Hydrobiome of Thermal Waters: Potential Use in Dermocosmetics
Abstract
:1. Introduction
2. Human Microbiome and Health
3. Skin Microbiome
- Commensal and pathogenic microorganisms: a commensal microorganism can become a pathogen and cause pathology; for example, Cutibacterium acnes in the development of acne.
- Resident microbiota: it is permanent, stable, and diverse; and lives in symbiosis with skin cells. In addition, it exerts a protective function against other microorganisms, for example, Sthaphyloccus epidermidis and Malasezzia.
- Transient microbiota: varies throughout the day, depending on the activities carried out and environmental conditions; for example, S. aureus in atopic dermatitis.
- Nutrients: Skin bacteria depend on available nutrients and enzymes produced by the host, such as phosphatases (7–8% acid and 12–13% alkaline) that allow them to utilize soluble organic phosphorus components. In the skin, some amino acids are produced by the host such as lactate, pyruvate, formiate, caprate, and valerate, together with others by the same bacteria such as succinate (a fermentation product of S. epidermidis). Sebum and stratum corneum lipids are used by Malassezia and Corynebacterium since they cannot produce their own lipids. Corynebacterium spp. use lipids to generate corynemycolic acids that coat their cell surface. For their part, Staphylococcus spp. have developed strategies to survive on the skin: they are halotolerant (they resist the high salt content of sweat), they use sweat urea as a nitrogen source, and they produce proteases that release nutrients from the stratum corneum [28].
- Genetics: Ethnic origin and pigmentation condition differences in the microbiota; it is thought that there are microbial interactions with melanocytes, whose metabolic activity changes in response to UVR exposure, hormonal stimuli, or inflammation [29].
- Diet and obesity: It has been observed that high-fat diets favor the growth of Corynebacterium, considering that it promotes skin inflammation through the expression of mycolic acid. It has also been observed that the relationship between Firmicutes and Bacteroidetes in obese people is altered, and weight loss induces changes in the composition of the microbiota, increasing Bacteroidetes and decreasing Firmicutes [30].
- Primary immunodeficiencies: Clostridials (Anaerococcus and Peptoniphilus) increase in the skin of patients with primary immunodeficiencies and may act as opportunistic pathogens [28].
3.1. Skin Microbiota throughout Life
3.2. Skin Microbiome Functions
- Maintenance of the microbial community itself: through the cleaning and decomposition of natural products, the production of energy, and the generation of metabolites.
- Development and maintenance of the immune response: through interactions with the host.
- Specialized functions: pH regulation, lipid degradation to contribute to the formation of the hydrolipidic barrier, and protection against immunosuppression caused by ultraviolet light, among others.
- Infections: The skin microbiota prevents the proliferation of pathogenic germs. Even so, some of them, such as S. epidermidis, can be opportunistic pathogens, producing nocosomial infections in immunocompromised patients.
- Inflammation: The skin microbiota plays a role in the control of local inflammation and the function of resident T lymphocytes. Alterations in the composition of the skin microbiome (dysbiosis) can change the reactivity of the immune system, causing the development of inflammatory diseases or protecting the host from an aberrant inflammatory response.
- Wound repair: When the skin barrier is broken, commensal microorganisms can behave as pathogens or generate microbial metabolites that further damage host tissues. Healing is accelerated in sterile environments, but at the same time, the commensal microbiota can produce AMP that inhibit invasion by pathogens. For example, S. epidermidis inhibits wound-associated inflammation by inhibiting cytokine release from keratinocytes.
4. Thermal Spring Waters Microbiome
5. Probiotics and Postbiotics in Dermocosmetics and Cosmeceuticals
6. Dermocosmetics and Hydrobiome from Thermal Spring Waters
6.1. Aquaphilus Dolomiae Extracts
6.2. Cyanobacterium aponinum and Other Blue Lagoon Algae Extracts
6.3. Comano Thermal Spring Microflora
6.4. Vitreoscilla filiformis
6.5. Nostoc Comune and Combination of Uriage Thermal Water and Fermented-Derived
7. Dermocosmetic Patents Based on Thermal Spring Waters Hydrobiome
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Proctor, L.; LoTempio, J.; Marquitz, A.; Daschner, P.; Xi, D.; Flores, R.; Brown, L.; Ranallo, R.; Maruvada, P.; Regan, K.; et al. A review of 10 years of human microbiome research activities at the US National Institutes of Health, Fiscal Years 2007–2016. Microbiome 2019, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Lynch, S.V.; Pedersen, O. The Human Intestinal Microbiome in Health and Disease. N. Engl. J. Med. 2016, 375, 2369–2379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, M.Z.; Maslanka, J.R.; Abt, M.C. Immunological consequences of microbiome-based therapeutics. Front. Immunol. 2023, 13, 1046472. [Google Scholar] [CrossRef]
- Gopalakrishnan, V.; Helmink, B.A.; Spencer, C.N.; Reuben, A.; Wargo, J.A. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 2018, 33, 570–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Liao, J.; Xia, Y.; Liu, X.; Jones, R.; Haran, J.; McCormick, B.; Sampson, T.R.; Alam, A.; Ye, K. Gut microbiota regulate Alzheimer’s disease pathologies and cognitive disorders via PUFA-associated neuroinflammation. Gut 2022, 71, 2233–2252. [Google Scholar] [CrossRef] [PubMed]
- Kamada, N.; Seo, S.U.; Chen, G.Y.; Núñez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 2013, 13, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, J.; Zhu, W.; Kuang, Y.; Liu, T.; Zhang, W.; Chen, X.; Peng, C. Skin and Gut Microbiome in Psoriasis: Gaining Insight Into the Pathophysiology of It and Finding Novel Therapeutic Strategies. Front. Microbiol. 2020, 11, 589726. [Google Scholar] [CrossRef] [PubMed]
