Electrospray-Mangiferin Nanoparticles Gel: A Promising Agent for Sun and Age Defense
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Electrosprayed MNPs
2.3. Development of Gel Formulation
2.3.1. Preparation
2.3.2. Viscosity and Spreadability
2.3.3. In Vitro Anti-Oxidant Activity of Gel Formulation
2.3.4. In Vitro SPF Determination of Gel Formulation
2.3.5. Stability Test
2.4. Ex Vivo Permeation Study
2.5. In Vitro Release Study
2.6. Statistical Analysis
3. Results
3.1. Preparation of Electrospray MNPs
3.2. Gel Formulation
3.2.1. Physical Characterization
3.2.2. UV-VIS Spectroscopic Study
3.2.3. In Vitro SPF
3.2.4. In Vitro Anti-Oxidant Activity
3.2.5. Stability Test
Formulation/ Parameter | Stability Condition | Physical Appearance | pH | Viscosity (mPas) | In Vitro Anti-Oxidant Activity (% Inhibition) | In Vitro SPF |
---|---|---|---|---|---|---|
F1 | Day 0 | Homogenous | 5.57 ± 0.03 | 14.68 ± 0.40 | 74.47 ± 2.19 | 12.19 ± 0.27 |
Accelerated test | Separation of mangiferin | 5.54 ± 0.04 | 15.68 ± 0.54 | 62.18 ± 1.57 * | 11.76 ± 0.16 | |
Day 30 (RT) | Separation of mangiferin | 5.57 ± 0.03 | 15.67 ± 0.40 | 56.07 ± 1.00 * | 12.52 ± 0.29 | |
Day 30 (4 °C) | Separation of mangiferin | 5.51 ± 0.03 | 13.63 ± 0.43 | 69.43 ± 1.65 * | 12.13 ± 0.26 | |
Day 30 (45 °C) | Separation of mangiferin | 5.53 ± 0.03 | 16.34 ± 0.37 | 54.85 ± 1.29 * | 11.11 ± 0.36 | |
F2 | Day 0 | Homogenous | 5.52 ± 0.03 | 13.80 ± 0.56 | 80.52 ± 1.05 | 20.43 ± 0.13 |
Accelerated test | Homogenous | 5.56 ± 0.05 | 15.00 ± 0.31 | 79.42 ± 1.12 | 19.33 ± 1.39 | |
Day 30 (RT) | Homogenous | 5.50 ± 0.02 | 14.80 ± 0.56 | 80.13 ± 2.28 | 18.78 ± 0.57 | |
Day 30 (4 °C) | Homogenous | 5.52 ± 0.02 | 12.97 ± 0.29 | 78.41 ± 2.39 | 19.15 ± 0.75 | |
Day 30 (45 °C) | Homogenous | 5.50 ± 0.06 | 15.13 ± 0.52 | 79.97 ± 1.71 | 18.51 ± 0.12 |
3.3. In Vitro Release Study
3.4. Ex Vivo Permeation Study
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MNPs | Mangiferin nanoparticles |
PM | Purified mangiferin |
MS | Mangiferin standard |
SPF | Sun protection factor |
DMSO | Dimethyl sulfoxide |
IPN | Isopropanol |
CA | Cellulose acetate |
F1 | Formulation 1 |
F2 | Formulation 2 |
References
- Orazio, J.D.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef] [PubMed]
- Lintner, K. Benefits of anti-aging actives in sunscreens. Cosmetics 2017, 4, 7. [Google Scholar] [CrossRef]
- Mishra, A.K.; Mishra, A.; Chattopadhyay, P. Herbal cosmeceuticals for photoprotection from ultraviolet B radiation: A review. Trop. J. Pharm. Res. 2011, 10, 351–360. [Google Scholar] [CrossRef]
- Donglikar, M.M.; Deore, S.L. Development and Evaluation of Herbal Sunscreen. Pharmacogn. J. 2016, 9, 83–97. [Google Scholar] [CrossRef]
- Kumar, D.; Rajora, G.; Parkash, O.; Himanshu; Antil, M.H.; Kumar, V. Herbal cosmetics: An over view. Int. J. Adv. Sci. Res. 2016, 1, 36–41. [Google Scholar]
- Chen, Q. Evaluate the Effectiveness of the Natural Cosmetic Product Compared to Chemical-Based Products. Int. J. Chem. 2009, 1, 57–59. [Google Scholar] [CrossRef]
