N-Acetylneuraminic Acid Inhibits Melanogenesis via Induction of Autophagy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Effect of Neu5Ac on Proliferation of B16 Melanoma Cells
2.2. Effect of Neu5Ac on Tyrosinase Activity in B16 Melanoma Cells
2.3. Effect of Neu5Ac on Tyrosinase, Pmel17, and MITF mRNA Levels, Using Real-Time Polymerase Chain Reaction (RT-PCR)
2.4. Effect of Neu5Ac on Tyrosinase, Pmel17, and MITF Protein Levels, Using Western Blotting
2.5. Effect of Neu5Ac on Ubiquitin-Specific-Processing Protease 5 (USP5) and Ubiquitin-like Modifier-Activating Enzyme 1 Y (UBE1Y) mRNA Levels, Using RT-PCR, and on USP5 and UbE1Y Protein Levels, Using Western Blotting
2.6. Effect of Neu5Ac on LC3, p62, CCT3, and LAMP-1 Protein Levels, Using Western Blotting
2.7. Effect of Neu5Ac on p62 Localization, Using Fluorescent Immunostaining
2.8. Effect of Neu5Ac on Tyrosinase and Lysosomal (LAMP-1) Localization, Using Fluorescence Immunostaining (Multiple Staining)
2.9. Statistical Analysis
3. Results
3.1. Effect of Neu5Ac on Tyrosinase in B16 Melanoma Cells
3.2. Effect of Neu5Ac on Tyrosinase and LAMP-1 Localization
3.3. Effect of Neu5Ac on Cathepsin L2 in B16 Melanoma Cells
3.4. Effect of Neu5Ac on Protein Levels of Autophagy-Related Factors (LC3 and p62)
3.5. Effect of Neu5Ac on p62 Localization, Using Fluorescence Immunostaining
3.6. Effect of Neu5Ac on mRNA and Protein Levels of Ubiquitin-Proteasome System-Related Factors (USP5 and UBE1y)
3.7. Effect of Neu5Ac on Molecular Chaperone (CCT) in B16 Melanoma Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maeda, K. Large melanosome complex is increased in keratinocytes of solar lentigo. Cosmetics 2017, 4, 49. [Google Scholar] [CrossRef]
- Hirobe, T. Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes. Pigment Cell Res. 2005, 18, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K. Mechanism of action of topical tranexamic acid in the treatment of melasma and sun-induced skin hyperpigmentation. Cosmetics 2022, 9, 108. [Google Scholar] [CrossRef]
- Maeda, K. New method of measurement of epidermal turnover in humans. Cosmetics 2017, 4, 47. [Google Scholar] [CrossRef]
- Maeda, K. Timeline of the development of skin-lightening active ingredients in Japan. Molecules 2022, 27, 4774. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Zeng, H.; Takahashi, T.; Maeda, K. In vitro methods for predicting chemical leukoderma caused by quasi-drug cosmetics. Cosmetics 2017, 4, 31. [Google Scholar] [CrossRef]
- Gu, L.; Maeda, K. Metabolism of enantiomers of rhododendrol in human skin homogenate. Metabolites 2022, 12, 412. [Google Scholar] [CrossRef]
- Wong, Z.C.F.; Chan, G.K.L.; Wu, K.Q.Y.; Poon, K.K.M.; Chen, Y.; Dong, T.T.X.; Tsim, K.W.K. Complete digestion of edible bird’s nest releases free N-acetylneuraminic acid and small peptides: An efficient method to improve functional properties. Food Funct. 2018, 9, 5139–5149. [Google Scholar] [CrossRef] [PubMed]
- Kathan, R.H.; Weeks, D.I. Structure studies of collocalia mucoid. I. Carbohydrate and amino acid composition. Arch. Biochem. Biophys. 1969, 134, 572–576. [Google Scholar] [CrossRef]
- Wang, B.; Brand-Miller, J. The role and potential of sialic acid in human nutrition. Eur. J. Clin. Nutr. 2003, 57, 1351–1369. [Google Scholar] [CrossRef]
- Valencia, J.C.; Rouzaud, F.; Julien, S.; Chen, K.G.; Passeron, T.; Yamaguchi, Y.; Abu-Asab, M.; Tsokos, M.; Costin, G.E.; Yamaguchi, H.; et al. Sialylated core 1 O-glycans influence the sorting of Pmel17/gp100 and determine its capacity to form fibrils. J. Biol. Chem. 2007, 282, 11266–11280. [Google Scholar] [CrossRef] [PubMed]