- Mazur, M.; Tomczak, H.; Łodyga, M.; Plagens-Rotman, K.; Merks, P.; Czarnecka-Operacz, M. The Intestinal and Skin Microbiome in Patients with Atopic Dermatitis and Their Influence on the Course of the Disease: A Literature Review. Healthcare 2023, 11, 766. [Google Scholar] [CrossRef]
- Nørreslet, L.B.; Agner, T.; Clausen, M.L. The Skin Microbiome in Inflammatory Skin Diseases. Curr. Dermatol. Rep. 2020, 9, 141–151. [Google Scholar] [CrossRef]
- Melby, M.K.; Kansal, A.; Nichter, M. Biocultural Perspectives on Aging: Importance of the Microbiome. In Anthropological Perspectives on Aging, 1st ed.; Howell, B.M., Harrod, R.P., Eds.; University Press of Florida: Gainesville, FL, USA, 2023; pp. 46–76. [Google Scholar] [CrossRef]
- Ozen, M.; Dinleyici, E.C. The history of probiotics: The untold story. Benef. Microbes 2015, 6, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, A.; Dwivedi, M.K. The concept of probiotics, prebiotics, postbiotics, synbiotics, nutribiotics, and pharmabiotics. In Probiotics in the Prevention and Management of Human Diseases; Dwivedi, M.K., Amaresan, N., Sankaranarayanan, A., Kemp, E.H., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 1–11. [Google Scholar] [CrossRef]
- Vallejo-Cordoba, B.; Castro-López, C.; García, H.S.; González-Córdova, A.F.; Hernández-Mendoza, A. Postbiotics and paraprobiotics: A review of current evidence and emerging trends. Adv. Food Nutr. Res. 2020, 94, 1–34. [Google Scholar] [CrossRef]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Nataraj, B.H.; Ali, S.A.; Behare, P.V.; Yadav, H. Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microb. Cell Factories 2020, 19, 168. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Gonzalez, P.F.; Liceaga, A.M.; Aguilar-Toala, J.E. Postbiotics and paraprobiotics: From concepts to applications. Food Res. Int. 2020, 136, 109502. [Google Scholar] [CrossRef]
- Scott, E.; De Paepe, K.; Van de Wiele, T. Postbiotics and Their Health Modulatory Biomolecules. Biomolecules 2022, 12, 1640. [Google Scholar] [CrossRef] [PubMed]
- Thorakkattu, P.; Khanashyam, A.C.; Shah, K.; Babu, K.S.; Shanker Mundanat, A.; Deliephan, A.; Deokar, G.S.; Santivarangkna, C.; Nirmal, N.P. Postbiotics: Current Trends in Food and Pharmaceutical Industry. Foods 2022, 11, 3094. [Google Scholar] [CrossRef]
- Emiola, A.; Zhou, W.; Oh, J. An enhanced characterization of the human skin microbiome: A new biodiversity of microbial interactions. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Mourelle, M.L.; Gómez, C.P.; Legido, J.L. Nutraceuticals and Nutricosmetics; Liberlibro.com AC: Albacete, Spain, 2023; pp. 77–79. (In Spanish) [Google Scholar]
- Harris-Tryon, T.A.; Grice, E.A. Microbiota and maintenance of skin barrier function. Science 2022, 376, 940–945. [Google Scholar] [CrossRef]
- McBain, A.J.; O’Neill, C.A.; Amezquita, A.; Price, L.J.; Faust, K.; Tett, A.; Segata, N.; Swann, J.R.; Smith, A.M.; Murphy, B.; et al. Consumer safety considerations of skin and oral microbiome perturbation. Clin. Microbiol. Rev. 2019, 32, e00051-19. [Google Scholar] [CrossRef] [PubMed]
- Grice, E.A.; Segre, J.A. The skin microbiome. Nat. Rev. Microbiol. 2011, 9, 244–253. [Google Scholar] [CrossRef]
- Polak-Witka, K.; Rudnicka, L.; Blume-Peytavi, U.; Vogt, A. The role of the microbiome in scalp hair follicle biology and disease. Exp. Dermatol. 2020, 29, 286–294. [Google Scholar] [CrossRef] [Green Version]
- De Pessemier, B.; Grine, L.; Debaere, M.; Maes, A.; Paetzold, B.; Callewaert, C. Gut-Skin Axis: Current Knowledge of the Interrelationship between Microbial Dysbiosis and Skin Conditions. Microorganisms 2021, 9, 353. [Google Scholar] [CrossRef]
- Costello, E.K.; Lauber, C.L.; Hamady, M.; Fierer, N.; Gordon, J.I.; Knight, R. Bacterial community variation in human body habitats across space and time. Science 2009, 326, 1694–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paetzold, B.; Willis, J.R.; Pereira de Lima, J.; Knödlseder, N.; Brüggemann, H.; Quist, S.R.; Gabaldon, T.; Güell, M. Skin microbiome modulation induced by probiotic solutions. Microbiome 2019, 7, 95. [Google Scholar] [CrossRef] [Green Version]
- Bewick, S.; Gurarie, E.; Weissman, J.L.; Beattie, J.; Davati, C.; Flint, R.; Thielen, P.; Breitwieser, F.; Karig, D.; Fagan, W.F. Trait-based analysis of the human skin microbiome. Microbiome 2019, 7, 101. [Google Scholar] [CrossRef] [Green Version]
- Dimitriu, P.A.; Iker, B.; Malik, K.; Leung, H.; Mohn, W.W.; Hillebrand, G.G. New Insights into the Intrinsic and Extrinsic Factors That Shape the Human Skin Microbiome. mBio 2019, 10, e00839-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruvada, P.; Leone, V.; Kaplan, L.M.; Chang, E.B. The Human Microbiome and Obesity: Moving beyond Associations. Cell Host Microbe 2017, 22, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Burns, E.M.; Ahmed, H.; Isedeh, P.N.; Kohli, I.; Van Der Pol, W.; Shaheen, A.; Muzaffar, A.F.; Al-Sadek, C.; Foy, T.M.; Abdelgawwad, M.S.; et al. Ultraviolet radiation, both UVA and UVB, influences the composition of the skin microbiome. Exp Dermatol. 2019, 28, 136–141. [Google Scholar] [CrossRef]
- Balato, A.; Cacciapuoti, S.; Di Caprio, R.; Marasca, C.; Masarà, A.; Raimondo, A.; Fabbrocini, G. Human Microbiome: Composition and Role in Inflammatory Skin Diseases. Arch. Immunol. Ther. Exp. 2019, 67, 1–18. [Google Scholar] [CrossRef]
- Schoch, J.J.; Monir, R.L.; Satcher, K.G.; Harris, J.; Triplett, E.; Neu, J. The infantile cutaneous microbiome: A review. Pediatr. Dermatol. 2019, 36, 574–580. [Google Scholar] [CrossRef]
- Byrd, A.; Belkaid, Y.; Segre, J. The human skin microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef]
- Prajapati, D.P.; Dodiya, T.R. A review on skin microbiome: Novel strategy in cosmetics. Int. J. Res. Ayurveda Pharm. 2021, 12, 99–102. [Google Scholar] [CrossRef]
- Brandwein, M.; Katz, I.; Katz, A.; Al-Ashhab, A.; Nejman, D.; Straussman, R.; Hodak, E.; Harari, M.; Steinberg, D.; Bentwich, Z.; et al. Beyond the gut: Skin microbiome compositional changes are associated with BMI. Hum. Microbiome J. 2019, 13, 100063. [Google Scholar] [CrossRef]