- Romanhole, R.C.; Fava, A.L.M.; Tundisi, L.L.; Macedo, L.M.; Santos, E.M.; Ataide, J.A.; Mazzola, P.G. Unplanned absorption of sunscreen ingredients: Impact of formulation and evaluation methods. Int. J. Pharm. 2020, 591, 120013. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Sohini, B.; Sherje, A.P. Development of resveratrol and green tea sunscreen formulation for combined photoprotective and antioxidant properties. J. Drug Deliv. Sci. Technol. 2020, 60, 102000. [Google Scholar] [CrossRef]
- Sayuti, N.A. Formulation and physical stability test gel formulation from leaves Ketepeng Cina (Cassia alata L.). J. Kefarmasian Indones 2015, 5, 74–82. [Google Scholar]
- Khumpook, T.; Saenphet, S.; Tragoolpua, J.; Saenphet, K. Anti-inflammatory and Antioxidant activity of Thai mango (Mangifera indica Linn.) Leaf Extracts. Comp. Clin. Pathol. 2018, 28, 157–164. [Google Scholar] [CrossRef]
- Fujita, M.; Inoue, T. Biosynthesis of mangiferin in Anemarrhena asphodeloides Bunge. II. C-glucosylation of mangiferin. Chem. Pharm. Bull. 1980, 28, 2482–2486. [Google Scholar] [CrossRef]
- Tayana, M.; Inthakusol, W.; Duangdee, N.; Chewchinda, S.; Pandith, H.; Kongkiatpaiboon, S. Mangiferin content in different parts of mango tree (Mangifera indica L.) in Thailand. Songklanakarin J. Sci. Technol. 2019, 41, 522–528. [Google Scholar]
- Eff, A.R.Y.; Rahayu, S.T.; Saraswati, H.; Mun’im, A. Formulation and Evaluation of Sunscreen Gels Containing Mangiferin Isolated from Phaleria macrocarpa Fruits. Int. J. Pharm. Investig. 2019, 9, 141–145. [Google Scholar]
- Kawakami, C.M.; Gaspar, L.R. Mangiferin and Naringenin Affect the Photostability and Phototoxicity of Sunscreens Containing Avobenzone. J. Photochem. Photobiol. B Biol. 2015, 151, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Chen, H.; Sun, L.; Tong, L.; Zhang, T. Improving Permeability and Oral Absorption of Mangiferin by Phospholipid Complexation. Fitoterapia 2014, 93, 54–61. [Google Scholar] [CrossRef]
- Allaw, M.; Pleguezuelos-Villa, M.; Manca, M.L.; Caddeo, C.; Aroffu, M.; Nacher, A.; Diez-Sales, O.; Saur, A.R.; Ferrer, E.E.; Fadda, A.M.; et al. Innovative Strategies to Treat Skin Wounds with Mangiferin: Fabrication of Transfersomes Modified with Glycols and Mucin. Nanomedicine 2020, 15, 1671–1685. [Google Scholar] [CrossRef]
- Zou, T.B.; Xia, E.Q.; He, T.P.; Huang, M.Y.; Jia, Q.; Li, H.W. Ultrasound-Assisted Extraction of Mangiferin from Mango (Mangifera indica L.) Leaves Using Response Surface Methodology. Molecules 2014, 19, 1411–1421. [Google Scholar] [CrossRef]
- Ochocka, R.; Hering, A.; Stefanowicz, H.J.; Cal, K.; Baranska, H. The effect of mangiferin on skin: Penetration, permeation and inhibition of ECM enzymes. PLoS ONE 2017, 12, e0181542. [Google Scholar] [CrossRef] [PubMed]
- Chanikanda, T.; Channarong, S.; Wongtrakul, P. Development of Aqueous Formulation Containing the Extracted Mangiferin. Key Eng. Mater. 2021, 901, 40–47. [Google Scholar]
- Sridhar, R.; Ramakrishna, S. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter 2013, 3, e24281. [Google Scholar] [CrossRef]
- Jaworek, A.; Sobczyk, A.T. Electrospraying route to nanotechnology: An overview. J. Electrost. 2008, 66, 197–219. [Google Scholar] [CrossRef]
