Profiling and Evaluation of the Effect of Guarana-Loaded Liposomes on Different Skin Cell Lines: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Characterization of Guarana-Loaded Liposomes
2.3. Physicochemical Stability Study of Guarana-Loaded Liposomes
2.4. Culture of 3T3, HaCaT and 1BR.3.G Cell Lines
2.5. Analysis of Liposome Interference with Cell Viability Assays
2.6. Cytotoxicity Assays
2.7. Statistical Analysis
3. Results and Discussion
3.1. Stability Study of Guarana-Loaded Liposomes
3.2. Cytotoxicity Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watkins, R.; Wu, L.; Zhang, C.; Davis, R.M.; Xu, B. Natural product-based nanomedicine: Recent advances and issues. Int. J. Nanomed. 2015, 10, 6055–6074. [Google Scholar] [CrossRef]
- Calixto, J.B. The role of natural products in modern drug discovery. An. Acad. Bras. Cienc. 2019, 91, e20190105. [Google Scholar] [CrossRef] [PubMed]
- Fidan, O.; Ren, J.; Zhan, J. Engineered production of bioactive natural products from medicinal plants. World J. Tradit. Chin. Med. 2022, 8, 59–76. [Google Scholar] [CrossRef]
- Daudt, R.M.; Emanuelli, J.; Külkamp-Guerreiro, I.C.; Pohlmann, A.R.; Guterres, S.S. A nanotecnologia como estratégia para o desenvolvimento de cosméticos. Cienc. Cult. 2013, 65, 28–31. [Google Scholar] [CrossRef]
- Marques, L.L.M.; Ferreira, E.D.F.; De Paula, M.N.; Klein, T.; Palazzo de Mello, J.C. Paullinia cupana: A multipurpose plant—A review. Rev. Bras. Farmacogn. 2019, 29, 77–110. [Google Scholar] [CrossRef]
- Bonifácio, B.V.; Silva, P.B.; Ramos, M.A.; Negri, K.M.; Bauadb, T.M.; Chorillii, M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomed. 2014, 9, 1–15. [Google Scholar] [CrossRef]
- Zorzi, G.; Carvalho, E.; Poser, G.V.; Teixeira, H.F. On the use of nanotechnology-based strategies for association of complexes matrices from plant extracts. Rev. Bras. Farmacogn. 2015, 25, 426–436. [Google Scholar] [CrossRef]
- Vanti, G. Recent strategies in nanodelivery systems for natural products: A review. Environ. Chem. Lett. 2021, 19, 4311–4326. [Google Scholar] [CrossRef]
- Kaul, S.; Gulati, N.; Verma, D.; Mukherjee, S.; Nagaich, U. Role of Nanotechnology in Cosmeceuticals: A Review of Recent Advances. J. Pharm. 2018, 19, 3420204. [Google Scholar] [CrossRef]
- Khezri, K.; Saeedi, M.; Dizaj, S.M. Application of nanoparticles in percutaneous delivery of active ingredients in cosmetic preparations. Biomed. Pharmacother. 2018, 106, 1499–1505. [Google Scholar] [CrossRef]
- Aziz, Z.A.A.; Mohd-Nasir, H.; Ahmad, A.; Setapar, S.H.M.; Peng, W.L.; Chuo, S.C.; Khatoon, A.; Umar, K.; Yaqoob, A.A.; Ibrahin, M.N.M. Role of Nanotechnology for Design and Development of Cosmeceutical: Application in Makeup and Skin Care. Front. Chem. 2019, 7, 739. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, C.; Rimicci, C.; Garelli, S.; Ugazio, E.; Battaglia, L. Nanosystems in Cosmetic Products: A Brief Overview of Functional, Market, Regulatory and Safety Concerns. Pharmaceutics 2021, 13, 1408. [Google Scholar] [CrossRef] [PubMed]
- Dimer, F.A.; Friedrich, R.B.; Beck, R.C.R.; Guterres, S.S. Impactos na nanotecnologia na saúde: Produção de medicamentos. Quim. Nova 2013, 36, 1520–1526. [Google Scholar] [CrossRef]