- Chau, T.A.; McCully, M.L.; Brintnell, W.; Kasper, K.J.; Vinés, E.D.; Kubes, P.; Haeryfar, S.M.; McCormick, J.K.; Cairns, E.; Heinrichs, D.E.; et al. Toll-like receptor 2 ligands on the staphylococcal cell wall downregulate superantigen-induced T cell activation and prevent toxic shock syndrome. Nat. Med. 2009, 15, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Gallo, R.L.; Nakatsuji, T. Microbial symbiosis with the innate immune defense system of the skin. J. Investig. Dermatol. 2011, 131, 1974–1980. [Google Scholar] [CrossRef] [Green Version]
- Cacciapuoti, S.; Luciano, M.A.; Megna, M.; Annunziata, M.C.; Napolitano, M.; Patruno, C.; Scala, E.; Colicchio, R.; Pagliuca, C.; Salvatore, P.; et al. The Role of Thermal Water in Chronic Skin Diseases Management: A Review of the Literature. J. Clin. Med. 2020, 9, 3047. [Google Scholar] [CrossRef]
- Colman, D.R.; Feyhl-Buska, J.; Robinson, K.J.; Fecteau, K.M.; Xu, H.; Shock, E.L.; Boyd, E.S. Ecological diferentiation in planktonic and sediment-associated chemotrophic microbial populations in Yellowstone hot springs. FEMS Microbiol. Ecol. 2016, 92, fiw137. [Google Scholar] [CrossRef]
- Valeriani, F.; Protano, C.; Gianfranceschi, G.; Leoni, E.; Galasso, V.; Mucci, N.; Vitali, M.; Romano-Spica, V. Microflora Thermarum Atlas project: Biodiversity in thermal spring waters and natural SPA pools. Water Supply 2018, 18, 1472–1483. [Google Scholar] [CrossRef]
- Valeriani, F.; Crognale, S.; Protano, C.; Gianfranceschi, G.; Orsini, M.; Vitali, M.; Romano Spica, V.J. Metagenomic analysis of bacterial community in a travertine depositing hot spring. New Microbiol. 2018, 41, 126–135. [Google Scholar]
- Valeriani, F.; Gianfranceschi, G.; Spica, V.R. The microbiota as a candidate biomarker for SPA pools and SPA thermal spring stability after seismic events. Environ. Int. 2020, 137, 105595. [Google Scholar] [CrossRef] [PubMed]
- Paduano, S.; Valeriani, F.; Romano-Spica, V.; Bargellini, A.; Borella, P.; Marchesi, I. Microbial biodiversity of thermal water and mud in an Italian spa by metagenomics: A pilot study. Water Supply 2017, 18, 1456–1465. [Google Scholar] [CrossRef]
- Corniello, A.; Guida, M.; Stellato, L.; Trifuoggi, M.; Carraturo, F.; Del Gaudio, E.; Del Giudice, C.; Forte, G.; Giarra, A.; Iorio, M.; et al. Hydrochemical, isotopic and microbiota characterization of telese mineral waters (Southern Italy). Environ. Geochem. Health 2022, 44, 1949–1970. [Google Scholar] [CrossRef] [PubMed]
- Hilaire, P.; Contreras, S.; Blanquart-Goudezeune, H.; Verbeke, J.; Delépine, B.; Marmiesse, L.; Peyraud, R.; Morand, S.C. Complete genome sequence of Sphingobium xenophagum PH3-15, isolated from La Roche-Posay thermal water sources. Microbiol. Resour. Announc. 2021, 10, e00700-21. [Google Scholar] [CrossRef]
- Skirnisdottir, S.; Hreggvidsson, G.O.; Hjörleifsdottir, S.; Marteinsson, V.; Petursdottir, S.K.; Holst, O.; Kristjansson, J.K.; Hjörleifsdottir, S. Influence of Sulfide and Temperature on Species Composition and Community Structure of Hot Spring Microbial Mats. Appl. Environ. Microbiol. 2000, 66, 2835–2841. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, M.; Everroad, R.C.; Castenholz, R.W. An unusual cyanobacterium from saline thermal waters with relatives from unexpected habitats. Extremophiles 2009, 13, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Szuróczki, S.; Kéki, Z.; Káli, S.; Lippai, A.; Márialigeti, K.; Tóth, E. Microbiological investigations on the water of a thermal bath at Budapest. Acta Microbiol. Immunol. Hung. 2016, 63, 229–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smrhova, T.; Jani, K.; Pajer, P.; Kapinusova, G.; Vylita, T.; Suman, J.; Strejcek, M.; Uhlik, O. Prokaryotes of renowned Karlovy Vary (Carlsbad) thermal springs: Phylogenetic and cultivation analysis. Environ. Microbiome 2022, 17, 48. [Google Scholar] [CrossRef]
- Mitrović, M.; Kostešić, E.; Marković, T.; Selak, L.; Hausmann, B.; Pjevac, P.; Orlić, S. Microbial community composition and hydrochemistry of underexplored geothermal waters in Croatia. Syst. Appl. Microbiol. 2022, 45, 126359. [Google Scholar] [CrossRef]
- Çelik, I.; Keskin, E. Revealing the Microbiome of Four Different Thermal Springs in Turkey with Environmental DNA Metabarcoding. Biology 2022, 11, 998. [Google Scholar] [CrossRef]
- Hedlund, B.P.; Dodsworth, J.A.; Cole, J.K.; Panosyan, H. An integrated study reveals diverse methanogens, Thaumarchaeota, and yet-uncultivated archaeal lineages in Armenian hot springs. Antonie van Leeuwenhoek 2013, 104, 71–82. [Google Scholar] [CrossRef]
- Kublanov, I.; Perevalova, A.A.; Slobodkina, G.B.; Lebedinsky, A.V.; Bidzhieva, S.K.; Kolganova, T.V.; Kaliberda, E.N.; Rumsh, L.D.; Haertlï, T.; Bonch-Osmolovskaya, E.A. Biodiversity of Thermophilic Prokaryotes with Hydrolytic Activities in Hot Springs of Uzon Caldera, Kamchatka (Russia). Appl. Environ. Microbiol. 2008, 75, 286–291. [Google Scholar] [CrossRef] [Green Version]
- Reigstad, L.J.; Jorgensen, S.L.; Schleper, C. Diversity and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka. ISME J. 2010, 4, 346–356. [Google Scholar] [CrossRef] [Green Version]
- Roy, C.; Rameez, M.J.; Haldar, P.K.; Peketi, A.; Mondal, N.; Bakshi, U.; Mapder, T.; Pyne, P.; Fernandes, S.; Bhattacharya, S.; et al. Microbiome and ecology of a hot spring-microbialite system on the Trans-Himalayan Plateau. Sci. Rep. 2020, 10, 5917. [Google Scholar] [CrossRef] [Green Version]
- Ghalib, A.K.; Yasin, M.; Faisal, M. Characterization and Metal Detoxification Potential of Moderately Thermophilic Bacillus cereus from Geothermal Springs of Himalaya. Braz. Arch. Biol. Technol. 2014, 57, 554–560. [Google Scholar] [CrossRef] [Green Version]
- Amin, A.; Ahmed, I.; Salam, N.; Kim, B.-Y.; Singh, D.; Zhi, X.-Y.; Xiao, M.; Li, W.-J. Diversity and Distribution of Thermophilic Bacteria in Hot Springs of Pakistan. Microb. Ecol. 2017, 74, 116–127. [Google Scholar] [CrossRef]
- Lau, M.C.Y.; Aitchison, J.C.; Pointing, S.B. Bacterial community composition in thermophilic microbial mats from five hot springs in central Tibet. Extremophiles 2009, 13, 139–149. [Google Scholar] [CrossRef]
