The Tolerability and Effectiveness of Marine-Based Ingredients in Cosmetics: A Split-Face Clinical Study of a Serum Spray Containing Fucus vesiculosus Extract, Ulva lactuca Extract, and Ectoin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cutaneous and Instrumental Measurements
- −
- An evaluation of the skin barrier function by assessing the trans-epidermal water loss with the Tewameter TM® 300 (Courage & Khazaka electronic, Köln, Germany),
- −
- An evaluation of the hydration efficacy by measuring the skin capacitance with Corneometer CM® 825 equipment),
- −
- An evaluation of the anti-wrinkle efficacy by measuring the average roughness of a selected wrinkle in the experimental area with PRIMOS-CR®,
- −
- An evaluation of the brightening efficacy by analyzing the content of skin melanin with the Mexameter® MX18 equipment,
- −
- Image support with VISIA®,
- −
- A pH balance assessment using the Skin-pH-Meter® PH 905 (Courage & Khazaka electronic),
- −
- Subject questionnaires to assess the subject satisfaction and subjective effectiveness,
- −
- An assessment of the product tolerability by monitoring any adverse effects.
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jesumani, V.; Du, H.; Aslam, M.; Pei, P.; Huang, N. Potential use of seaweed bioactive compounds in skincare—A review. Mar. Drugs 2019, 17, 688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, A.; Vieira, H.; Gaspar, H.; Santos, S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success. Mar. Drugs 2014, 12, 1066–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohd-Nasir, H.; Mohd-Setapar, S.H. Natural Ingredients in Cosmetics from Malaysian Plants: A Review. Sains Malays. 2018, 47, 951–959. [Google Scholar] [CrossRef]
- Pangestuti, R.; Shin, K.H.; Kim, S.K. Anti-Photoaging and Potential Skin Health Benefits of Seaweeds. Mar. Drugs 2021, 19, 172. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.; Sousa, E.; Kijjoa, A.; Pinto, M. Marine-Derived Compounds with Potential Use as Cosmeceuticals and Nutricosmetics. Molecules 2020, 25, 2536. [Google Scholar] [CrossRef]
- Ale, M. Important determinants for fucoidan bioactivity: A critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar. Drugs 2011, 9, 2106–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitton, J.H.; Dell’Aqua, G. Topical Benefits of Two Fucoidan-Rich Extracts from Marine Macroalgae. Cosmetics 2015, 2, 66–81. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.J.; Dow, A.A. Clinical Studies of the Safety and Efficacy of Macroalgae Extracts in Cosmeceuticals. J. Clin. Aesthetic Dermatol. 2021, 14, 37–41. [Google Scholar]
- Fernando, I.P.S.; Nah, J.W.; Jeon, Y.J. Potential anti-inflammatory natural products from marine algae. Environ. Toxicol. Pharmacol. 2016, 48, 22–30. [Google Scholar] [CrossRef]
- Abirami, R.G.; Kowsalya, S. Nutrient and nutraceutical potentials of seaweed biomass Ulva lactuca and Kappaphycus alvarezii. JAST 2011, 5, 109–115. [Google Scholar]
- El-baky, H.H.A.; El-baz, F.K.; El-baroty, G.S. Evaluation of marine alga Ulva lactuca L. as source of natural prservative ingredient. Am. Eurasian J. Agric. Environ. Sci. 2008, 3, 434–444. [Google Scholar]
- Heinrich, U.; Garbe, B.; Tronnier, H. In vivo assessment of Ectoin: A randomized, vehicle-controlled clinical trial. Skin Pharmacol. Physiol. 2007, 20, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Schröter, M.A.; Meyer, S.; Hahn, M.B.; Solomun, T.; Sturm, H.; Kunte, H.J. Ectoine protects DNA from damage by ionizing radiation. Sci. Rep. 2017, 7, 15272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bünger, J.; Driller, H. Ectoin: An effective natural substance to prevent UVA-induced premature photoaging. Skin Pharmacol. Physiol 2004, 17, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. Off. J. Eur. Union 2009, 342, 59.
