Chemical Profile and Antioxidant and Tyrosinase Inhibitory Activity of Chamaemelum nobile L. Green Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagent and Solvents
2.2. Sample Preparation
2.3. Extraction Methods, Conventional and Non-Conventional Extraction Techniques
2.4. UPLC-HRMSMS Analysis
2.5. Multivariate Data Analysis of LC-MS Data
2.6. Total Phenolic Content, TEAC and DPPH Assays
2.7. Cell Culture
2.8. DHR 123 Probe—Intracellular ROS Assay
2.9. Statistical Analysis of Data
2.10. Tyrosinase Inhibition Assay
2.11. LC-ESI/QTrap/MS/MS Analysis
3. Results and Discussion
3.1. Metabolite Fingerprint of C. nobile “Green Extracts” by UPLC-HRMSMS Analysis
3.2. Multivariate Statistical Analysis of LC-ESI/QExactive/MS/MS Profiles
3.3. Evaluation of Total Phenolics Content of C. nobile
3.4. Evaluation of the Antioxidant Activity of C. nobile
3.5. Effect of Extracts and Apigenin on ROS Production
3.6. Evaluation of the Lightening Activity of C. nobile
3.7. Quantitative Analysis of Apigenin ()
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Salamon, I. The Slovak gene pool of German chamomile (Matricaria recutita L.) and comparison in its parameters. Hortic. Sci. 2004, 31, 70–75. [Google Scholar] [CrossRef]
- Dai, Y.-L.; Li, Y.; Wang, Q.; Niu, F.-J.; Li, K.-W.; Wang, Y.-Y.; Wang, J.; Zhou, C.-Z.; Gao, L.-N. Chamomile: A Review of Its Traditional Uses, Chemical Constituents, Pharmacological Activities and Quality Control Studies. Molecules 2023, 28, 133. [Google Scholar] [CrossRef] [PubMed]
- Sah, A.; Naseef, P.P.; Kuruniyan, M.S.; Jain, G.K.; Zakir, F.; Aggarwal, G. A Comprehensive Study of Therapeutic Applications of Chamomile. Pharmaceuticals 2022, 15, 1284. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, J.K.; Gupta, S. Chapter 18—Chamomile: A Herbal Agent for Treatment of Diseases of the Elderly. In Foods and Dietary Supplements in the Prevention and Treatment of Disease in Older Adults; Watson, R.R., Ed.; Academic Press: San Diego, CA, USA, 2015; pp. 171–183. [Google Scholar] [CrossRef]
- Dini, I.; Laneri, S. The New Challenge of Green Cosmetics: Natural Food Ingredients for Cosmetic Formulations. Molecules 2021, 26, 3921. [Google Scholar] [CrossRef] [PubMed]
- Al-Snafi, A. Medical importance of Anthemis nobilis (Chamaemelum nobile). Asian J. Pharm. Sci. Technol. 2016, 6, 89–95. [Google Scholar]
- Makhamrueang, N.; Raiwa, A.; Jiaranaikulwanitch, J.; Kaewarsar, E.; Butrungrod, W.; Sirilun, S. Beneficial Bio-Extract of Camellia sinensis var. assamica Fermented with a Combination of Probiotics as a Potential Ingredient for Skin Care. Cosmetics 2023, 10, 85. [Google Scholar]
- Tacherfiout, M.; Kherbachi, S.; Kheniche, M.; Mattonai, M.; Degano, I.; Ribechini, E.; Khettal, B. HPLC-DAD and HPLC-ESI-MS-MS profiles of hydroalcoholic extracts of Chamaemelum nobile and Mentha pulegium, and study of their antihemolytic activity against AAPH-induced hemolysis. S. Afr. J. Bot. 2022, 150, 678–690. [Google Scholar] [CrossRef]
- Hoang, H.T.; Moon, J.-Y.; Lee, Y.-C. Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. Cosmetics 2021, 8, 106. [Google Scholar] [CrossRef]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef] [PubMed]
- Cvetanović, A.; Švarc-Gajić, J.; Zeković, Z.; Jerković, J.; Zengin, G.; Gašić, U.; Tešić, Ž.; Mašković, P.; Soares, C.; Fatima Barroso, M.; et al. The influence of the extraction temperature on polyphenolic profiles and bioactivity of chamomile (Matricaria chamomilla L.) subcritical water extracts. Food Chem. 2019, 271, 328–337. [Google Scholar] [CrossRef]