- Mali, A.D.; Bathe, R.S. Updated review on nanoparticles as drug delivery systems. IJAPBS 2015, 4, 18–34. [Google Scholar]
- Ahmadi, A.H.R.; Bishe, P.L.N.; Nilforoushzadeh, M.A.; Zare, S. Liposomes in Cosmetics. J. Skin Stem Cell 2016, 3, e65815. [Google Scholar] [CrossRef]
- Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Bawab, A.A.; Alshaer, W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022, 8, e09394. [Google Scholar] [CrossRef]
- Raj, S.; Jose, S.; Sumod, U.S.; Sabitha, M. Nanotechnology in cosmetics: Opportunities and challenges. J. Pharm. Bioallied Sci. 2012, 4, 186–193. [Google Scholar] [CrossRef]
- Soni, V.; Chandel, S.; Jain, P.; Asati, S. Chapter 5—Role of Liposomal Drug-Delivery System in Cosmetics. In Nanobiomaterials in Galenic Formulations and Cosmetics; Grumezescu, A.M., Ed.; William Andrew Publishing: Sagar, Madhya Pradesh, India, 2016; pp. 93–120. [Google Scholar] [CrossRef]
- Shokri, J. Nanocosmetics: Benefits and risks. Bioimpacts 2017, 7, 207–208. [Google Scholar] [CrossRef]
- Castañeda-Reyes, E.D.; Perea-Flores, M.J.; Davila-Ortiz, G.; Lee, Y.; De Mejia, E.G. Development, Characterization and Use of Liposomes as Amphipathic Transporters of Bioactive Compounds for Melanoma Treatment and Reduction of Skin Inflammation: A Review. Int. J. Nanomed. 2020, 15, 7627–7660. [Google Scholar] [CrossRef]
- SCCS (Scientific Committee on Consumer Safety). Guidance on the Safety Assessment of Nanomaterials in Cosmetics. 2012. Available online: https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_s_005.pdf (accessed on 26 March 2023).
- SCENIHR (Scientific Committee on Emerging and Newly Identified Health Risks). Risk Assessment of Products of Nanotechnologies. 2009. Available online: http://www.ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_023.pdf (accessed on 26 March 2023).
- UE, 2010: EP and Council of the EU. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. O.J.L 276/33. 2010. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:pdf (accessed on 18 March 2023).
- Pietrzykowski, T. Ethical Review of Animal Research and the Standards of Procedural Justice: A European Perspective. J. Bioeth. Inq. 2021, 18, 525–534. [Google Scholar] [CrossRef]
- Burden, N.; Creton, S.; Weltje, L.; Maynard, S.K.; Wheeler, J.R. Reducing the number of fish in bioconcentration studies with general chemicals by reducing the number of test concentrations. Regul. Toxicol. Pharmacol. 2014, 70, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Piersma, A.H.; Ezendam, J.; Luijten, M.; Muller, J.J.; Rorije, E.; Van Der Ven, L.T.; Van Benthem, J. A critical appraisal of the process of regulatory implementation of novel in vivo and in vitro methods for chemical hazard and risk assessment. Crit. Rev. Toxicol. 2014, 44, 876–894. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, R.; Beken, S.; Da Chlebus, M.; Ellis, G.; Griesinger, C.; De Jonghe, S.; Manou, I.; Mehling, A.; Reisinger, K.; Rossi, L.H.; et al. Knowledge sharing to facilitate regulatory decision-making in regard to alternatives to animal testing: Report of an EPAA workshop. Regul. Toxicol. Pharmacol. 2015, 73, 210–226. [Google Scholar] [CrossRef] [PubMed]