- Li, J.; Peng, X.; Zhang, L.; Jiang, L.; Chen, S. Linking microbial community structure to S, N and Fe biogeochemical cycling in the hot springs at the Tengchong geothermal fields, Southwest China. Geomicrobiol. J. 2015, 33, 135–150. [Google Scholar] [CrossRef]
- Sahoo, R.K.; Gaur, M.; Das, A.; Singh, A.; Kumar, M.; Subudhi, E. Comparative analysis of 16S rRNA gene Illumina sequence for microbial community structure in diverse unexplored hot springs of Odisha, India. Geomicrobiol. J. 2016, 34, 567–576. [Google Scholar] [CrossRef]
- Kanokratana, P.; Chanapan, S.; Pootanakit, K.; Eurwilaichitr, L. Diversity and abundance of Bacteria and Archaea in the Bor Khlueng Hot Spring in Thailand. J. Basic Microbiol. 2004, 44, 430–444. [Google Scholar] [CrossRef]
- Nakagawa, T.; Fukui, M. Molecular Characterization of Community Structures and Sulfur Metabolism within Microbial Streamers in Japanese Hot Springs. Appl. Environ. Microbiol. 2003, 69, 7044–7057. [Google Scholar] [CrossRef] [Green Version]
- Everroad, R.C.; Otaki, H.; Matsuura, K.; Haruta, S. Diversification of bacterial community composition along a temperature gradient at a thermal spring. Microbes Environ. 2012, 27, 374–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbieta, M.S.; Gonzalez-Toril, E.; Bazán, A.A.; Giaveno, M.A.; Donati, E. Comparison of the microbial communities of hot springs waters and the microbial biofilms in the acidic geothermal area of Copahue (Neuquén, Argentina). Extremophiles 2015, 19, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Brito, E.M.S.; Villegas-Negrete, N.; Sotelo-González, I.A.; Caretta, C.A.; Goñi-Urriza, M.; Gassie, C.; Hakil, F.; Colin, Y.; Duran, R.; Gutierrez-Corona, F.; et al. Microbial diversity in Los Azufres geothermal field (Michoacán, Mexico) and isolation of representative sulfate and sulfur reducers. Extremophiles 2014, 18, 385–398. [Google Scholar] [CrossRef]
- Paul, S.; Cortez, Y.; Vera, N.; Villena, G.K.; Gutierrez-Correa, M. Metagenomic Analysis of Microbial Communities in the Soil-mousse Surrounding of an Amazonian Geothermal Spring in Peru. Br. Biotechnol. J. 2016, 15, 1–11. [Google Scholar] [CrossRef]
- Rubiano-Labrador, C.; Díaz-Cárdenas, C.; López, G.; Gómez, J.; Baena, S. Colombian Andean thermal springs: Reservoir of thermophilic anaerobic bacteria producing hydrolytic enzymes. Extremophiles 2019, 23, 793–808. [Google Scholar] [CrossRef]
- Burton, N.P.; Norris, P.R. Microbiology of acidic, geothermal springs of Montserrat: Environmental rDNA analysis. Extremophiles 2000, 4, 315–320. [Google Scholar] [CrossRef]
- Sayeh, R.; Birrien, J.L.; Alain, K.; Barbier, G.; Hamdi, M.; Prieur, D. Microbial diversity in Tunisian geothermal springs as detected by molecular and culture-based approaches. Extremophiles 2010, 14, 501–514. [Google Scholar] [CrossRef]
- Tekere, M. Metagenomic analysis of bacterial diversity of Siloam hot water spring, Limpopo, South Africa. Afr. J. Biotechnol. 2011, 10, 18005–18012. [Google Scholar] [CrossRef] [Green Version]
- Aburto-Medina, A.; Shahsavari, E.; Cohen, M.; Mantri, N.; Ball, A.S. Analysis of the Microbiome (Bathing Biome) in Geothermal Waters from an Australian Balneotherapy Centre. Water 2020, 12, 1705. [Google Scholar] [CrossRef]
- Pedron, R.; Esposito, A.; Bianconi, I.; Pasolli, E.; Tett, A.; Asnicar, F.; Cristofolini, M.; Segata, N.; Jousson, O. Genomic and metagenomic insights into the microbial community of a thermal spring. Microbiome 2019, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Crognale, S.; Venturi, S.; Tassi, F.; Rossetti, S.; Cabassi, J.; Capecchiacci, F.; Bicocchi, G.; Vaselli, O.; Morrison, H.G.; Sogin, M.L.; et al. Geochemical and microbiological profiles in hydrothermal extreme acidic environments (Pisciarelli Spring, Campi Flegrei, Italy). FEMS Microbiol. Ecol. 2022, 98, fiac088. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Ma, X.; Yan, X.; Bao, X. The Biological Role of Dead Sea Water in Skin Health: A Review. Cosmetics 2023, 10, 21. [Google Scholar] [CrossRef]
- Oren, A.; Ginzburg, M.; Ginzburg, B.Z.; Hochstein, L.I.; Volcani, B.E. Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea. Int. J. Syst. Bacteriol. 1990, 40, 209–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Karablieh, N. Antimicrobial Activity of Bacillus Persicus 24-DSM Isolated from Dead Sea Mud. Open Microbiol. J. 2017, 11, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Obeidat, M. Isolation and characterization of extremely halotolerant Bacillus species from Dead Sea black mud and determination of their antimicrobial and hydrolytic activities. Afr. J. Microbiol. Res. 2017, 11, 1303–1314. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Kumar, S.; Khare, S.K. Microbial diversity of saline habitats: An overview of biotechnological applications. In Microorganisms in Saline Environments: Strategies and Functions; Bhoopander, G., Varma, A., Eds.; Springer: Verlag, Germany, 2019; pp. 65–92. [Google Scholar]
- Giordano, D. Bioactive Molecules from Extreme Environments. Mar. Drugs 2020, 18, 640. [Google Scholar] [CrossRef]
- Sorokin, D.Y.; Elcheninov, A.G.; Khijniak, T.V.; Kolganova, T.V.; Kublanov, I.V. Selective enrichment on a wide polysaccharide spectrum allowed isolation of novel metabolic and taxonomic groups of haloarchaea from hypersaline lakes. Front. Microbiol 2020, 13, 1059347. [Google Scholar] [CrossRef]
- Zhu, Y.-G.; Zhu, D.; Rillig, M.C.; Yang, Y.; Chu, H.; Chen, Q.-L.; Penuelas, J.; Cui, H.-L.; Gillings, M. Ecosystem Microbiome Science. mLife 2023, 2, 2–10. [Google Scholar] [CrossRef]
- Bourrain, M.; Ribet, V.; Calvez, A.; Lebaron, P.; Schmitt, A.M. Balance between beneficial microflora and Staphylococcus aureus colonisation: In vivo evaluation in patients with atopic dermatitis during hydrotherapy. Eur. J. Dermatol. 2013, 23, 786–794. [Google Scholar] [CrossRef] [Green Version]
- Bourrain, M.; Suzuki, M.T.; Calvez, A.; West, N.J.; Lions, J.; Lebaron, P. In-depth prospection of Avène Thermal Spring Water reveals an uncommon and stable microbial community. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 8–14. [Google Scholar] [CrossRef]
