I.C.F.R.; Lourenço, I.; Costa, E.; Martins, A.; Pintado, M. Wild Mushroom Extracts as Inhibitors of Bacterial Biofilm Formation. Pathogens 2014, 3, 667–679. [Google Scholar] [CrossRef] [Green Version]
- Dias, M.I.; Barros, L.; Morales, P.; Cámara, M.; Alves, M.J.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Wild Fragaria vesca L. fruits: A Rich Source of Bioactive Phytochemicals. Food Funct. 2016, 11, 4471–4722. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J.; Santos-Buelga, C.; Ferreira, I.C.F.R. Phenolic Compounds Profile, Nutritional Compounds and Bioactive Properties of Lycium barbarum L.: A comparative study with Stems and Fruits. Indust. Crops Prod. 2018, 122, 574–581. [Google Scholar] [CrossRef] [Green Version]
- Heleno, S.A.; Stojkovic, D.; Barros, L.; Glamoclija, J.; Sokovic, M.; Martins, A.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. A Comparative Study of Chemical Composition, Antioxidant, and Antimicrobial Properties of Morchella esculenta (L.) Pers. From Portugal and Serbia. Food Res. Int. 2013, 51, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Taofiq, O.; Rodrigues, F.; Barros, L.; Barreiro, M.F.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Mushroom Ethanolic Extracts as Cosmeceuticals Ingredients: Safety and ex vivo Skin Permeation Studies. Food Chem. Tox. 2019, 127, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Winder, A.J. A Stopped Spectrophotometric Assay for the Dopa Oxidase Activity of Tyrosinase. J. Bio. Bioph. Methods 1994, 28, 173–183. [Google Scholar] [CrossRef]
- Taofiq, O.; Heleno, S.H.; Calhelha, R.C.; Alves, M.J.; Barros, L.; González-Paramás, A.M.; Barreiro, M.F.; Ferreira, I.C.F.R. The potential of Ganoderma lucidum extracts as bioactive ingredientes in topical formulations, beyond its nutritional benefits. Food Chem. Toxicol. 2017, 108, 139–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.; Ferreira, I.C.F.R. Grape Pomace as a Source of Phenolic Compounds and Diverse Bioactive Properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos-Buelga, C.; Francia-Aricha, E.M.; Escribano-Bailón, M.T. Comparative flavan-3-ol Compostition of Seeds from Different Grape Varieties. Food Chem. 1995, 51, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Montealegre, R.R.; Peces, R.R.; Vozmediano, J.L.C.; Gascueña, J.M.; Romero, E.G. Phenolic Compounds in Skins and Seeds of Ten Grape Vitis vinífera Varieties Grown in a Warm Climate. J. Food Comp. Anal. 2006, 19, 687–693. [Google Scholar] [CrossRef]
- Maicas, S.; Mateo, J. Sustainability of Wine Production. Sustainability 2020, 12, 559. [Google Scholar] [CrossRef] [Green Version]
- Matos, M.S.; Romero-Diaz, R.; Álvarez, A.; Bronze, M.R.; Rodriguez-Rojo, S.; Mato, R.B.; Cocero, M.J.; Matias, A.A. Polyphenol-Rich Extract Obtained from Winemaking Waste Streams as Natural Ingredients with Cosmeceutical Potential. Antioxidants 2019, 8, 355. [Google Scholar] [CrossRef] [Green Version]