- Rouquié, D.; Heneweer, M.; Botham, J.; Ketelslegers, H.; Markell, L.; Pfister, T.; Steiling, W.; Strauss, V.; Hennes, C. Contribution of new technologies to characterization and prediction of adverse effects. Crit. Rev. Toxicol. 2015, 45, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Russell, W.M.S.; Burch, R.L. The Principles of Humane Experimental Technique; UFAW: Methuen, MA, USA; Wheathampstead, UK, 1959; 238p, Special Edition; ISBN 0-900767-78-2. [Google Scholar]
- Morales, M.M. Métodos alternativos à utilização de animais em pesquisa científica: Mito ou realidade? Cienc. Cult. Online 2008, 60, 33–36. [Google Scholar]
- Tannenbaum, J.; Bennett, T.B. Russell and Burch’s 3Rs Then and Now: The Need for Clarity in Definition and Purpose. J. Am. Assoc. Lab. Anim. Sci. 2015, 54, 120–132. [Google Scholar]
- Zaiter, T.; Cornu, R.; El Basset, W.; Martin, H.; Diab, M.; Béduneau, A. Toxicity assessment of nanoparticles in contact with the skin. J. Nanopart. Res. 2022, 24, 149. [Google Scholar] [CrossRef]
- Biondo, N.E.; Argenta, D.F.; Caon, T. A Comparative Analysis of Biological and Synthetic Skin Models for Drug Transport Studies. Pharm. Res. 2023, 1–13. [Google Scholar] [CrossRef]
- Fernandes, I.R.; Russo, F.B.; Pignatari, G.C.; Evangelinellis, M.M.; Tavolari, S.; Muotri, A.R.; Beltrão-Braga, P.C. Fibroblast sources: Where can we get them? Cytotechnology 2016, 68, 223–228. [Google Scholar] [CrossRef]
- Atroch, A.L.; Filho, F.J.N. Guarana-Paullinia cupana Kunth var. sorbilis (Mart.) Ducke. Exot. Fruts 2018, 225–236. [Google Scholar] [CrossRef]
- Miranda, M.V.; Metzner, B.S. Paullinia cupana: Revisão da matéria médica. Rev. Homeopat. 2010, 73, 225–236. [Google Scholar]
- Antonelli-Ushirobira, T.M.; Kameshima, E.N.; Gabriel, M.; Audi, E.A.; Marques, L.C.; Mello, J.C.P. Acute and subchronic toxicological evaluation of the semipurified extract of seeds of guaraná (Paullinia cupana) in rodents. Food Chem. Toxicol. 2010, 48, 1817–1820. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt, L.S.; Machado, D.C.; Machado, M.M.; Dos Santos, G.F.F.; Algarve, T.D.; Marinowic, D.R.; Ribeiro, E.E.; Soares, F.A.A.; Barbisan, F.; Athayde, M.L.; et al. The protective effects of guaraná extract (Paullinia cupana) on fibroblast NIH-3T3 cells exposed to sodium nitroprussid. Food Chem. Toxicol. 2013, 53, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Yonekura, L.; Martins, C.A.; Sampaio, G.R.; Monteiro, P.M.; César, L.A.M.; Mioto, B.M.; Mori, C.S.; Mendes, T.M.N.; Ribeiro, M.L.; Arçari, D.P.; et al. Bioavailability of catechins from guaraná (Paullinia cupana) and its effect on antioxidant enzymes and other oxidative stress markers in healthy human subjects. Food Funct. 2016, 13, 2970–2978. [Google Scholar] [CrossRef] [PubMed]
- Torres, E.A.F.S.; Pinaffi-Langley, A.C.C.; Figueira, M.S.; Cordeiro, K.S.; Negrão, L.D.; Soares, M.J.; Da Silva, C.P.; Alfino, M.C.Z.; Sampaio, G.R.; De Camargo, A.C. Effects of the consumption of guarana n human heath: A narrative review. Compr. Rev. Food Sci. Food Saf. 2021, 21, 272–295. [Google Scholar] [CrossRef]
- Brasil. Agência Nacional de Vigilância Sanitária. Farmacopéia Brasileira, v.1, edição 5a, ed.; Editora Atheneu: Brasília, Distrito Federal, Brasil, 2010; 546p. Available online: https://www.gov.br/anvisa/pt-br/assuntos/farmacopeia/farmacopeia-brasileira/arquivos/8000json-file-1 (accessed on 25 March 2023).