- Wang, L.; Jayawardena, T.U.; Yang, H.-W.; Lee, H.-G.; Jeon, Y.-J. The Potential of Sulfated Polysaccharides Isolated from the Brown Seaweed Ecklonia maxima in Cosmetics: Antioxidant, Anti-melanogenesis, and Photoprotective Activities. Antioxidants 2020, 9, 724. [Google Scholar] [CrossRef]
- Balakrishnan, D.; Kandasamy, D.; Nithyanand, P. A review on Antioxidant activity of marine organisms. Int. J. Chem. Tech. Res. 2014, 6, 974–4290. [Google Scholar]
- Brunt, E.G.; Burgess, J.G. The promise of marine molecules as cosmetic active ingredients. Int. J. Cosmet. Sci. 2018, 40, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Checa, J.; Aran, J.M. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. J. Inflamm. Res. 2020, 13, 1057–1073. [Google Scholar] [CrossRef]
- Dunaway, S.; Odin, R.; Zhou, L.; Ji, L.; Zhang, Y.; Kadekaro, A.L. Natural Antioxidants: Multiple Mechanisms to Protect Skin From Solar Radiation. Front. Pharmacol. 2018, 9, 392. [Google Scholar] [CrossRef] [Green Version]
- Rittié, L.; Fisher, G.J. Natural and sun-induced aging of human skin. Cold Spring Harb. Perspect. Med. 2015, 5, a015370. [Google Scholar] [CrossRef] [PubMed]
- Pandel, R.; Poljšak, B.; Godic, A.; Dahmane, R. Skin Photoaging and the Role of Antioxidants in Its Prevention. ISRN Dermatol. 2013, 2013, 930164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillerme, J.-B.; Couteau, C.; Coiffard, L. Applications for Marine Resources in Cosmetics. Cosmetics 2017, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Ariede, M.B.; Candido, T.M.; Jacome, A.L.M.; Velasco, M.V.R.; De Carvalho, J.C.M.; Baby, A.R. Cosmetic attributes of algae—A review. Algal Res. 2017, 25, 483–487. [Google Scholar] [CrossRef]
- Fonseca, S.; Amaral, M.N.; Reis, C.P.; Custódio, L. Marine Natural Products as Innovative Cosmetic Ingredients. Mar. Drugs 2023, 21, 170. [Google Scholar] [CrossRef]
- Agrawal, S.; Adholeya, A.; Barrow, C.J.; Deshmukh, S.K. Marine fungi: An untapped bioresource for future cosmeceuticals. Phytochem. Lett. 2018, 23, 15–20. [Google Scholar] [CrossRef]
- Fujimura, T.; Tsukahara, K.; Moriwaki, S.; Kitahara, T.; Sano, T.; Takema, Y. Treatment of human skin with an extract of Fucus vesiculosus changes its thickness and mechanical properties. J. Cosmet. Sci. 2002, 53, 1–9. [Google Scholar] [PubMed]
- Priyan Shanura Fernando, I.; Kim, K.N.; Kim, D.; Jeon, Y.J. Algal polysaccharides: Potential bioactive substances for cosmeceutical applications. Crit. Rev. Biotechnol. 2018, 39, 99–113. [Google Scholar] [CrossRef] [PubMed]
- Graff, J.; Kahn, M.; Samiei, A.; Gao, J.; Ota, K.T.; Rei, D.; Tsai, L.H. A dietary regimen of caloric restriction or pharmacological activation of SIRT1 to delay the onset of neurodegeneration. J. Neurosci. 2013, 33, 8951–8960. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Xu, B. Skin Health Promoting Effects of Natural Polysaccharides and Their Potential Application in the Cosmetic Industry. Polysaccharides 2022, 3, 818–830. [Google Scholar] [CrossRef]
- Schmid, D.; Schürch, C.; Zülli, F. Mycosporine-like amino acids from red algae protect against premature skin-aging. Euro Cosmet. 2006, 9, 1–4. [Google Scholar]