- Romero-Díez, R.; Rodríguez-Rojo, S.; Cocero, M.J.; Duarte, C.M.M.; Matias, A.A.; Bronze, M.R. Phenolic Characterization of Aging Wine Lees: Correlation with Antioxidant Activities. Food Chem. 2018, 259, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Gil-Sánchez, I.; Ayuda-Durán, B.; González-Manzano, S.; Santos-Buelga, C.; Cueva, C.; Martín-Cabrejas, M.A.; Sanz-Buenhombre, M.; Guadamarra, A.; Moreno-Arribas, M.V.; Bartolomé, B. Chemical characterization and in vitro colonic fermentation of grape pomace extracts. J. Sci. Food Agric. 2017, 97, 3433–3444. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J.; Hernanz, D.; González-Manzano, S.; Santos-Buelga, C.; Escudero-Gilete, M.L.; Heredia, F.J. Detailed phenolic composition of white grape by-products by RRLC/MS and measurement of the antioxidant activity. Talanta 2014, 125, 51–57. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J.; González-Manzano, S.; Escudero-Gilete, M.L.; Hernanz, D.; Dueñas, M.; González-Paramás, A.M.; Heredia, F.J.; Santos-Buelga, C. Study of Zalema grape pomace: Phenolic composition and biological effects in Caenorhabditis elegans. J. Agric. Food Chem. 2013, 61, 5114–5121. [Google Scholar] [CrossRef]
- González-Paramás, A.M.; Esteban-Ruano, S.; Santos-Buelga, C.; Pascual-Teresa, S.; Rivas-Gonzalo, J.C. Flavanol content and antioxidant activity in winery byproducts. J. Agric. Food Chem. 2004, 52, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liang, F.; Bin, Y.; Li, P.; Duan, C. Screening Non-colored Phenolics in Red Wines using Liquid Chromatography/Ultraviolet and Mass Spectrometry/Mass Spectrometry Libraries. Molecules 2007, 12, 679–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milincic, D.D.; Stanisavljevic, N.S.; Kostic, A.Z.; Bajic, S.S.; Kojic, M.O.; Gasic, U.M.; Barac, M.B.; Stanojevic, S.P.; Tesic, Z.L.; Pesic, M.B. Phenolic compounds and biopotential of grape pomace extracts from Prokupac red grape variety. LWT 2021, 138, e110739. [Google Scholar] [CrossRef]
- Lingua, M.S.; Fabani, M.P.; Wunderlin, D.A.; Baroni, M.V. In vivo antioxidant activity of grape, pomace and wine from three red varieties grown in Argentina: Its relationship to phenolic profile. J. Funct. Foods 2016, 20, 332–345. [Google Scholar] [CrossRef]
- Montero, L.; Sáez, V.; Von Baer, D.; Cifuentes, A.; Herrero, M. Profiling of Vitis vinifera L. canes (poly) phenolic compounds using comprehensive two-dimensional liquid chromatography. J. Chromatogr. A 2018, 1536, 205–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Careri, M.; Corradini, C.; Elviri, L.; Nicoletti, I.; Zagnoni, I. Direct HPLC analysis of quercetin and trans-resveratrol in red wine, grape, and winemaking byproducts. J. Agric. Food Chem. 2003, 51, 5226–5231. [Google Scholar] [CrossRef]