- Valencia, J.C.; Hearing, V.J. The Role of Glycosylation in the Control of Processing and Cellular Transport of the Functional Amyloid PMEL17. In Glycosylation; Stefana Petrescu, S., Ed.; IntechOpen: London, UK, 2012. [Google Scholar]
- Mishima, Y. Molecular and biological control of melanogenesis through tyrosinase genes and intrinsic and extrinsic regulatory factors. Pigment Cell Res. 1994, 7, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Seino, J.; Wang, L.; Haga, Y.; Suzuki, T. Autophagy regulates the stability of sialin, a lysosomal sialic acid transporter. Biosci. Biotechnol. Biochem. 2015, 79, 553–557. [Google Scholar] [CrossRef]
- Diwakar, G.; Klump, V.; Lazova, R.; Pawelek, J. Evidence for glycosylation as a regulator of the pigmentary system: Key roles of sialyl(α2-6)gal/GalNAc-terminated glycans in melanin synthesis and transfer. Glycoconj J. 2015, 32, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Ogura, H.; Mishima, Y. [GERL-coated vesicle system in the melanin synthesizing cell: Its three-dimensional ultrastructure and tyrosinase activity (author’s transl)]. Nihon Hifuka Gakkai Zasshi. 1977, 87, 883–901. [Google Scholar] [PubMed]
- Imokawa, G.; Mishima, Y. Isolation and biochemical characterization of tyrosinase-rich GERL and coated vesicle in melanin synthesizing cells. Br. J. Dermatol. 1981, 104, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Wasmeier, C.; Hume, A.N.; Bolasco, G.; Seabra, M.C. Melanosomes at a glance. J. Cell Sci. 2008, 121, 3995–3999. [Google Scholar] [CrossRef] [PubMed]
- Kabuta, T.; Fujiwara, Y.; Wada, K. Do lysosomes take up various macromolecules independently of membrane traffic? Seikagaku 2013, 85, 1057–1066. (In Japanese) [Google Scholar]
- Ebanks, J.P.; Koshoffer, A.; Wickett, R.R.; Schwemberger, S.; Babcock, G.; Hakozaki, T.; Boissy, R.E. Epidermal keratinocytes from light vs. dark skin exhibit differential degradation of melanosomes. J. Investig. Dermatol. 2011, 131, 1226–1233. [Google Scholar] [CrossRef]
- Chen, N.; Seiberg, M.; Lin, C.B. Cathepsin L2 levels inversely correlate with skin color. J. Investig. Dermatol. 2006, 126, 2345–2347. [Google Scholar] [CrossRef]
- Zeng, H.; Koizumi, S.; Maeda, K. Involvement of cathepsin K and cathepsin L2 in the digestion of melanosome complexes in epidermal keratinocytes by fennel extract. Dermatol. Cosmet. JOJ 2021, 4, 1–12. [Google Scholar]
- Komatsu, M.; Ichimura, Y. [Involvement of ubiquitin system in mammalian autophagy]. Seikagaku 2012, 84, 472–478. [Google Scholar] [PubMed]
- Korolchuk, V.I.; Mansilla, A.; Menzies, F.M.; Rubinsztein, D.C. Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol. Cell 2009, 33, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Nakamura, K.; Matsui, M.; Yamamoto, A.; Nakahara, Y.; Suzuki-Migishima, R.; Yokoyama, M.; Mishima, K.; Saito, I.; Okano, H.; et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006, 441, 885–889. [Google Scholar] [CrossRef]
- Johansen, T.; Lamark, T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 2011, 7, 279–296. [Google Scholar] [CrossRef] [PubMed]
- Kirkin, V.; McEwan, D.G.; Novak, I.; Dikic, I. A role for ubiquitin in selective autophagy. Mol. Cell 2009, 34, 259–269. [Google Scholar] [CrossRef]
- Rubinsztein, D.C. Autophagy induction rescues toxicity mediated by proteasome inhibition. Neuron 2007, 4, 854–856. [Google Scholar] [CrossRef] [PubMed]
- Kocaturk, N.M.; Gozuacik, D. Crosstalk Between Mammalian Autophagy and the Ubiquitin-Proteasome System. Front Cell Dev. Biol. 2018, 6, 128. [Google Scholar] [CrossRef]