- Faga, A.; Nicoletti, G.; Gregotti, C.; Finotti, V.; Nitto, A.; Gioglio, L. Effects of thermal water on skin regeneration. Int. J. Mol. Med. 2012, 29, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, G.; Corbella, M.; Jaber, O.; Marone, P.; Scevola, D.; Faga, A. Non-pathogenic microflora of a spring water with regenerative properties. Biomed. Rep. 2015, 3, 758–762. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.; Henley, J.B.; Sarrazin, P.; Seité, S. Skin Microbiome in Patients with Psoriasis Before and After Balneotherapy at the Thermal Care Center of La Roche-Posay. J. Drugs Dermatol. 2015, 14, 1400–1405. [Google Scholar]
- Zeichner, J.; Seite, S. From Probiotic to Prebiotic Using Thermal Spring Water. J. Drugs Dermatol. 2018, 17, 657–662. [Google Scholar]
- Thirion, F.; Guilly, S.; Fromentin, S.; Plaza Oñate, F.; Alvarez, A.S.; Le Chatelier, E.; Pons, N.; Levenez, F.; Quinquis, B.; Ehrlich, S.; et al. Changes in Gut Microbiota of Patients with Atopic Dermatitis During Balneotherapy. Clin. Cosmet. Investig. Dermatol. 2022, 15, 163–176. [Google Scholar] [CrossRef]
- Brandwein, M.; Fuks, G.; Israel, A.; Al-Ashhab, A.; Nejman, D.; Straussman, R.; Hodak, E.; Harari, M.; Steinberg, D.; Bentwich, Z.; et al. Temporal Stability of the Healthy Human Skin Microbiome Following Dead Sea Climatotherapy. Acta Derm. Venereol. 2018, 98, 256–261. [Google Scholar] [CrossRef] [Green Version]
- Bender, T.; Kalics, G.; Árvai, K.; Illés, A.; Kósa, J.P.; Tobias, B.; Lakatos, P.; Papp, M.; Nemes, K. The Effects of Lakitelek Thermal Water and Tap Water on Skin Microbiome, a Randomized Control Pilot Study. Life 2023, 13, 746. [Google Scholar] [CrossRef]
- Navarro-López, V.; Núñez-Delegido, E.; Ruzafa-Costas, B.; Sánchez-Pellicer, P.; Agüera-Santos, J.; Navarro-Moratalla, L. Probiotics in the Therapeutic Arsenal of Dermatologists. Microorganisms 2021, 9, 1513. [Google Scholar] [CrossRef]
- Habeebuddin, M.; Karnati, R.K.; Shiroorkar, P.N.; Nagaraja, S.; Asdaq, S.M.B.; Khalid Anwer, M.; Fattepur, S. Topical Probiotics: More Than a Skin Deep. Pharmaceutics 2022, 14, 557. [Google Scholar] [CrossRef]
- Lombardi, F.; Augello, F.R.; Artone, S.; Bahiti, B.; Sheldon, J.M.; Giuliani, M.; Cifone, M.G.; Palumbo, P.; Cinque, B. Efficacy of probiotic Streptococcus thermophilus in counteracting TGF-β1-induced fibrotic response in normal human dermal fibroblasts. J. Inflamm. 2022, 19, 27. [Google Scholar] [CrossRef]
- Puebla-Barragan, S.; Reid, G. Probiotics in Cosmetic and Personal Care Products: Trends and Challenges. Molecules 2021, 26, 1249. [Google Scholar] [CrossRef]
- Di Marzio, L.; Cinque, B.; Cupelli, F.; De Simone, C.; Cifone, M.G.; Giuliani, M. Increase of skin-ceramide levels in aged subjects following a short-term topical application of bacterial sphingomyelinase from Streptococcus thermophilus. Int. J. Immunopathol. Pharmacol. 2008, 21, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Gueniche, A.; Benyacoub, J.; Philippe, D.; Bastien, P.; Kusy, N.; Breton, L.; Blum, S.; Castiel-Higounenc, I. Lactobacillus paracasei CNCM I-2116 (ST11) inhibits substance P-induced skin inflammation and accelerates skin barrier function recovery in vitro. Eur. J. Dermatol. 2010, 20, 731–737. [Google Scholar]
- Ashoori, Y.; Mohkam, M.; Heidari, R.; Abootalebi, S.N.; Mousavi, S.M.; Hashemi, S.A.; Golkar, N.; Gholami, A. Development and In Vivo Characterization of Probiotic Lysate-Treated Chitosan Nanogel as a Novel Biocompatible Formulation for Wound Healing. Biomed. Res. Int. 2020, 2020, 8868618. [Google Scholar] [CrossRef]
- Golkar, N.; Ashoori, Y.; Heidari, R.; Omidifar, N.; Abootalebi, S.N.; Mohkam, M.; Gholami, A. A Novel Effective Formulation of Bioactive Compounds for Wound Healing: Preparation, In Vivo Characterization, and Comparison of Various Postbiotics Cold Creams in a Rat Model. J. Evid. Based Complement. Alternat. Med. 2021, 2021, 8577116. [Google Scholar] [CrossRef] [PubMed]
- Rong, J.; Shan, C.; Liu, S.; Zheng, H.; Liu, C.; Liu, M.; Jin, F.; Wang, L. Skin resistance to UVB-induced oxidative stress and hyperpigmentation by the topical use of Lactobacillus helveticus NS8-fermented milk supernatant. J. Appl. Microbiol. 2017, 123, 511–523. [Google Scholar] [CrossRef]
- Notay, M.; Saric-Bosanac, S.; Vaughn, A.R.; Dhaliwal, S.; Trivedi, M.; Reiter, P.N.; Rybak, I.; Li, C.C.; Weiss, L.B.; Ambrogio, L.; et al. The use of topical Nitrosomonas eutropha for cosmetic improvement of facial wrinkles. J. Cosmet. Dermatol. 2020, 19, 689–693. [Google Scholar] [CrossRef]
- Nam, Y.; Kim, J.; Baek, J.; Kim, W. Improvement of Cutaneous Wound Healing via Topical Application of Heat-Killed Lactococcus chungangensis CAU 1447 on Diabetic Mice. Nutrients 2021, 13, 2666. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, Y.I.; Mun, S.; Jeong, J.; Lee, D.-G.; Kim, M.; Jo, H.; Lee, S.; Han, K.; Lee, J.H. Efficacy and Safety of Epidermidibacterium Keratini EPI-7 Derived Postbiotics in Skin Aging: A Prospective Clinical Study. Int. J. Mol. Sci. 2023, 24, 4634. [Google Scholar] [CrossRef]
- Duarte, M.; Oliveira, A.L.; Oliveira, C.; Pintado, M.; Amaro, A.; Madureira, A.R. Current postbiotics in the cosmetic market—An update and development opportunities. Appl. Microbiol. Biotechnol. 2022, 106, 5879–5891. [Google Scholar] [CrossRef]
- Iglesia, S.; Kononov, T.; Zahr, A.S. A multi-functional anti-aging moisturizer maintains a diverse and balanced facial skin microbiome. J. Appl. Microbiol. 2022, 133, 1791–1799. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Kim, M.; Kim, M.; Park, C.; Yoon, Y.; Lim, D.H.; Yeo, H.; Kang, S.; Lee, Y.G.; Beak, N.I.; et al. Spermidine-induced recovery of human dermal structure and barrier function by skin microbiome. Commun. Biol. 2021, 4, 231. [Google Scholar] [CrossRef]
- Woolery-Lloyd, H.; Andriessen, A.; Day, D.; Gonzalez, N.; Green, L.; Grice, E.; Henry, M. Review of the microbiome in skin aging and the effect of a topical prebiotic containing thermal spring water. J. Cosmet. Dermatol. 2023, 22, 96–102. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Rodrigues, M.; Mourelle, M.L.; Araujo, A.R.T.S. Thermal Spring Waters as an Active Ingredient in Cosmetic Formulations. Cosmetics 2023, 10, 27. [Google Scholar] [CrossRef]