- Alcalde-Eon, C.; Escribano-Bailón, M.T.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. Changes in the detailed pigment composition of red wine during maturity and ageing. A comprehensive study. An. Chim. Acta 2006, 563, 238–2549. [Google Scholar] [CrossRef]
- Hebrero, E.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. High Performance Liquid Chromatography Diode Array Spectroscopy Identification of Anthocyanins of Vitis vinifera variety Tempranillo. Am. J. Enol. Vitic. 1988, 39, 3. [Google Scholar] [CrossRef]
- García-Beneytez, E.; Cabello, F.; Revilla, E. Analysis of grape and wine anthocyanins by HPLC-MS. J. Agric. Food Chem. 2003, 51, 5622–5629. [Google Scholar] [CrossRef]
- García-Marino, M.; Hernández-Hierro, J.M.; Santos-Buelga, C.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Multivariate analysis of the polyphenol composition of Tempranillo and Graciano red wines. Talanta 2011, 85, 2060–2066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maluf, D.F.; Gonçalves, M.M.; D’Angelo, R.W.O.; Girassol, A.B.; Tulio, A.P.; Pupo, Y.M.; Farago, P.V. Cytoprotection of Antioxidant Biocompounds from Grape Pomace: Further Exfoliant Phytoactive Ingredients for Cosmetic Products. Cosmetics 2018, 5, 46. [Google Scholar] [CrossRef] [Green Version]
- López-Férnandez-Sobrino, R.; Margalef, M.; Torres-Fuentes, C.; Ávila-Román, J.; Aragonès, G.; Muguerza, B.; Bravo, F.I. Enzyme-Assisted Extraction to Obtain Phenolic-Enriched Wine Lees with Enhanced Bioactivity in Hypertensive Rats. Antioxidants 2021, 10, 517. [Google Scholar] [CrossRef]
- Silva, V.; Igrejas, G.; Falco, V.; Santos, T.P.; Torres, C.; Oliveira, A.M.P.; Pereira, J.E.; Amaral, J.S.; Poeta, P. Chemical composition, antioxidante and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Cont. 2018, 92, 516–552. [Google Scholar] [CrossRef] [Green Version]
- Castejón, N.; Thorarinsdottir, K.A.; Einarsdottir, R.; Kristbergsson, K.; Mateinsdóttir, G. Exploring the Potential of Icelandic Seaweeds Extracts Produced by Aqueous Electric Fields-Assisted Extraction for Cosmetic Applications. Mar. Drugs 2021, 19, 662. [Google Scholar] [CrossRef] [PubMed]
- Leal, C.; Gouvinhas, I.; Santos, R.A.; Rosa, E.; Silva, A.M.; Saavedra, M.J.; Barros, A.I.R.N.A. Potential application of grape (Vitis vinifera L.) stem extracts in the cosmetic and pharmaceutical industries: Valorization of a by-product. Indust. Crops Prod. 2020, 154, 112675. [Google Scholar] [CrossRef]
- Panzella, L.; Napolitano, A. Natural and Bioinspired Phenolic Compounds as Tyrosinase Inhibitors for the Treatment of Skin Hyperpigmentation: Recent Advances. Cosmetics 2019, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Kolbe, L.; Mann, T.; Gerwat, W.; Batzer, J.; Ahlheit, S.; Scherner, C.; Wenck, H.; Stab, F. 4-n-butylresorcinol, a highly effective tyrosinase inhibitor for the topical treatment of hyperpigmentation. JEADV 2013, 27 (Suppl. S1), 19–23. [Google Scholar] [CrossRef]