- Basile, A.; Ferrara, L.; Pezzo, M.D.; Mele, G.; Sorbo, S.; Bassi, P.; Montesano, D. Antibacterial and antioxidant activities of ethanol extract from Paullinia cupana. Mart. J. Ethnopharmacol. 2005, 102, 32–36. [Google Scholar] [CrossRef]
- Majhenic, L.; Kerget, M.S.; Knez, E.Z. Antioxidant and antimicrobial activity of guarana seed extracts. Food Chem. 2007, 104, 1258–1268. [Google Scholar] [CrossRef]
- Portella, R.L.; Barcelos, R.P.; Da Rosa, E.J.F.; Ribeiro, E.E.; Cruz, I.B.M.; Suleiman, L.; Soares, F.A.A. Guaraná (Paullinia cupana Kunth) effects on LDL oxidation in elderly people: An in vitro and in vivo study. Lipids Health Dis. 2013, 12, 12. [Google Scholar] [CrossRef]
- Matsuura, E.; Godoy, J.S.R.; Bonfim-Mendonça, P.S.; De Mello, J.C.P.; Svidzinski, T.I.E.; Gasparetto, A.; Maciel, S.M. In vitro effect of Paullinia cupana (guaraná) on hydrophobicity, biofilm formation, and adhesion of Candida albicans to polystyrene, composites, and buccal epithelial cells. Arch. Oral. Bio. 2015, 60, 471–478. [Google Scholar] [CrossRef]
- Klein, T.; Longhini, R.; Bruschi, M.L.; De Mello, J.C.P. Microparticles containing guaraná extract obtained by spray-drying technique: Development and characterization. Rev. Bras. Farmacogn. 2015, 25, 292–300. [Google Scholar] [CrossRef]
- Arantes, L.P.; Machado, M.L.; Zamberlan, D.C.; Silveira, T.L.; Silva, T.C.; Da Cruz, I.B.M.; Ribeiro, E.E.; Aschner, M.; Soares, F.A.A. Mechanisms involved in anti-aging effects of guarana (Paullinia cupana) in Caenorhabditis elegans. Braz. J. Med. Biol. Res. 2018, 51, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Boasquívis, P.F.; Silva, G.M.M.; Paiva, F.A.; Cavalcanti, R.M.; Nunez, C.V.; De Paula Oliveira, R. Guarana (Paullinia cupana) Extract Protects Caenorhabditis elegans Models for Alzheimer Disease and Huntington Disease through Activation of Antioxidant and Protein Degradation Pathways. Oxid. Med. Cell. Longev. 2018, 2018, 9241308. [Google Scholar] [CrossRef] [PubMed]
- Roggia, I.; Dalcin, A.J.F.; Ourique, A.F.; Da Cruz, I.B.M.; Ribeiro, E.E.; Mitjans, M.; Vinardell, M.P.; Gomes, P. Protective effect of guarana-loaded liposomes on hemolytic activity. Colloids Surf. B. Biointerfaces 2020, 187, 110636. [Google Scholar] [CrossRef]
- Aldhahrani, A. Protective effects of guarana (Paullinia cupana) against methotrexate-induced intestinal damage in mice. Food Sci. Nutr. 2021, 9, 3397–3404. [Google Scholar] [CrossRef] [PubMed]
- Machado, K.N.; Barbosa, A.d.P.; De Freitas, A.A.; Alvarenga, L.F.; de Pádua, R.M.; Faraco, A.A.G.; Braga, F.C.; Viana-Soares, C.D.; Castilho, R.O. TNF-α inhibition, antioxidant effects and chemical analysis of extracts and fraction from Brazilian guaraná seed poder. Food Chem. 2021, 355, 129563. [Google Scholar] [CrossRef] [PubMed]
- Reigada, I.; Kapp, K.; Maynard, C.; Weinkove, D.; Valero, M.S.; Langa, E.; Hanski, L.; Gómez-Rincón, C. Alterations in Bacterial Metabolism Contribute to the Lifespan Extension Exerted by Guarana in Caenorhabditis elegans. Nutrients 2022, 14, 1986. [Google Scholar] [CrossRef]
- Marques, L.L.M.; Ribeiro, F.M.; Nakamura, C.V.; Simianato, A.S.; Andrade, G.; Ziwlinski, A.A.F.; Carollo, C.A.; Da Silva, D.B.; De Oliveira, A.G.; De Mello, J.C.P. Metabolomic profiling and correlations of supercritical extracts of guaraná. Nat. Prod. Res. 2022, 26, 1–7. [Google Scholar] [CrossRef]