- Aries, M.F.; Hernandez-Pigeon, H.; Vaissière, C.; Delga, H.; Caruana, A.; Lévêque, M.; Bourrain, M.; Ravard-Helffer, K.; Chol, B.; Nguyen, T.; et al. Anti-inflammatory and immunomodulatory effects of Aquaphilus dolomiae extract on in vitro models. Clin. Cosmet. Investig. Dermatol. 2016, 9, 421–434. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.; Chol, B.; Maitre, M.; Ravard-Helffer, K.; Farinole, F.; Lestienne, F.; Castex-Rizzi, N. Additional pharmacological activity of I-modulia and generation of two newly designed extracts of Aquaphilus dolomiae culture for dermocosmetic actives. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 27–29. [Google Scholar] [CrossRef]
- Martin, H.; Laborel-Préneron, E.; Fraysse, F.; Nguyen, T.; Schmitt, A.M.; Redoulès, D.; Davrinche, C. Aquaphilus dolomiae extract counteracts the effects of cutaneous S. aureus secretome isolated from atopic children on CD4+ T cell activation. Pharm. Biol. 2016, 54, 2782–2785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.; Castex-Rizzi, N.; Redoulès, D. Immunomodulatory, anti-inflammatory, anti-pruritus and tolerogenic activities induced by I-modulia®, an Aquaphilus dolomiae culture extract, in atopic dermatitis pharmacology models. Ann. Dermatol. Venereol. 2017, 144, 2782–2785. [Google Scholar] [CrossRef]
- Galliano, M.F.; Bäsler, K.; Caruana, A.; Mias, C.; Bessou-Touya, S.; Brandner, J.M.; Duplan, H. Protective effect of Aquaphilus dolomiae extract-G1, ADE-G1, on tight junction barrier function in a Staphylococcus aureus-infected atopic dermatitis model. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Lestienne, F.; Viodé, C.; Ceruti, I.; Carrere, S.; Bessou-Touya, S.; Duplan, H.; Castex-Rizzi, N. Cutaneous sensitivity modulation by Aquaphilus dolomiae extract-G3 on in vitro models of neuro-inflammation. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 43–48. [Google Scholar] [CrossRef]
- Noizet, M.; Bianchi, P.; Galliano, M.F.; Caruana, A.; Brandner, J.M.; Bessou-Touya, S.; Duplan, H. Broad spectrum repairing properties of an extract of Aquaphilus dolomiae on in vitro and ex vivo models of injured skin. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Deleuran, M.; Georgescu, V.; Jean-Decoster, C. An Emollient Containing Aquaphilus dolomiae Extract is Effective in the Management of Xerosis and Pruritus: An International, Real-World Study. Dermatol. Ther. 2020, 10, 1013–1029. [Google Scholar] [CrossRef]
- Vendrely, V.; Mayor-Ibarguren, A.; Stennevin, A.; Ortiz-Brugués, A. An Emollient PLUS Balm Is Useful for the Management of Xerosis in Patients Treated for Cancer: A Real-World, Prospective, Observational, Multicenter Study. Dermatol. Ther. 2022, 12, 683–699. [Google Scholar] [CrossRef] [PubMed]
- Grether-Beck, S.; Mühlberg, K.; Brenden, H.; Felsner, I.; Brynjólfsdóttir, A.; Einarsson, S.; Krutmann, J. Bioactive molecules from the Blue Lagoon: In vitro and in vivo assessment of silica mud and microalgae extracts for their effects on skin barrier function and prevention of skin ageing. Exp. Dermatol. 2008, 17, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsdottir, A.B.; Omarsdottir, S.; Brynjolfsdottir, A.; Paulsen, B.S.; Olafsdottir, E.S.; Freysdottir, J. Exopolysaccharides from Cyanobacterium aponinum from the Blue Lagoon in Iceland increase IL-10 secretion by human dendritic cells and their ability to reduce the IL-17+RORγt+/IL-10+FoxP3+ ratio in CD4+ T cells. Immunol. Lett. 2015, 163, 157–162. [Google Scholar] [CrossRef]
- Grether-Beck, S.; Marini, A.; Jaenicke, T.; Brenden, H.; Felsner, I.; Aue, N.; Brynjolfsdottir, A.; Krutmann, J. Blue Lagoon Algae Improve Uneven Skin Pigmentation: Results from in vitro Studies and from a Monocentric, Randomized, Double-Blind, Vehicle-Controlled, Split-Face Study. Skin Pharmacol. Physiol. 2022, 35, 77–86. [Google Scholar] [CrossRef]
- Nicoletti, G.; Saler, M.; Tresoldi, M.M.; Faga, A.; Benedet, M.; Cristofolini, M. Regenerative effects of spring water-derived bacterial lysates on human skin fibroblast in in vitro culture: Preliminary results. J. Int. Med. Res. 2019, 47, 5777–5786. [Google Scholar] [CrossRef] [Green Version]
- Mahé, Y.F.; Martin, R.; Aubert, L.; Billoni, N.; Collin, C.; Pruche, F.; Bastien, P.; Drost, S.S.; Lane, A.T.; Meybeck, A. Induction of the skin endogenous protective mitochondrial MnSOD by Vitreoscilla filiformis extract. Int. J. Cosmet. Sci. 2006, 28, 277–287. [Google Scholar] [CrossRef]
- Guéniche, A.; Hennino, A.; Goujon, C.; Dahel, K.; Bastien, P.; Martin, R.; Jourdain, R.; Breton, L. Improvement of atopic dermatitis skin symptoms by Vitreoscilla filiformis bacterial extract. Eur. J. Dermatol. 2006, 16, 380–384. [Google Scholar]
- Guéniche, A.; Dahel, K.; Bastien, P.; Martin, R.; Nicolas, J.F.; Breton, L. Vitreoscilla filiformis bacterial extract to improve the efficacy of emollient used in atopic dermatitis symptoms. J. Eur. Acad. Dermatol. Venereol. 2008, 22, 746–747. [Google Scholar] [CrossRef]
- Guéniche, A.; Cathelineau, A.C.; Bastien, P.; Esdaile, J.; Martin, R.; Queille-Roussel, C.; Breton, L. Vitreoscilla filiformis biomass improves seborrheic dermatitis. J. Eur. Acad. Dermatol. Venereol. 2008, 22, 1014–1105. [Google Scholar] [CrossRef]
- Guéniche, A.; Knaudt, B.; Schuck, E.; Volz, T.; Bastien, P.; Martin, R.; Röcken, M.; Breton, L.; Biedermann, T. Effects of nonpathogenic gram-negative bacterium Vitreoscilla filiformis lysate on atopic dermatitis: A prospective, randomized, double-blind, placebo-controlled clinical study. Br. J. Dermatol. 2008, 159, 1357–1363. [Google Scholar] [CrossRef]