- Cerulli, A.; Masullo, M.; Montoro, P.; Hošek, J.; Pizza, C.; Piacente, S. Metabolite profiling of “green” extracts of Corylus avellana leaves by (1)H NMR spectroscopy and multivariate statistical analysis. J. Pharm. Biomed. Anal. 2018, 160, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Cerulli, A.; Masullo, M.; Piacente, S. Metabolite Profiling of Helichrysum italicum Derived Food Supplements by H-NMR-Based Metabolomics. Molecules 2021, 26, 6619. [Google Scholar] [CrossRef] [PubMed]
- Cerulli, A.; Masullo, M.; Pizza, C.; Piacente, S. Metabolite Profiling of “Green” Extracts of Cynara cardunculus subsp. scolymus, Cultivar “Carciofo di Paestum” PGI by (1)H NMR and HRMS-Based Metabolomics. Molecules 2022, 27, 3328. [Google Scholar] [CrossRef] [PubMed]
- Masullo, M.; Cerulli, A.; Mari, A.; de Souza Santos, C.C.; Pizza, C.; Piacente, S. LC-MS profiling highlights hazelnut (Nocciola di Giffoni PGI) shells as a byproduct rich in antioxidant phenolics. Food Res. Int. 2017, 101, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, M. Concerns in the application of fluorescent probes DCDHF-DA, DHR 123 and DHE to measure reactive oxygen species in vitro. In Vitro Toxicol. 2015, 30, 578–582. [Google Scholar] [CrossRef]
- Oh, K.E.; Shin, H.; Lee, M.K.; Park, B.; Lee, K.Y. Characterization and Optimization of the Tyrosinase Inhibitory Activity of Vitis amurensis Root Using LC-Q-TOF-MS Coupled with a Bioassay and Response Surface Methodology. Molecules 2021, 26, 446. [Google Scholar] [CrossRef]
- dos Santos, D.S.; Barreto, R.d.S.S.; Serafini, M.R.; Gouveia, D.N.; Marques, R.S.; Nascimento, L.d.C.; Nascimento, J.d.C.; Guimarães, A.G. Phytomedicines containing Matricaria species for the treatment of skin diseases: A biotechnological approach. Fitoterapia 2019, 138, 104267. [Google Scholar] [CrossRef]
- Tschan, G.M.; König, G.M.; Wright, A.D.; Sticher, O. Chamaemeloside, a new flavonoid glycoside from Chamaemelum nobile. Phytochemistry 1996, 41, 643–646. [Google Scholar] [CrossRef]
- Guimarães, R.; Barros, L.; Dueñas, M.; Calhelha, R.C.; Carvalho, A.M.; Santos-Buelga, C.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. Nutrients, phytochemicals and bioactivity of wild Roman chamomile: A comparison between the herb and its preparations. Food Chem. 2013, 136, 718–725. [Google Scholar] [CrossRef]
- Li, Q.; Abdulla, R.; Xin, X.; Xue, G.; Kang, X.; Zhao, F.; Asia, H.A. Profiling of chemical constituents of Matricarla chamomilla L. by UHPLC-Q-Orbitrap-HRMS and in vivo evaluation its anti-asthmatic activity. Heliyon 2023, 9, e15470. [Google Scholar] [CrossRef]
- De Mieri, M.; Monteleone, G.; Ismajili, I.; Kaiser, M.; Hamburger, M. Antiprotozoal Activity-Based Profiling of a Dichloromethane Extract from Anthemis nobilis Flowers. J. Nat. Prod. 2017, 80, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.; Goeters, S.; Watzer, B.; Krause, E.; Lohmann, K.; Bauer, R.; Hempel, B.; Imming, P. Chamazulene Carboxylic Acid and Matricin: A Natural Profen and Its Natural Prodrug, Identified through Similarity to Synthetic Drug Substances. J. Nat. Prod. 2006, 69, 1041–1045. [Google Scholar] [CrossRef]
- Salapovic, H.; Geier, J.; Reznicek, G. Quantification of Sesquiterpene Lactones in Asteraceae Plant Extracts: Evaluation of their Allergenic Potential. Sci. Pharm. 2013, 81, 807–818. [Google Scholar] [CrossRef]