- Peirano, R.I.; Achterberg, V.; Dusing, H.J.; Akhiani, M.; Koop, U.; Jaspers, S.; Kruger, A.; Schwengler, H.; Hamann, T.; Wenck, H.; et al. Dermal penetration of creatine from a face-care formulation containing creatine, guarana and glycerol is linked to effective antiwrinkle and antisagging efficacy in male subjects. J. Cosmet. Dermatol. 2011, 10, 273–281. [Google Scholar] [CrossRef]
- Marchei, E.; Orsi, D.; Guarino, C.; Donato, S.; Pacifici, R.; Pichini, S. Measurement of iodide and caffeine content in cellulite reduction cosmetic products sold in the European Market. Anal. Methods 2013, 5, 376–383. [Google Scholar] [CrossRef]
- Silva, W.G.; Rovellini, P.; Fusari, P.; Venturini, S. Guaraná—Paullinia cupana, (H.B.K): Estudo da oxidação das formas em pó e em bastões defumados Guaraná. Rev. CiÊNc Agrovet. Online 2015, 14, 235–241. [Google Scholar]
- Mertins, O.; Sebben, M.; Pohlmann, A.; Da Silveira, N. Production of soybean phosphatidylcholine chitosan nanovesicles by reverse phase evaporation: A step by step study. Chem. Phys. Lipids 2005, 138, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.B.; Rigo, L.A.; Rosa, L.D.; Gressler, L.T.; Zimmermann, C.E.P.; Ourique, A.F.; Silva, A.S.; Miletti, L.C.; Beck, R.C.R.; Monteiro, S.G. Liposomes produced by reverse phase evaporation: In vitro and in vivo efficacy of diminazene aceturate against Trypanosoma evansi. Parasitology 2014, 141, 761–769. [Google Scholar] [CrossRef]
- Roggia, I.; Dalcin, A.J.F.; De Souza, D.; Machado, A.K.; De Souza, D.V.; Da Cruz, I.B.M.; Ribeiro, E.E.; Ourique, A.F.; Gomes, P. Guarana: Stability-Indicating RP-HPLC method and safety profile using microglial cells. J. Food Compos. Anal. 2020, 94, 103629. [Google Scholar] [CrossRef]
- Klein, T.; Longhini, R.; Palazzo De Mello, J.C. Development of an analytical method using reversed-phase HPLC-PDA for a semipurified extract of Paullinia cupana var. sorbilis (guaraná). Talanta 2012, 88, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, D.R.; Morán, C.M.; Mitjans, M.; Martínez, V.; Pérez, L.; Vinardel, M.P. New cationic nanovesicular systems containing lysine-based surfactants for topical administration: Toxicity assessment using representative skin cell lines. Eur. J. Pharm. Biopharm. 2013, 83, 33–43. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay to cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Borenfreund, E.; Puerner, J. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol. Lett. 1985, 24, 119–124. [Google Scholar] [CrossRef]
- Laouini, A.; Jaafar-Maalej, C.; Limayem-Blouza, I.; Sfar, S.; Charcosset, C.; Fessi, H. Preparation, Characterization and Applications of Liposomes: State of the Art. J. Colloid. Sci. Biotechnol. 2012, 1, 147–168. [Google Scholar] [CrossRef]
- Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomed. 2015, 10, 975–999. [Google Scholar] [CrossRef]
- Alavi, M.; Karimi, N.; Safaei, M. Application of Various Types of Liposomes in Drug Delivery Systems. Adv. Pharm. Bull. 2017, 7, 3–9. [Google Scholar] [CrossRef]
- Neves, M.T.; Dos Santos, F.R.; Gonçalves, D.J.R.; Fernandes, J.G.; Justino, H.F.M.; Júnior, B.R.C.L.; Vieira, E.N.R. Use of liposome technology in the encapsulation of bioactive compounds—Review. J. Eng. Exact. Sci. 2021, 7, 1–20. [Google Scholar] [CrossRef]