- Weidberg, H.; Shvets, E.; Elazar, Z. Biogenesis and cargo selectivity of autophagosomes. Annu. Rev. Biochem. 2011, 80, 125–156. [Google Scholar] [CrossRef]
- Komatsu, M.; Waguri, S.; Koike, M.; Sou, Y.S.; Ueno, T.; Hara, T.; Mizushima, N.; Iwata, J.; Ezaki, J.; Murata, S.; et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007, 131, 1149–1163. [Google Scholar] [CrossRef]
- Nezis, I.P.; Simonsen, A.; Sagona, A.P.; Finley, K.; Gaumer, S.; Contamine, D.; Rusten, T.E.; Stenmark, H.; Brech, A. Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain. J. Cell Biol. 2008, 180, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Avvakumov, G.V.; Walker, J.R.; Xue, S.; Allali-Hassani, A.; Asinas, A.; Nair, U.B.; Fang, X.; Zuo, X.; Wang, Y.X.; Wilkinson, K.D.; et al. Two ZnF-UBP domains in isopeptidase T (USP5). Biochemistry 2012, 51, 1188–1198. [Google Scholar] [CrossRef]
- Lee, K.W.; Ryu, H.W.; Oh, S.S.; Park, S.; Madhi, H.; Yoo, J.; Park, K.H.; Kim, K.D. Depigmentation of α-melanocyte-stimulating hormone-treated melanoma cells by β-mangostin is mediated by selective autophagy. Exp. Dermatol. 2017, 26, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Pankiv, S.; Clausen, T.H.; Lamark, T.; Brech, A.; Bruun, J.A.; Outzen, H.; Øvervatn, A.; Bjørkøy, G.; Johansen, T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 2007, 282, 24131–24145. [Google Scholar] [CrossRef] [PubMed]
- Ichimura, Y.; Kumanomidou, T.; Sou, Y.S.; Mizushima, T.; Ezaki, J.; Ueno, T.; Kominami, E.; Yamane, T.; Tanaka, K.; Komatsu, M. Structural basis for sorting mechanism of p62 in selective autophagy. J. Biol. Chem. 2008, 283, 22847–22857. [Google Scholar] [CrossRef]
- Mizushima, N.; Yoshimori, T. How to interpret LC3 immunoblotting. Autophagy 2007, 3, 542–545. [Google Scholar] [CrossRef] [PubMed]
- Ichimura, Y.; Komatsu, M. Selective degradation of p62 by autophagy. Semin. Immunopathol. 2010, 32, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Thirumalai, D.; Lorimer, G.H. Chaperonin-mediated protein folding. Annu. Rev. Biophys. Biomol. Struct. 2001, 30, 245–269. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, G.; Wada, K.; Okuno, M.; Kurosawa, M.; Nukina, N. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol. Cell 2011, 44, 279–289. [Google Scholar] [CrossRef]
- Liu, W.; Lu, Y.; Yan, X.; Lu, Q.; Sun, Y.; Wan, X.; Li, Y.; Zhao, J.; Li, Y.; Jiang, G. Current understanding on the role of CCT3 in cancer research. Front Oncol. 2022, 12, 961733. [Google Scholar] [CrossRef]
- Wang, K.; He, J.; Tu, C.; Xu, H.; Zhang, X.; Lv, Y.; Song, C. Upregulation of CCT3 predicts poor prognosis and promotes cell proliferation via inhibition of ferroptosis and activation of AKT signaling in lung adenocarcinoma. BMC Mol. Cell. Biol. 2022, 23, 25. [Google Scholar] [CrossRef] [PubMed]
- Eldridge, A.G.; O’Brien, T. Therapeutic strategies within the ubiquitin proteasome system. Cell Death Differ. 2010, 17, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Sternlicht, H.; Farr, G.W.; Sternlicht, M.L.; Driscoll, J.K.; Willison, K.; Yaffe, M.B. The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo. Proc. Natl. Acad. Sci. USA 1993, 90, 9422–9426. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Liu, X.; Fan, Q.; Lian, J.; Guo, B. Study of the antiaging effects of bird’s nest peptide based on biochemical, cellular, and animal models. J. Funct. Foods 2023, 103, 105479. [Google Scholar] [CrossRef]