- Volz, T.; Skabytska, Y.; Guenova, E.; Chen, K.M.; Frick, J.S.; Kirschning, C.J.; Kaesler, S.; Röcken, M.; Biedermann, T. Nonpathogenic bacteria alleviating atopic dermatitis inflammation induce IL-10-producing dendritic cells and regulatory Tr1 cells. J. Investig. Dermatol. 2014, 134, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Seité, S.; Zelenkova, H.; Martin, R. Clinical efficacy of emollients in atopic dermatitis patients-relationship with the skin microbiota modification. Clin. Cosmet. Investig. Dermatol. 2017, 10, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Gannesen, A.V.; Borrel, V.; Lefeuvre, L.; Netrusov, A.I.; Plakunov, V.K.; Feuilloley, M.G.J. Effect of two cosmetic compounds on the growth, biofilm formation activity, and surface properties of acneic strains of Cutibacterium acnes and Staphylococcus aureus. MicrobiologyOpen 2019, 8, 2045–8827. [Google Scholar] [CrossRef] [PubMed]
- Berardesca, E.; Bonfigli, A.; Cartigliani, C.; Kerob, D.; Tan, J. A Randomized, Controlled Clinical Trial of a Dermocosmetic Containing Vichy Volcanic Mineralizing Water and Probiotic Fractions in Subjects with Rosacea Associated with Erythema and Sensitive Skin and Wearing Protective Masks. Clin. Cosmet. Investig. Dermatol. 2023, 11, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Mourelle, M.L.; Gómez, C.P.; Legido, J.L. Microalgal Peloids for Cosmetic and Wellness Uses. Mar. Drugs 2021, 19, 666. [Google Scholar] [CrossRef]
- Gudmundsdottir, A.B.; Brynjolfsdottir, A.; Olafsdottir, E.S.; Hardardottir, I.; Freysdottir, J. Exopolysaccharides from Cyanobacterium aponinum induce a regulatory dendritic cell phenotype and inhibit SYK and CLEC7A expression in dendritic cells, T cells and keratinocytes. Int. Immunopharmacol. 2019, 69, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Strohl, W.R.; Schmidt, T.M.; Lawry, N.H.; Mezzino, M.J.; Larkin, J.M. Characterization of Vitreoscilla beggiatoides and Vitreoscilla filiformis sp. nov., nom. rev., and comparison with Vitreoscilla stercoraria and Beggiatoa alba. Int. J. Syst. Bacteriol. 1986, 36, 302–313. [Google Scholar] [CrossRef] [Green Version]
- Contreras, S.; Sagory-Zalkind, P.; Blanquart, H.; Iltis, A.; Morand, S. Complete genome sequence of Vitreoscilla filiformis (ATCC 15551), used as a cosmetic ingredient. Genome. Announc. 2017, 5, e00913-17. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Jun, H.; Dawei, Z.; Jammayrac, O.; Bastien, P.; Carpentier, M.; Aubert, L. Evaluation of the Efficacy and Skin Tolerance of a Cream Containing 1% Vitreoscilla filiformis Extract Applied on Chinese Women with Sensitive Skin. Chin. J. Med. Aesthet. Cosmetol. 2006, 12, 195–197. [Google Scholar] [CrossRef]
- Guéniche, A.; Valois, A.; Kerob, D.; Rasmont, V.; Nielsen, M. A combination of Vitreoscilla filiformis extract and Vichy volcanic mineralizing water strengthens the skin defenses and skin barrier. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 16–25. [Google Scholar] [CrossRef]
- Gueniche, A.; Valois, A.; Salomao-Calixto, L.; Sanchez-Hevia, O.; Labatut, F.; Kerob, D.; Nielsen, M. A dermocosmetic formulation containing Vichy volcanic mineralizing water, Vitreoscilla filiformis extract, niacinamide, hyaluronic acid, and vitamin E regenerates and repairs acutely stressed skin. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Mijouin, L.; Hillion, M.; Ramdani, Y.; Jaouen, T.; Duclairoir-Poc, C.; Follet-Gueye, M.L.; Lati, E.; Yvergnaux, F.; Driouich, A.; Lefeuvre, L.; et al. Effects of a skin neuropeptide (substance P) on cutaneous microflora. PLoS ONE 2013, 8, e78773. [Google Scholar] [CrossRef]
- Drouillard, S.; Poulet, L.; Marechal, E.; Amato, A.; Buon, L.; Loiodice, M.; Helbert, W. Structure and enzymatic degradation of the polysaccharide secreted by Nostoc commune. Carbohydr. Res. 2022, 515, 108544. [Google Scholar] [CrossRef] [PubMed]
Thermal Spring Water | Main Composition | Microorganisms (Phyla/Genus/Strain) | Key Findings | References |
---|---|---|---|---|
Avène | Bicarbonate Calcium Magnesium | Nitrospirae | Decrease S. aureus Improve SCORAD index | [83,84] |
Comano | Bicarbonate Sulphate | Aeromonas hydrophila, Brevundimonas vesicularis, Chromobacterium violaceum, Citrobacter youngae, Empedobacter brevis, Pantoea agglomerans, Pseudomonas putida, Pseudomonas stutzeri, and Streptococcus mitis. | Skin regeneration | [85,86] |
La Roche-Posay | Bicarbonate Calcium Silica | Xantomonadaceae (Proteobacteria) | Psoriasis: Improve PASI index | [87] |
Atopic dermatitis: Improve SCORAD index | [88] | |||
Atopic dermatitis: Improve SCORAD index. Improve gut microbiota | [89] |
Thermal Spring Water | Composition * | Microorganism Pre/Pro/Pos-Biotic | Type of Study | Dermocosmetic Formulation/Active Ingredient | Effects on the Skin | References |
---|---|---|---|---|---|---|
Avène (ATW) | Bicarbonate Calcium Magnesium Silica Sulfate Chloride Potassium Sodium | Aquaphilus dolomiae extract | In vitro | - | Inhibition expression of the inflammatory mediators | [109] |
Aquaphilus dolomiae extract | Ex vivo | - | Inhibition of SP-stimulated release of IL-8 and histamine (92% and 112%, respectively) | [110] | ||
Aquaphilus dolomiae aqueous protein extract | In vitro | - | Counteracting the mitogenic effect of a S. aureus secretome on CD4.T cells | [111] | ||
Aquaphilus dolomiae proteins and lipopolysaccharides extract (I-modulia) | In vitro | - | Immunomodulatory, anti-inflammatory, and antipruritic activity in AD pharmacological model | [112] | ||
Aquaphilus dolomiae extract (ADE-G1) | Ex vivo | - | Modulate the inflammatory response Increasing antimicrobial activities Strengthening barrier function, by restoring filaggrin expression | [113] | ||
Aquaphilus dolomiae extract (AEG-3) | In vitro Ex vivo | - | Inhibition of SP-stimulated release of inflammatory cytokines (IL-1b and TNF-a) Inhibit IL-8 with inhibition of histamine | [114] | ||
Aquaphilus dolomiae extract (AEG-2) | In vivo Ex vivo | - | Increasing fibroblast proliferation and keratinocyte migration Induction re-epithelialization of wounded skin | [115] | ||
Aquaphilus dolomiae extract | Open-label, real-world study | Emollient cream | Improvement of symptoms of xerosis and pruritus by more than 50% | [116] | ||
Aquaphilus dolomiae extract | Real-world, prospective, observational, multicenter study | Emollient balm | Reduction in xerosis severity in cancer patients (objective clinical signs, 67.7%; subjective clinical signs, 57.4%) | [117] | ||