- Heurtault, B.; Saulnier, P.; Pech, B.; Proust, J.E.; Benoit, J.P. Physico-chemical stability of colloidal lipid particles. Biomaterials 2003, 24, 4283–4300. [Google Scholar] [CrossRef] [PubMed]
- Karn, P.R.; Parkl, H.J.; Hwangl, S.J. Characterization and stability studies of a novel liposomal cyclosporin A prepared using the supercritical fluid method: Comparison with the modified conventional. Int. J. Nanomed. 2013, 8, 365–377. [Google Scholar] [CrossRef]
- Batista, C.M.; De Carvalho, C.M.B.; Magalhães, N.S.S. Lipossomas e suas aplicações terapêuticas: Estado da arte. Rev. Bras. Cienc. Farm. 2007, 43, 167–179. [Google Scholar] [CrossRef]
- Roy, A.; Saha, D.; Mandal, P.S.; Mukherjee, A.; Talukdar, P. pH-Gated Chloride Transport by a Triazine-Based Tripodal Semicage. Chem. Eur. 2016, 23, 1241–1247. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.V.; Murthy, M.S.; Shete, A.S.; Sfurti, S. Stability Aspects of Liposomes. Ind. J. Pharm. Edu. Res. 2011, 45, 402–413. [Google Scholar]
- Yo, J.Y.; Chuesiang, P.; Shin, G.H.; Park, H.J. Post-Processing Techniques for the Improvement of Liposome Stability. Pharmaceutics 2021, 13, 1023. [Google Scholar] [CrossRef]
- ANVISA: Agência Nacional de Vigilância Sanitária. Guia de Estabilidade de Produtos Cosméticos/Agência Nacional de Vigilância Sanitária, 1st ed.; Série Qualidade em Cosméticos; v. 1; Brasília: Distrito Federal, Brasil, 2004; p. 52. ISBN 85-88233-15-0. [Google Scholar]
- Kyi, T.M.; Daud, W.R.W.; Mohammad, A.B.; Samsudin, M.W.; Kadhum, A.A.H.; Talib, M.Z.M. The kinetics of polyphenol degradation during the drying of Malaysian cocoa beans. Int. J. Food Sci. Technol. 2005, 40, 323–331. [Google Scholar] [CrossRef]
- Alean, J.; Chejne, F.; Rojano, B. Degradation of polyphenols during the cocoa drying process. J. Food Eng. 2016, 189, 99–105. [Google Scholar] [CrossRef]
- Wan Yong, F. Metabolism of Green Tea Catechins: An Overview. Curr. Drug. Metab. 2006, 7, 755–809. [Google Scholar] [CrossRef]
- Lu, Q.; Li, D.C.; Jiang, J.G. Preparation of a Tea Polyphenol Nanoliposome System and Its Physicochemical Properties. J. Agric. Food Chem. 2011, 59, 13004–13011. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoescale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef]
- Thompson, A.K.; Couchoud, A.; Singh, H. Comparison of hydrophobic and hydrophilic encapsulation using liposomes prepared from milk fat globule-derived phospholipids and soya phospholipids. Dairy. Sci. Technol. 2009, 89, 99–113. [Google Scholar] [CrossRef]
- Papaccio, F.; D’Arino, A.; Caputo, S.; Bellei, B. Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants 2022, 11, 1121. [Google Scholar] [CrossRef]
- Balboa, E.M.; Soto, M.L.; Nogueira, D.R.; González-López, N.; Enma Conde, E.; Moure, A.; Vinardell, M.P.; Mitjans, M.; Domínguez, H. Potential of antioxidant extracts produced by aqueous processing of renewable resources for the formulation of cosmetics. Ind. Crop. Prod. 2014, 58, 104–110. [Google Scholar] [CrossRef]
- Yamagguti-Sasaki, E.; Ito, L.A.; Canteli, V.C.D.; Ushirobira, T.M.A.; Ueda-Nakamura, T.; Dias Filho, B.P.; Nakamura, C.V.; Mello, J.C.P. Antioxidant Capacity and In Vitro Prevention of Dental Plaque Formation by Extracts and Condensed Tannins of Paullinia cupana. Molecules 2007, 12, 1950–1963. [Google Scholar] [CrossRef] [PubMed]