- Michailidis, D.; Angelis, A.; Nikolaou, P.E.; Mitakou, S.; Skaltsounis, A.L. Explitation of Vitis vinifera, Foeniculum vulgare, Cannabis sativa and Punica granatum By-Product Seeds as Dermo-Cosmetic Agents. Molecules 2021, 26, 731. [Google Scholar] [CrossRef]
Peak | Rt (min) | λmáx (nm) | [M-H]− (m/z) | MS2 (m/z) | Tentative Identification |
---|---|---|---|---|---|
Non-anthocyanin phenolic compounds | |||||
1 | 4.58 | 270 | 865 | 739(8), 577(45), 575(8), 425(20), 407(30), 289(11), 287(25) | β-type procyanidin trimer |
2 | 4.83 | 279 | 577 | 451(100), 575(39), 425(5), 407(5), 289(5), 287(12) | β-type procyanidin dimer |
3 | 5.05 | 278 | 1153 | 865(3), 863(14), 577(7),575(5), 289(14), 287(5) | β-type procyanidin tetramer |
4 | 5.45 | 279 | 289 | 245(100), 205(45), 179(13) | (+)-Catechin |
5 | 5.63 | 279 | 577 | 451(100), 575(39), 425(5), 407(5), 289(5), 287(12) | β-type procyanidin dimer |
6 | 6.17 | 298 | 465 | 303(100) | Taxifolin-O-hexoside |
7 | 6.37 | 298 | 465 | 303(100) | Taxifolin-O-hexoside |
8 | 6.7 | 298 | 465 | 303(100) | Taxifolin-O-hexoside |
9 | 6.91 | 282 | 289 | 245(100), 205(25), 179(12), 203(13), 231(5), 271(3), 161(3) | (-)-Epicatechin |
10 | 7.16 | 277 | 325 | 163, 145, 119 | p-Coumaric acid hexoside |
11 | 9.8 | 274 | 479 | 317(100) | Myricetin-O-hexoside |
12 | 12.33 | 277 | 197 | 169(100), 124(25) | Ethyl gallate |
13 | 13.78 | 353 | 477 | 301(100) | Quercetin-O-hexuronoside |
14 | 14.37 | 343 | 463 | 301(100) | Quercetin-O-hexoside |
15 | 18.54 | 358 | 521 | 317(100) | Myricetin-O-acetyl-hexoside |
16 | 29.64 | 284 | 905 | 811, 717, 357, 451, 611, 887 | Resveratrol tetramer (cis) |
17 | 35.24 | 284 | 227 | 186, 159, 143 | trans-Resveratrol |
Peak | Rt (min) | λmax (nm) | [H]+ (m/z) | MS2 (m/z) | Tentative Identification |
Anthocyanin phenolic compounds | |||||
18 | 27.23 | 523 | 465 | 303(100) | Delphidin-3-O-glucoside |
19 | 28.64 | 523 | 449 | 287(100) | Cyanidin-3-O-glucoside |
20 | 29.61 | 525 | 479 | 317(100) | Petunidin-3-O-glucoside |
21 | 31.76 | 520 | 463 | 301(100) | Peonidin-3-O-glucoside |
22 | 32.92 | 526 | 493 | 331(100) | Malvidin-3-O-glucoside |
23 | 36.78 | 517 | 507 | 303(100) | Dephinidin-3-O-acetylglucoside |
24 | 40.13 | 529 | 521 | 317(100) | Petunidin-3-O-acetylglucoside |
25 | 43.06 | 529 | 535 | 331(100) | Malvidin-3-O-acetylglucoside |
26 | 44.81 | 531 | 655 | 331(100) | Malvidin-3-O-caffeoylglucoside |
27 | 45.57 | 531 | 625 | 317(100) | Petunidin-3-O-p-coumaroylglucoside |
28 | 47.42 | 526 | 609 | 301(100) | Peonidin-3-O-p-coumaroylglucoside |
29 | 47.78 | 531 | 639 | 331(100) | Malvidin-3-O-p-coumaroylglucoside |
Peak | Red Grape Pomace | Skins | Seeds | Stems | Diatomaceous Earth | Red Wine Lees | White Wine Lees | |
---|---|---|---|---|---|---|---|---|
(Solid Phase) | (Liquid Phase) | |||||||
Non-anthocyanin phenolic compounds (mg/g extract) | ||||||||
1 | 0.0686 ± 0.0065 a | nd | 0.0483 ± 0.0028 b | 0.0653 ± 0.0014 a | nd | nd | nd | nd |