- Jeong, S.; Chung, Y.; Park, J.K. Protective effects of Ulva lactuca methanol extracts against the ultraviolet B-induced DNA damage. Korean J. Food Nutr. 2020, 33, 309–316. [Google Scholar]
- De Araújo, I.W.; Rodrigues, J.A.; Quinderé, A.L.; Silva, J.F.; Maciel, G.F.; Ribeiro, N.A.; de Sousa Oliveira Vanderlei, E.; Ribeiro, K.A.; Chaves, H.V.; Pereira, K.M.; et al. Analgesic and anti-inflammatory actions on bradykinin route of a polysulfated fraction from alga Ulva lactuca. Int. J. Biol. Macromol. 2016, 92, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Yaich, H.; Amira, A.B.; Abbes, F.; Bouaziz, M.; Besbes, S.; Richel, A.; Blecker, C.; Attia, H.; Garna, H. Effect of extraction procedures on structural, thermal and antioxidant properties of ulvan from Ulva lactuca collected in Monastir coast. Int. J. Biol. Macromol. 2017, 105, 1430–1439. [Google Scholar] [CrossRef]
- Bodin, J.; Adrien, A.; Bodet, P.-E.; Dufour, D.; Baudouin, S.; Maugard, T.; Bridiau, N. Ulva intestinalis Protein Extracts Promote In Vitro Collagen and Hyaluronic Acid Production by Human Dermal Fibroblasts. Molecules 2020, 25, 2091. [Google Scholar] [CrossRef]
- Hon, K.L.; Kung, J.S.; Ng, W.G.G.; Leung, T.F. Testing an Ectoin Containing Emollient for Atopic Dermatitis. Curr. Pediatr. Rev. 2019, 15, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Kottner, J.; Lichterfeld, A.; Blume-Peytavi, U. Transepidermal water loss in young and aged healthy humans: A systematic review and meta-analysis. Arch. Dermatol. Res. 2013, 305, 315–323. [Google Scholar] [CrossRef]
- Bandier, J.; Johansen, J.D.; Petersen, L.J.; Carlsen, B.C. Skin pH, Atopic Dermatitis, and Filaggrin Mutations. Dermatitis 2014, 25, 127–129. [Google Scholar] [CrossRef]
- Ali, S.M.; Yosipovitch, G. Skin pH: From Basic Science to Basic Skin Care. Acta Derm. -Venereol. 2013, 93, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Schmid-Wendtner, M.H.; Korting, H.C. The pH of the Skin Surface and Its Impact on the Barrier Function. Skin Pharmacol. Physiol. 2006, 19, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Schreml, S.; Zeller, V.; Meier, R.J.; Korting, H.C.; Behm, B.; Landthaler, M.; Babilas, P. Impact of Age and Body Site on Adult Female Skin Surface pH. Dermatology 2012, 224, 66–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segger, D.; Aßmus, U.; Brock, M.; Erasmy, J.; Finkel, P.; Fitzner, A.; Heuss, H.; Kortemeier, U.; Munke, S.; Rheinländer, T.; et al. Multicenter Study on Measurement of the Natural pH of the Skin Surface. Int. J. Cosmet. Sci. 2008, 30, 75. [Google Scholar] [CrossRef]
- Choi, E.H. Gender, Age, and Ethnicity as Factors That Can Influence Skin pH. Curr. Probl. Dermatol. 2018, 54, 48–53. [Google Scholar] [PubMed]
- Wohlrab, J.; Gebert, A. pH and Buffer Capacity of Topical Formulations. Curr. Probl. Dermatol. 2018, 54, 123–131. [Google Scholar] [PubMed]
- Lambers, H.; Piessens, S.; Bloem, A.; Pronk, H.; Finkel, P. Natural Skin Surface pH Is on Average below 5, Which Is Beneficial for Its Resident Flora. Int. J. Cosmet. Sci. 2006, 28, 359–370. [Google Scholar] [CrossRef]
- Schulte to Brinke, A.; Mehlich, A.; Doberenz, C.; Janssens-Böcker, C. Acidification of the Skin and Maintenance of the Physiological Skin pH Value by Buffered Skin Care Products Formulated around pH 4. J. Cosmet. Dermatol. Sci. Appl. 2021, 11, 107702. [Google Scholar] [CrossRef]