- Xie, J.; Jiang, J.; Davoodi, P.; Srinivasan, M.P.; Wang, C. Electrohydrodynamic atomization: A two-decade effort to produce and process micro-/nanoparticulate materials. Chem. Eng. Sci. 2015, 125, 32–57. [Google Scholar] [CrossRef] [PubMed]
- Chomchoei, N.; Leelapornpisid, P.; Tipduangta, P.; Sangthong, P.; Papan, P.; Sirithunyalug, B.; Samutrtai, P. Potential of electro-sprayed purified mangiferin nanoparticles for anti-aging cosmetic applications. RSC Adv. 2023, 13, 34987–35002. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, M.; Saini, M. Formulation and evaluation of curcumin microsponges for oral and topical drug delivery. Prog. Biomater. 2018, 7, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Nanjo, F.; Goto, K.; Seto, R.; Suzuki, M.; Sakai, M.; Hara, Y. Scavenging effects of tea catechins and their derivatives on 1, 1-diphenyl-2-picrylhydrazyl radical. Free Radical Biol. Med. 1996, 21, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Vinood, K.; Mahesh, P.; Neerupma, D. Determination of sun protection factor in different extract of Eulaliopsis binate. Plant Arch. 2019, 19, 185–187. [Google Scholar]
- Junior, E.R.; Kollias, N.; Cole, C. New noninvasive approach assessing in vivo sunprotection factor (SPF) using diffuse reflectancespectroscopy (DRS) and in-vitro transmission. Photodermatol. Photoimmunol. Photomed. 2012, 30, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Schieber, A.; Berardini, N.; Carle, R. Identification of Flavonol and Xanthone Glycosides from Mango (Mangifera indica L. Cv. “Tommy Atkins”) Peels by High-Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry. J. Agric. Food Chem. 2003, 51, 5006–5011. [Google Scholar] [CrossRef]
- Kim, J.H.; Byun, J.C.; Bandl, A.K.R.; Hyun, C.G.; Lee, N.H. Compounds with elastase inhibition and free radical scavenging activities from Callistemon lanceolatus. J. Med. Plant Res. 2009, 3, 914–920. [Google Scholar]
- Vo, T.H.T.; Nguyen, T.D.; Nguyen, Q.H.; Ushakova, N.A. Extraction of Mangiferin from the Leaves of the Mango Tree Mangifera indica and Evaluation of its Biological Activity in Terms of Blockade of α-glucosidase. Pharm. Chem. J. 2017, 51, 806–810. [Google Scholar] [CrossRef]
- Bock, N.; Woodruff, M.A.; Hutmacher, D.W.; Dargaville, T.R. Electrospraying, a Reproducible Method for Production of Polymeric Microspheres for Biomedical Applications. Polymers 2011, 3, 131–149. [Google Scholar] [CrossRef]
- Bae, S.B.; Nam, H.C.; Park, W.H. Electrospraying of environmentally sustainable alginate microbeads for cosmetic additive. Int. J. Biol. Macromol. 2019, 133, 278–823. [Google Scholar] [CrossRef] [PubMed]
- Sirirungsee, V.; Samutrtai, P.; Sangthong, P.; Papan, P.; Leelapornpisid, P.; Saenjum, C.; Sirithunyalug, B. Electrosprayed Nanoparticles Containing Mangiferin-Rich Extract from Mango Leaves for Cosmeceutical Application. Nanomaterials. 2023, 13, 2931. [Google Scholar] [CrossRef] [PubMed]