2 | 0.0413 ± 0.0053 e | nd | 0.0637 ± 0.0101 d | 0.167 ± 0.002 a | 0.1554 ± 0.0147 b | 0.0832 ± 0.001 c | 0.1713 ± 0.0163 a | nd |
3 | 0.0234 ± 0.0047 | nd | nd | nd | nd | nd | nd | nd |
4 | 0.0551 ± 0.0066 e | nd | 0.101 ± 0.0191 d | 0.139 ± 0.0047 b | nd | 0.098 ± 0.0293 d | 0.122 ± 0.00 c | 0.1510 ± 0.0236 a |
5 | 0.0266 ± 0.0015 c | nd | 0.087 ± 0.0048 b | nd | 0.1208 ± 0.0292 a | nd | nd | nd |
6 | 0.0424 ± 0.0004 d | 0.070 ± 0.0034 a | nd | nd | nd | 0.0536 ± 0.0052 c | 0.057 ± 0.00 b | nd |
7 | 0.0286 ± 0.0019 d | nd | 0.0335 ± 0.0021 c | nd | 0.0807 ± 0.0171 a | nd | nd | 0.0597 ± 0.0042 b |
8 | 0.0302 ± 0.0007 c | nd | 0.0525 ± 0.0102 b | 0.0664 ± 0.0091 a | nd | nd | nd | nd |
9 | 0.0591 ± 0.0024 e | 0.099 ± 0.0141 b | 0.0337 ± 0.0020 f | 0.0753 ± 0.0046 d | 0.254 ± 0.009 a | 0.0729 ± 0.0007 d | 0.0851 ± 0.0138 c | nd |
10 | 0.0033 ± 0.0002 | nd | tr | nd | nd | nd | nd | nd |
11 | nd | nd | nd | nd | 0.532 ± 0.004 | nd | nd | nd |
12 | nd | nd | nd | nd | 0.201 ± 0.009 | nd | nd | nd |
13 | 0.114 ± 0.0004 e | 0.1140 ± 0.0036 b | 0.0939 ± 0.0001 e | 0.1226 ± 0.0036 a | 0.101 ± 0.0005 d | 0.1051 ± 0.0010 c | 0.0944 ± 0.0001 e | nd |
14 | 0.0973 ± 0.0014 g | 0.0992 ± 0.0012 d | 0.1065 ± 0.0011 b | 0.097 ± 0.0004 c | 0.108 ± 0.0023 a | 0.0964 ± 0.0011 e | 0.0938 ± 0.0002 f | nd |
15 | 0.5016 ± 0.0003 a | nd | nd | nd | nd | nd | nd | nd |
16 | nd | nd | nd | tr | nd | nd | nd | nd |
17 | nd | nd | tr | nd | nd | nd | nd | nd |
TF3O | 0.27 ± 0.0034 a | 0.0998 ± 0.0141 h | 0.334 ± 0.0252 b | 0.443 ± 0.0254 d | 0.730 ± 0.0146 c | 0.254 ± 0.0283 f | 0.3782 ± 0.0025 e | 0.1510 ± 0.0236 g |
TOF | 0.81 ± 0.0006 e | 0.2830 ± 0.001 c | 0.286 ± 0.0092 d | 0.2859 ± 0.0058 b | 0.822 ± 0.0159 a | 0.2551 ± 0.0032 d | 0.2460 ± 0.0001 f | 0.0597 ± 0.0042 g |
TPC | 1.092 ± 0.004 e | 0.3829 ± 0.015 c | 0.6202 ± 0.0345 d | 0.7322 ± 0.0195 b | 1.553 ± 0.0305 a | 0.509 ± 0.0315 d | 0.6242 ± 0.0025 f | 0.2107 ± 0.0194 g |
Anthocyanin phenolic compounds (mg/g extract) | ||||||||
18 | 7.568 ± 0.186 a | 4.134 ± 0.071 b | 2.25 ± 0.003 d | 1.161 ± 0.001 e | nd | 1.075 ± 0.004 f | 2.82 ± 0.043 c | nd |
19 | 2.886 ± 0.101 a | 1.562 ± 0.021 d | 2.24 ± 0.001 c | 1.166 ± 0.014 e | nd | 1.067 ± 0.005 f | 2.673 ± 0.038 b | nd |
20 | 7.481 ± 0.174 a | 4.35 ± 0.064 b | 2.009 ± 0.003 d | 1.074 ± 0.004 e | nd | 0.985 ± 0.004 f | 2.446 ± 0.024 c | nd |
21 | 4.273 ± 0.130 a | 2.182 ± 0.016 c | 1.997 ± 0.001 d | 1.144 ± 0.021 e | nd | 0.964 ± 0.007 f | 2.485 ± 0.051 b | nd |
22 | 27.142 ± 0.389 a | 16.78 ± 0.469 b | 2.090 ± 0.004 d | 1.614 ± 0.012 e | nd | 1.065 ± 0.004 f | 3.362 ± 0.0359 c | nd |
23 | 2.743 ± 0.208 a | 1.843 ± 0.04 d | 2.239±0.001 c | 1.071 ± 0.013 f | nd | 1.111 ± 0.003 e | 2.65 ± 0.05 b | nd |
24 | 3.254 ± 0.043 a | 1.931 ± 0.01 d | 1.993 ± 0.003 c | 0.982 ± 0.006 e | nd | 0.975 ± 0.01 e | 2.379 ± 0.038 b | nd |