Blue Lagoon (BL) | Chloride Sodium Potassium Calcium Silica | Blue Lagoon filamentous algae extract Blue Lagoon coccoid algae extract + solution from silica mud | In vitro In vivo | - Galenic formulation | Reduction in TEWL (by increasing mRNA expression for involucrin, filaggrin, and transglutaminase-1) Protection from UV radiation (UV-induced gene expression was reduced) Reduction in TEWL | [118] |
Cyanobacterium aponinum extract | In vitro | - | Stimulation of human dendritic cells (DCs) to produce immuno-suppressive cytokine IL-10 | [119] | ||
Cyanobacterium aponinum extract | In vitro | Decreasing number of pigment spots Diminution uneven skin pigmentation | [120] | |||
Comano (CTW) | Bicarbonate Calcium Sulphate Magnesium | Rudaea cellulosilytica, Mesorhizobium erdmanii, Herbiconiux ginsengi, Fictibacillus phosphorivorans lysates | In vitro | _ | Human fibroblast stimulation | [121] |
La Roche-Posay (LRP) | Bicarbonate Calcium Silica Magnesium Strontium Selenium | Vitreoscilla filiformis (Biomass fraction obtained by fermentation) | In vitro | Endogenous antioxidant defenses stimulation | [122] | |
Vitreoscilla filiformis extract | Randomized, double-blind, vehicle-controlled trial | Ointment | Improvement of AD skin symptoms | [123] | ||
Culture of V. filiformis in La Roche-Posay thermal water | Monocenter, intra-individual, left–right comparison study | Cream | Improvement of AD skin symptoms | [124] | ||
Culture of V. filiformis in La Roche-Posay thermal water | Randomized, double-blind, vehicle-controlled, and parallel-group comparison study | Lotion | Reduction pruritus of seborrheic dermatitis | [125] | ||
Vitreoscilla filiformis lysate | Prospective, double-blind, placebo-controlled clinical study | Cream | Decreasing SCORAD levels and pruritus Decreasing loss of sleepReduction in Staphylococcus aureus colonization Skin barrier improvement | [126] | ||
Vitreoscilla filiformis lysate | In vitro In vivo | - | Reduction in inflammation of AD | [127] | ||
Vitreoscilla filiformis | Double-blind, randomized, comparative study | Emollient cream | Normalizing skin microbiota Reduction number and severity of flare-ups | [128] | ||
Uriage (UTW) | Sulphate Chloride Sodium Bicarbonate Calcium Magnesium | Unknown (PS291®, a rhamnose-rich polysaccharide obtained by fermentation) | In vitro | Emollient cream (UTW + PS291®) | Reduction in biomass of Cutibacterium acnes Staphylococcus aureus final biomass decreased Antibiofilm activity | [129] |
Vichy (VTW) | Magnesium Potassium Calcium Sulphate Sodium | Vitreoscilla filiformis lysate | Randomized, split-face study | Dermocosmetic formulation (M89PF) Containing Vichy mineral water, V. filiformis lysate, niacinamide, hyaluronic acid, and vitamin E | Skin erythema, tightness, dryness, hydration, and TEWL improvement | [130] |
Sr. No | Invention | Pro/Postbiotic Strain | Type of Cosmetic/Aim | Date of Publication | Patent Number |
---|---|---|---|---|---|
1 | Cosmetic use of an extract from the bacteria Vitreoscilla filiformis, composition and procedure of cosmetic treatment no therapeutic * | Vitreoscilla filiformis | Prevention and/or treatment of dry skin | 16 August 2016 | PI 0802515-0 B1 |
2 | Bacterial extracts cultured in thermal waters for reducing bags and/or dark circles around the eyes | Vitreoscilla filiformis | Eye contour care and/or makeup composition | 19 July 2016 | US9393266B2 |
3 | Process for the preparation of active principles on thermal water and compositions comprising them | Vitreoscilla filiformis | Not explain: use in the cosmetics or pharmaceutical field | 10 August 2017 | US20170226470A1 |
4 | Bacterial extracts cultured in thermal waters for treating sensitive skin, mucous membranes, and scalps | Vitreoscilla filiformis | Care of sensitive skin and/or scalps | 8 September 2015 | US9125934B2 |
5 | Use of bacterial extracts cultivated on thermal water as an anti-redness agent | Vitreoscilla filiformis | Treatment of rosacea and sensitive skin | 28 January 2009 | EP2018891A1 |
6 | Use of at least one bacterial extract cultivated on thermal water for the treatment of sensitive skin, mucosa, and scalps | Vitreoscilla filiformis | Care of sensitive skin and/or scalp | 28 January 2009 | EP2018893A1 |
7 | Bacterial extracts cultured in thermal waters for the treatment of dry skin | Vitreoscilla filiformis | Care of dry skin | 22 January 2009 | US20090022819A1 |
8 | Use of an extract of non-photosynthetic and non-fruiting filamentous bacteria cultivated in a medium containing non-sulfurous mineral and/or thermal water, as agent to, e.g., prevent or limit hair loss and/or promote hair growth | Vitreoscilla filiformis | Field of hair growth | 23 January 2009 | FR2918887A1 |
9 | Association of a Vichy thermal water and an extract of at least one bacterium from the species Vitreoscilla filiformis cultured on a medium comprising at least one Vichy thermal water | Vitreoscilla filiformis | Caring for and/or treating keratin materials, in particular, the skin | 12 May 2022 | WO2022096649A1 |
10 | Composition comprising at least one monosaccharide and a filamentary bacterium extract | Vitreoscilla filiformis | Preventing and/or treating cutaneous dryness and skin-related disorders, dry and/or hypo-seborrheic. | 26 July 2019 | FR3016291A1 |
11 | Skin treatment methods | Aquaphilus dolomiae | Treatment and/or prevention of a skin condition | 19 August 2021 | US 2021/0251869 A1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mourelle, M.L.; Gómez, C.P.; Legido, J.L. Hydrobiome of Thermal Waters: Potential Use in Dermocosmetics. Cosmetics 2023, 10, 94. https://doi.org/10.3390/cosmetics10040094
Mourelle ML, Gómez CP, Legido JL. Hydrobiome of Thermal Waters: Potential Use in Dermocosmetics. Cosmetics. 2023; 10(4):94. https://doi.org/10.3390/cosmetics10040094
Chicago/Turabian StyleMourelle, María Lourdes, Carmen P. Gómez, and José L. Legido. 2023. "Hydrobiome of Thermal Waters: Potential Use in Dermocosmetics" Cosmetics 10, no. 4: 94. https://doi.org/10.3390/cosmetics10040094
APA StyleMourelle, M. L., Gómez, C. P., & Legido, J. L. (2023). Hydrobiome of Thermal Waters: Potential Use in Dermocosmetics. Cosmetics, 10(4), 94. https://doi.org/10.3390/cosmetics10040094