- Blaak, J.; Kaup, O.; Hoppe, W.; Baron-Ruppert, G.; Langheim, H.; Staib, P.; Wohlfart, R.; Lüttje, D.; Schürer, N. A Long-Term Study to Evaluate Acidic Skin Care Treatment in Nursing Home Residents: Impact on Epidermal Barrier Function and Microflora in Aged Skin. Skin Pharmacol. Physiol. 2015, 28, 269–279. [Google Scholar] [CrossRef]
- Kanlayavattanakul, M.; Lourith, N. Biopolysaccharides for Skin Hydrating Cosmetics. In Polysaccharides: Bioactivity and Biotechnology; Springer International Publishing: New York, NY, USA, 2015; p. 1867. [Google Scholar]
Trans-Epidermal Water Loss | ||||||
Moisturizer Only | Moisturizer + Spray | |||||
---|---|---|---|---|---|---|
D0T0 | D0T20 | D28 | D0T0 | D0T20 | D28 | |
Average (g/h/m²) | 16.08 | 15.58 | 17.22 | 15.58 | 15.78 | 16.63 |
Standard deviation | 6.99 | 4.48 | 7.33 | 5.78 | 5.60 | 5.66 |
% of variation to D0T0 | - | −3% | 7% | - | 1% (ns) | 7% (ns) |
% of variation to Moisturizer only | - | - | −3% | 1% (ns) | −3% (ns) |
Hydration Kinetics (Capacitance) | ||||||
---|---|---|---|---|---|---|
Moisturizer | Moisturizer + Spray | |||||
D0T0 | D0T20 | D28 | D0T0 | D0T20 | D28 | |
Average | 55.67 | 56.93 | 57.31 | 54.99 | 66.48 | 59.97 |
Standard deviation | 11.77 | 11.25 | 11.75 | 13.84 | 14.68 | 9.71 |
% of absolute variation with respect to D0T0 | - | 2% | 3% | - | 21% *** | 9% * |
% of absolute variation with respect to Moisturizer | - | - | −1% | 17% *** | 5% * |
Anti-Wrinkles Evaluation | ||||||
---|---|---|---|---|---|---|
Moisturizer | Moisturizer + Spray | |||||
D0T0 | D0T20 | D28 | D0T0 | D0T20 | D28 | |
Average | 6.02 | 5.82 | 5.76 | 6.92 | 6.45 | 5.78 |
Standard deviation | 2.19 | 2.1 | 2.03 | 2.56 | 2.72 | 2.3 |
% of variation to D0T0 | - | −3% | −4% | - | −7% *** | −17% *** |
% of variation to Moisturizer | - | - | 15% * | 11% | 0.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janssens-Böcker, C.; Wiesweg, K.; Doberenz, C. The Tolerability and Effectiveness of Marine-Based Ingredients in Cosmetics: A Split-Face Clinical Study of a Serum Spray Containing Fucus vesiculosus Extract, Ulva lactuca Extract, and Ectoin. Cosmetics 2023, 10, 93. https://doi.org/10.3390/cosmetics10030093
Janssens-Böcker C, Wiesweg K, Doberenz C. The Tolerability and Effectiveness of Marine-Based Ingredients in Cosmetics: A Split-Face Clinical Study of a Serum Spray Containing Fucus vesiculosus Extract, Ulva lactuca Extract, and Ectoin. Cosmetics. 2023; 10(3):93. https://doi.org/10.3390/cosmetics10030093
Chicago/Turabian StyleJanssens-Böcker, Ciska, Karin Wiesweg, and Claudia Doberenz. 2023. "The Tolerability and Effectiveness of Marine-Based Ingredients in Cosmetics: A Split-Face Clinical Study of a Serum Spray Containing Fucus vesiculosus Extract, Ulva lactuca Extract, and Ectoin" Cosmetics 10, no. 3: 93. https://doi.org/10.3390/cosmetics10030093
APA StyleJanssens-Böcker, C., Wiesweg, K., & Doberenz, C. (2023). The Tolerability and Effectiveness of Marine-Based Ingredients in Cosmetics: A Split-Face Clinical Study of a Serum Spray Containing Fucus vesiculosus Extract, Ulva lactuca Extract, and Ectoin. Cosmetics, 10(3), 93. https://doi.org/10.3390/cosmetics10030093