25 | 5.426 ± 0.246 a | 2.779 ± 0.046 b | 2.006 ± 0.0004 d | 1.086 ± 0.009 e | nd | 1.048 ± 0.008 e | 2.619 ± 0.004 c | nd |
26 | 4.146 ± 0.00 a | 2.262 ± 0.076 c | 2.002 ± 0.003 d | 0.997 ± 0.007 e | nd | 0.983 ± 0.013 e | 2.337 ± 0.036 b | nd |
27 | 2.861 ± 0.169 a | 2.152 ± 0.038 c | 1.999 ± 0.0057 d | 1.014 ± 0.003 e | nd | 1.031 ± 0.008 e | 2.345 ± 0.047 b | nd |
28 | 3.157 ± 0.054 b | 1.545 ± 0.104 e | 1.995 ± 0.0005 d | 1.479 ± 0.005 f | 3.401 ± 0.023 a | 0.997 ± 0.009 g | 2.272 ± 0.048 c | nd |
29 | 9.901 ± 0.06 a | 6.505 ± 0.04 b | 2.033 ± 0.0002 e | 1.274 ± 0.009 f | 3.441 ± 0.012 c | 1.024 ± 0.004 g | 2.371 ± 0.007 d | nd |
TA | 80.837 ± 0.861 a | 48.023 ± 0.583 b | 24.852 ± 0.009 d | 14.063 ± 0.013 f | 6.842 ± 0.035 g | 12.324 ± 0.026 e | 30.76 ± 0.368 c | nd |
Hydroethanolic Extracts | Antioxidant Activity EC50 Values (mg/mL) | ||
---|---|---|---|
DPPH Scavenging Activity | Reducing Power | TBARS Inhibition | |
Red Grape Pomace | 0.123 ± 0.007 | 0.17 ± 0.004 | 0.025 ± 0.0173 |
Skins From Red Grape Pomace | 0.217 ± 0.005 | 0.24 ± 0.004 | 0.018 ± 0.0045 |
Seeds From Red Grape Pomace | 0.081 ± 0.005 | 0.11 ± 0.007 | 0.021 ± 0.00289 |
Stems | 0.21 ± 0.005 | 0.41 ± 0.004 | 0.11 ± 0.00682 |
Diatomaceous Earth | 0.17 ± 0.01 | 0.11 ± 0.004 | 0.195 ± 0.0321 |
Red Wine Lees (solid phase) | 0.506 ± 0.007 | 0.68 ± 0.002 | 0.609 ± 0.00458 |
Red Wine Lees (liquid phase) | 0.578 ± 0.005 | 0.78 ± 0.001 | 0.346 ± 0.0185 |
White Wine Lees | 0.93 ± 0.08 | 0.83 ± 0.09 | 0.376 ± 0.0224 |
Red Grape Pomace | Skins | Seeds | Stems | Diatomaceous Earth | Red Wine Lees (Solid Phase) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
Gram-negative bacteria | ||||||||||||
Escherichia coli | >10 | >10 | >10 | >10 | 10 | >10 | >10 | >10 | 10 | >10 | 10 | >10 |
Klebsiella pneumoniae | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | 10 | >10 | 5 | >10 |
Morganella morganii | 5 | >10 | 5 | >10 | >10 | >10 | >10 | >10 | 10 | >10 | 5 | >10 |
Proteus mirabilis | 10 | >10 | 10 | >10 | 10 | >10 | >10 | >10 | 10 | >10 | 10 | >10 |
Pseudomonas aeruginosa | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | 10 | >10 |
Gram-positive bacteria | ||||||||||||
Enterococcus faecalis | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 |
Listeria monocytogenes | 10 | >10 | 10 | >10 | 5 | >10 | 5 | >10 | 10 | >10 | 5 | >10 |
MRSA | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 5 | >10 | 2.5 | >10 |
Red Wine Lees (Liquid Phase) | White Wine Lees | Ampicillin (20 mg/mL) | Imipenem (1 mg/mL) | Vancomycin (1 mg/mL) | ||||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |||
Gram-negative bacteria | ||||||||||||
Escherichia coli | 5 | >10 | 10 | >10 | <0.15 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. | ||
Klebsiella pneumoniae | 10 | >10 | 10 | >10 | 10 | >10 | <0.0078 | <0.0078 | n.t. | n.t. | ||
Morganella morganii | 5 | >10 | 10 | >10 | >10 | >10 | <0.0078 | <0.0078 | n.t. | n.t. | ||