- Razura, C.F.F.; Perez, L.A.; Gonzalez, S.N.; Herrera, M.M.; Medina, T.L.; Sayago, A.S.G. Mangiferin-Loaded Polymeric Nanoparticles: Optical Characterization, Effect of Anti-topoisomerase I, and Cytotoxicity. Cancers 2019, 11, 1965. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, G.; Yuliana, E. Electrosprayed cashew gum microparticles for the encapsulation of highly sensitive bioactive materials. Carbohydr. Polym. 2021, 264, 118060. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.W.; Tan, J.C.; Wang, C.H. Biodegradable films developed by electrospray deposition for sustained drug delivery. J. Pharm. Sci. 2008, 97, 3109–3122. [Google Scholar] [CrossRef] [PubMed]
- Smeets, A.; Clasen, C.; Van den Mooter, G. Electrospraying of polymer solutions: Study of formulation and process Parameters. Eur. J. Pharm. Biopharm. 2017, 119, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, V.; Wada, K.; Nakatani, M.; Yamada, S.; Onoue, S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int. J. Pharm. 2011, 420, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Van den Mooter, G. The use of amorphous solid dispersions: A formulation strategy to overcome poor solubility and dissolution rate. Drug Discov. Today Technol. 2012, 9, 79–85. [Google Scholar] [CrossRef]
- Janssens, S.; Van den Mooter, G. Review: Physical chemistry of solid dispersions. J. Pharm. Pharmacol. 2009, 61, 1571–1586. [Google Scholar] [CrossRef]
- Vasconcelos, T.; Marques, S.; das Neves, J.; Sarmento, B. Amorphous solid dispersions: Rational selection of a manufacturing process. Adv. Drug Deliv. Rev. 2016, 100, 85–101. [Google Scholar] [CrossRef] [PubMed]
- Puls, J.; Wilson, S.A.; Hölter, D. Degradation of Cellulose Acetate-Based Materials: A Review. J. Polym. Environ. 2011, 19, 152–165. [Google Scholar] [CrossRef]
- Culica, M.E.; Chibac-Scutaru, A.L.; Melinte, V.; Coseri, S. Cellulose Acetate Incorporating Organically Functionalized CeO2 NPs: Efficient Materials for UV Filtering Applications. Materials 2020, 13, 2955. [Google Scholar] [CrossRef]
- Vieira, C.O.; Grice, J.E.; Roberts, M.S.; Haridass, I.N.; Duque, M.D.; Lopes, P.S.; Leite-Silva, V.R.; Martins, T.S. ZnO: SBA-15 Nanocomposites for Potential Use in Sunscreen: Preparation, Properties, Human Skin Penetration and Toxicity. Skin Pharmacol. Physiol. 2019, 32, 32–42. [Google Scholar] [CrossRef]
- Shi, L.; Shan, J.; Ju, Y.; Aikens, P.; Prud’homme, R.K. Nanoparticles as delivery vehicles for sunscreen agents. Colloids Surf. A 2012, 396, 122–129. [Google Scholar] [CrossRef]
- Kim, M.; Hyun, J.M.; Kim, S.S.; Seong, K.C.; Lim, C.K.; Kang, J.L.; Hyun, J.A.; Kyo, S.P.; Young, H.C.; Nam, H.L.; et al. In vitro screening of subtropical plants cultivated in Jeju Island for cosmetic ingredients. Orient. J. Chem. 2016, 32, 807–815. [Google Scholar] [CrossRef]
- Lee, J.H.; Renita, M.; Fioritto, R.J.; St. Martin, S.K.; Schwartz, S.J.; Vodovotz, Y. Isoflavone characterization and antioxidant activity of Ohio soybeans. J. Agric. Food Chem. 2004, 52, 2647–2651. [Google Scholar] [CrossRef]
- Ko, E.Y.; Kim, D.K.; Roh, S.W.; Yoon, W.J.; Jeon, Y.J.; Ahn, G.; Kim, N.K. Evaluation on antioxidant properties of sixteen plant species from Jeju Island in Korea. EXCLI J. 2015, 14, 133–145. [Google Scholar]
- Heo, S.J.; Park, E.J.; Lee, K.W.; Jeon, Y.J. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour. Technol. 2005, 96, 1613–1623. [Google Scholar] [CrossRef]