- Ling, A.J.W.; Chang, L.S.; Babji, A.S.; Latip, J.; Koketsu, M.; Lim, S.J. Review of sialic acid’s biochemistry, sources, extraction and functions with special reference to edible bird’s nest. Food Chem. 2022, 367, 130755. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Lian, J.; Liu, X.; Zou, F.; Wang, X.; Chen, M. A study on the skin whitening activity of digesta from edible bird’s nest: A mucin glycoprotein. Gels 2022, 8, 24. [Google Scholar] [CrossRef]
- Majeski, A.E.; Dice, J.F. Mechanisms of chaperone-mediated autophagy. Int. J. Biochem. Cell Biol. 2004, 36, 2435–2444. [Google Scholar] [CrossRef]
- Cuervo, A.M. Chaperone-mediated autophagy: Dice’s ‘wild’ idea about lysosomal selectivity. Nat. Rev. Mol. Cell Biol. 2011, 12, 535–541. [Google Scholar] [CrossRef]
Primary Antibodies | Secondary Antibodies |
---|---|
Anti-β-actin antibody (AG0297; Proteintech Group, Inc., Rosemont, IL, USA), 1000× dilution | Anti-mouse antibody (NA931VS; GE HealthCare Technologies Inc.), 5000× dilution |
Anti-tyrosinase antibody (T311; Thermo Fisher Scientific Co.), 1000× dilution | Anti-mouse antibody (NA931VS; GE Healthcare Technologies Inc.), 5000× dilution |
Primary Antibodies | Secondary Antibodies |
---|---|
Anti–beta-actin antibody (AG0297; Proteintech Group, Inc.), 1000× dilution | Anti-mouse antibody (NA931VS; GE Healthcare Technologies Inc.), 5000× dilution |
Anti-USP5/IsoT antibody (A301-542A1; Bethyl Laboratories, Inc., Montgomery, TX, USA), 1000× dilution | Anti-rabbit antibody (NA934VS; GE Healthcare Technologies Inc.), 5000× dilution |
Anti-UBE1a/b rabbit antibody (4891; Cell Signaling Technology, Inc., Danvers, MA, USA), 1000× dilution | Anti-rabbit antibody (NA934VS.; GE Healthcare Technologies Inc.), 5000× dilution |
Primary Antibodies | Secondary Antibodies |
---|---|
Anti-beta-actin antibody (AG0297; Proteintech Group, Inc.), 1000× dilution | Anti-mouse antibody (NA931VS; GE Healthcare Technologies Inc.), 5000× dilution |
Anti-LC3A/B (D3U4C; #12741; Cell Signaling Technology Inc.), 1000× dilution | Anti-rabbit antibody (NA934VS; GE Healthcare Technologies Inc.), 5000× dilution |
Anti-P62/SQSTM1 antibody (Proteintech Group, Inc.), 1000× dilution | Anti-rabbit antibody (NA934VS; GE Healthcare Technologies Inc.), 5000× dilution |
Anti-CCT3 antibody (10571-1-AP; Proteintech Group, Inc.), 1000× dilution | Anti-rabbit antibody (NA934VS; GE Healthcare Technologies Inc.), 5000× dilution |
Anti-LAMP-1 antibody (bs-1970R; Funakoshi), 500× dilution | Anti-rabbit antibody (NA934VS; GE Healthcare Technologies Inc.), 5000× dilution |
Primary Antibodies | Secondary Antibodies |
---|---|
Anti-LAMP-1 polyclonal antibody (bs-1970R; Thermo Fisher Scientific Co.), 200× dilution | Alexa Fluor 568 goat anti-rabbit antibody (A11011; Thermo Fisher Scientific Co.), 1000× dilution |
Anti-tyrosinase antibody (T311; Thermo Fisher Scientific Co.), 1000× dilution | Alexa Fluor 488 goat anti-mouse antibody (A11006; Thermo Fisher Scientific Co.), 1000× dilution |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshikawa, K.; Maeda, K. N-Acetylneuraminic Acid Inhibits Melanogenesis via Induction of Autophagy. Cosmetics 2024, 11, 82. https://doi.org/10.3390/cosmetics11030082
Yoshikawa K, Maeda K. N-Acetylneuraminic Acid Inhibits Melanogenesis via Induction of Autophagy. Cosmetics. 2024; 11(3):82. https://doi.org/10.3390/cosmetics11030082
Chicago/Turabian StyleYoshikawa, Kei, and Kazuhisa Maeda. 2024. "N-Acetylneuraminic Acid Inhibits Melanogenesis via Induction of Autophagy" Cosmetics 11, no. 3: 82. https://doi.org/10.3390/cosmetics11030082
APA StyleYoshikawa, K., & Maeda, K. (2024). N-Acetylneuraminic Acid Inhibits Melanogenesis via Induction of Autophagy. Cosmetics, 11(3), 82. https://doi.org/10.3390/cosmetics11030082