Proteus mirabilis | 10 | >10 | 10 | >10 | <015 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. | ||
Pseudomonas aeruginosa | 10 | >10 | 10 | >10 | >10 | >10 | 0.5 | 1 | n.t. | n.t. | ||
Gram-positive bacteria | ||||||||||||
Enterococcus faecalis | 5 | >10 | 10 | >10 | <0.15 | <0.15 | n.t. | n.t. | <0.0078 | <0.0078 | ||
Listeria monocytogenes | 5 | >10 | 10 | >10 | <0.15 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. | ||
MRSA | 2.5. | >10 | 5 | >10 | <0.15 | <0.15 | n.t. | n.t. | 0.25 | 0.5 |
Aspergillus brasiliensis | Aspergillus fumigatus | |||
---|---|---|---|---|
MIC | MIC | MFC | MFC | |
Red Grape Pomace | 10 | 10 | >10 | >10 |
Skins from Red Grape Pomace | 5 | 10 | >10 | >10 |
Seeds from Red Grape Pomace | >10 | 10 | >10 | >10 |
Stems | 10 | 10 | >10 | >10 |
Diatomaceous earth | >10 | >10 | >10 | >10 |
Red Wine Lees Solid Phase | 10 | 10 | >10 | >10 |
Red Wine Lees Liquid Phase | >10 | 10 | >10 | >10 |
White Wine Lees | 10 | 10 | >10 | >10 |
Ketoconazole | 0.06 | 0.5 | 0.125 | 1 |
Extracts | % Collagenase Inhibition | % Tyrosinase Inhibition |
---|---|---|
Red Wine Lees (Solid Phase) | NA | 1.22 ± 0.03 a,b |
Red Wine Pomace | 89 ± 2 | 28.2 ± 0.1 c,d |
White Wine Lees | NA | NA |
Diatomaceous Earth | 18 ± 3 | NA |
Red Wine Lees (Liquid Phase) | NA | 0.61 ± 0.02 a,b |
Seeds | 87 ± 8 | 45.3 ± 0.1 e |
Skins | 75 ± 7 | 34.55 ± 0.05 b,c |
Stems | 82 ± 3 | 29.93 ± 0.02 d,e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte, C.N.; Taofiq, O.; Dias, M.I.; Heleno, S.A.; Santos-Buelga, C.; Barros, L.; Amaral, J.S. Chemical Characterization and Bioactive Properties of Wine Lees and Diatomaceous Earth towards the Valorization of Underexploited Residues as Potential Cosmeceuticals. Cosmetics 2023, 10, 58. https://doi.org/10.3390/cosmetics10020058
Duarte CN, Taofiq O, Dias MI, Heleno SA, Santos-Buelga C, Barros L, Amaral JS. Chemical Characterization and Bioactive Properties of Wine Lees and Diatomaceous Earth towards the Valorization of Underexploited Residues as Potential Cosmeceuticals. Cosmetics. 2023; 10(2):58. https://doi.org/10.3390/cosmetics10020058
Chicago/Turabian StyleDuarte, Cristina N., Oludemi Taofiq, Maria Inês Dias, Sandrina A. Heleno, Celestino Santos-Buelga, Lillian Barros, and Joana S. Amaral. 2023. "Chemical Characterization and Bioactive Properties of Wine Lees and Diatomaceous Earth towards the Valorization of Underexploited Residues as Potential Cosmeceuticals" Cosmetics 10, no. 2: 58. https://doi.org/10.3390/cosmetics10020058
APA StyleDuarte, C. N., Taofiq, O., Dias, M. I., Heleno, S. A., Santos-Buelga, C., Barros, L., & Amaral, J. S. (2023). Chemical Characterization and Bioactive Properties of Wine Lees and Diatomaceous Earth towards the Valorization of Underexploited Residues as Potential Cosmeceuticals. Cosmetics, 10(2), 58. https://doi.org/10.3390/cosmetics10020058