- Schimpl, F.C.; Da Silva, J.F.; Gonçalves, J.F.C.; Mazzafera, P. Guarana: Revisiting a higtly caffeinated plant from the Amazon. J. Ethnopharmacol. 2013, 150, 14–31. [Google Scholar] [CrossRef]
- Bittencourt, L.S.; Bortolin, R.C.; Kolling, E.A.; Schnorr, C.E.; Zanotto-Filho, A.; Gelain, D.P.; Moreira, J.C.F. Antioxidant Profile Characterization of a Commercial Paullinia cupana (Guarana) Extracts. J. Nat. Prod. Resour. 2016, 2, 47–52. [Google Scholar]
- Stone, V.; Johnston, H.; Schins, R.P. Development of in vitro systems for nanotoxicology: Methodological considerations. Crit. Rev. Toxicol. 2009, 39, 613–626. [Google Scholar] [CrossRef]
- Kroll, A.; Pillukat, M.H.; Hahn, D.; Schnekenburger, J. Interference of engineered nanoparticles with in vitro toxicity assays. Arch. Toxicol. 2012, 86, 1123–1136. [Google Scholar] [CrossRef]
- Guadagnini, R.; Kenzaoui, B.H.; Cartwright, L.; Pojana, G.; Magdolenova, Z.; Bilanicova, D.; Saunders, M.; Juillerat, L.; Marcomini, A.; Huk, A.; et al. Toxicity screenings of nanomaterials: Challenges due to interference with assay processes and components of classic in vitro tests. Nanotoxicology 2015, 9, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, D.R.; Mitjans, M.; Infante, M.R.; Vinardell, M.P. Comparative sensitivity of tumor and non-tumor cell lines as a reliable approach for in vitro cytotoxicity screening of lysine-based surfactants with potential pharmaceutical applications. Int. J. Pharm. 2011, 420, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.P. Análise In Vitro da Citotoxicidade e Proliferação Celular em Equivalentes de Pele Humana [In vitro Analysis of Cytotoxicity and Cell Proliferation in Human Skin Equivalents]. Master’s Thesis, Universidade Católica do Rio Grande do Sul, Porto Alegre, Brasil, 2009. [Google Scholar]
Reverse Phase Evaporation | ||
---|---|---|
Active | Initial (%) * | 90 Days (%) ** |
TEOB | Not determined | Not determined |
TEOF | Not determined | Not determined |
CAF | 17.02 ± 0.60 | 30.13 ± 0.23 |
CAT | 74.34 ± 1.93 | 51.65 ± 0.77 |
EPICAT | 87.53 ± 0.94 | 70.88 ± 2.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roggia, I.; Gomes, P.; Dalcin, A.J.F.; Ourique, A.F.; Mânica da Cruz, I.B.; Ribeiro, E.E.; Mitjans, M.; Vinardell, M.P. Profiling and Evaluation of the Effect of Guarana-Loaded Liposomes on Different Skin Cell Lines: An In Vitro Study. Cosmetics 2023, 10, 79. https://doi.org/10.3390/cosmetics10030079
Roggia I, Gomes P, Dalcin AJF, Ourique AF, Mânica da Cruz IB, Ribeiro EE, Mitjans M, Vinardell MP. Profiling and Evaluation of the Effect of Guarana-Loaded Liposomes on Different Skin Cell Lines: An In Vitro Study. Cosmetics. 2023; 10(3):79. https://doi.org/10.3390/cosmetics10030079
Chicago/Turabian StyleRoggia, Isabel, Patrícia Gomes, Ana Julia Figueiró Dalcin, Aline Ferreira Ourique, Ivana Beatrice Mânica da Cruz, Euler E. Ribeiro, Montserrat Mitjans, and Maria Pilar Vinardell. 2023. "Profiling and Evaluation of the Effect of Guarana-Loaded Liposomes on Different Skin Cell Lines: An In Vitro Study" Cosmetics 10, no. 3: 79. https://doi.org/10.3390/cosmetics10030079
APA StyleRoggia, I., Gomes, P., Dalcin, A. J. F., Ourique, A. F., Mânica da Cruz, I. B., Ribeiro, E. E., Mitjans, M., & Vinardell, M. P. (2023). Profiling and Evaluation of the Effect of Guarana-Loaded Liposomes on Different Skin Cell Lines: An In Vitro Study. Cosmetics, 10(3), 79. https://doi.org/10.3390/cosmetics10030079