- Kim, M.J.; Park, M.H.; Jeong, M.K.; Yeo, J.D.; Cho, W.I.; Chang, P.S.; Chung, J.H.; Lee, J.H. Radical scavenging activity and anti-obesity effects in 3T3-L1 preadipocyte differentiation of Ssuk (Artemisia princeps Pamp.) extract. Food Sci. Biotechnol. 2010, 19, 535–540. [Google Scholar] [CrossRef]
- Jutiviboonsuk, A.; Leeprechanon, W. Stability of Mangiferin in Lotion and its Antioxidant Activity. Key Eng. Mat. 2019, 819, 79–84. [Google Scholar] [CrossRef]
- Shamsuddin, A.M.; Sekar, M.; Musa, A.Z. Formulation and evaluation of antiaging cream containing mangiferin. Int. Res. J. Pharm. 2018, 9, 55–59. [Google Scholar] [CrossRef]
- Mu, L.; Sprando, R.L. Application of nanotechnology in cosmetics. Pharm. Res. 2010, 27, 1746–1749. [Google Scholar] [CrossRef] [PubMed]
- Samadarsi, R.; Dutta, D. Design and characterization of mangiferin nanoparticles for oral delivery. J. Food Eng. 2019, 247, 80–94. [Google Scholar] [CrossRef]
- Sokolsky-Papkov, M.; Agashi, K.; Olaye, A.; Shakesheff, K.; Domb, A.J. Polymer carriers for drug delivery in tissue engineering. Adv. Drug Deli. Rev. 2007, 59, 187–206. [Google Scholar] [CrossRef]
- Freiberg, S.; Zhu, X. Polymer microspheres for controlled drug release. Int. J. Pharm. 2004, 282, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Avo, S.L.; Wood, R.E. Porcine skin as an in-vivo model for ageing of human bite marks. J. Forensic Odonto-Stomatol. 2005, 9, 30–38. [Google Scholar]
No. | Composition | Quantity (%w/w) | Function | |
---|---|---|---|---|
F1 | F2 | |||
1 | Butylene glycol | 5.00 | 5.00 | Humectant |
2 | Carbopol® ultraz 21 | 1.50 | 1.50 | Gelling agent |
3 | Spectrastat BHL | 1.00 | 1.00 | Preservative |
4 | Triethanolamine | 0.35 | 0.35 | pH adjuster |
5 | PM | 0.20 | - | Active ingredient |
6 | MNPs | - | 0.20 | Active ingredient |
7 | Sodium metabisulfite | 0.10 | 0.10 | Preservative |
8 | di-Sodium EDTA | 0.10 | 0.10 | Chelating agent |
9 | Purified water | 91.75 | 91.75 | Solvent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chomchoei, N.; Leelapornpisid, P.; Tipduangta, P.; Sirithunyalug, J.; Sirithunyalug, B.; Samutrtai, P. Electrospray-Mangiferin Nanoparticles Gel: A Promising Agent for Sun and Age Defense. Cosmetics 2024, 11, 93. https://doi.org/10.3390/cosmetics11030093
Chomchoei N, Leelapornpisid P, Tipduangta P, Sirithunyalug J, Sirithunyalug B, Samutrtai P. Electrospray-Mangiferin Nanoparticles Gel: A Promising Agent for Sun and Age Defense. Cosmetics. 2024; 11(3):93. https://doi.org/10.3390/cosmetics11030093
Chicago/Turabian StyleChomchoei, Neungreuthai, Pimporn Leelapornpisid, Pratchaya Tipduangta, Jakkapan Sirithunyalug, Busaban Sirithunyalug, and Pawitrabhorn Samutrtai. 2024. "Electrospray-Mangiferin Nanoparticles Gel: A Promising Agent for Sun and Age Defense" Cosmetics 11, no. 3: 93. https://doi.org/10.3390/cosmetics11030093
APA StyleChomchoei, N., Leelapornpisid, P., Tipduangta, P., Sirithunyalug, J., Sirithunyalug, B., & Samutrtai, P. (2024). Electrospray-Mangiferin Nanoparticles Gel: A Promising Agent for Sun and Age Defense. Cosmetics, 11(3), 93. https://doi.org/10.3390/cosmetics11030093