- Tschiggerl, C.; Bucar, F. Guaianolides and Volatile Compounds in Chamomile Tea. Plant Foods Hum. Nutr. 2012, 67, 129–135. [Google Scholar] [CrossRef]
- Čižmárová, B.; Hubková, B.; Tomečková, V.; Birková, A. Flavonoids as Promising Natural Compounds in the Prevention and Treatment of Selected Skin Diseases. Int. J. Mol. Sci. 2023, 24, 6324. [Google Scholar] [CrossRef]
- Md Jaffri, J. Reactive Oxygen Species and Antioxidant System in Selected Skin Disorders. Malays. J. Med. Sci. 2023, 30, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Araviiskaia, E.; Berardesca, E.; Bieber, T.; Gontijo, G.; Sanchez Viera, M.; Marrot, L.; Chuberre, B.; Dreno, B. The impact of airborne pollution on skin. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 1496–1505. [Google Scholar] [CrossRef]
- Österlund, C.; Hrapovic, N.; Lafon-Kolb, V.; Amini, N.; Smiljanic, S.; Visdal-Johnsen, L. Protective Effects of Naringenin against UVB Irradiation and Air Pollution-Induced Skin Aging and Pigmentation. Cosmetics 2023, 10, 88. [Google Scholar] [CrossRef]
- Merah, O. Special Issue “Anti-Oxidant and Anti-Inflammatory Properties of Natural Compounds”. Cosmetics 2023, 10, 80. [Google Scholar] [CrossRef]
- Wilson, V.G. Growth and differentiation of HaCaT keratinocytes. Methods Mol. Biol. 2014, 1195, 33–41. [Google Scholar] [CrossRef]
- Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef]
- Thawabteh, A.M.; Jibreen, A.; Karaman, D.; Thawabteh, A.; Karaman, R. Skin Pigmentation Types, Causes and Treatment-A Review. Molecules 2023, 28, 4839. [Google Scholar] [CrossRef]
- Yaméogo, B.G.J.; Ilboudo, L.S.B.A.; Ouédraogo, N.A.; Belem, M.; Nikiema, O.; Goumbri, B.W.; Sombié, B.C.; Zimé-Diawara, H.; Kabré, E.; Semdé, R. Analysis of Depigmenting Substances of Interest (Hydroquinone, Kojic Acid, and Clobetasol Propionate) Contained in Lightening Cosmetic Products Marketed in Burkina Faso. Cosmetics 2023, 10, 154. [Google Scholar] [CrossRef]
- Cerulli, A.; Masullo, M.; Mari, A.; Balato, A.; Filosa, R.; Lembo, S.; Napolitano, A.; Piacente, S. Phenolics from Castanea sativa leaves and their effects on UVB-induced damage. Nat. Prod. Res. 2018, 32, 1170–1175. [Google Scholar] [CrossRef]
- Fabre, N.; Rustan, I.; de Hoffmann, E.; Quetin-Leclercq, J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 707–715. [Google Scholar] [CrossRef]
Rt | [M + H]+ | [M + Na]+ | Mol Formula | Δppm | MS/MS | Name | |
---|---|---|---|---|---|---|---|
1 | 9.86 | 595.1652 | C27H30O15 | −0.98 | 287.0550 (C15H11O6), 449.1061 (C21H21O11) | Luteolin-O-rutinoside | |
2 | 10.78 | 433.1128 | C21H20O10 | −0.37 | 271.0599(C15H11O5) | Apigenin-O-hexoside | |
3 | 11.45 | 477.1026 | C22H20O12 | −0.38 | 301.0704 (C16H13O6), 286.0470 (C15H10O6) | Bracteoside | |
4 | 11.56 | 493.1334 | C23H24O12 | −1.28 | 331.080 (C17H15O7), 316.0577 (C16H12O7) | 5,7-dimethyl quercetin -O-hexoside | |
5 | 11.80 | 577.1536 | C27H28O14 | −2.81 | 271.0597 (C15H11O5) | Chamaemeloside | |
6 | 13.11 | 317.0650 | C16H12O7 | −1.92 | 302.0420(C15H10O7) | Isorhamnetin | |
7 | 13.83 | 263.1276 | C15H18O4 | −0.85 | 245.1171 (C15H17O3), 227.1067 (C15H15O2) | Helenalin | |
8 | 13.92 | 345.1693 | C20H24O5 | −1.07 | 245.1171 (C15H17O3), 227.1067 (C15H15O2) | Guaianonobilin | |
9 | 14.20 | 385.1616 | C20H26O6 | −0.57 | 303.1209 (C15H20O5Na), 285.1098 (C15H18O4Na) | 8-tigloylhydroxyisonobilin | |
10 | 14.52 | 271.0595 | C15H10O5 | −2.28 | 119.0492 (C8H7O) | Apigenin | |
11 | 15.29 | 301.0702 | C16H12O6 | −1.47 | 286.0472 (C15H10O6) | Hispidulin | |
12 | 15.38 | 331.0809 | C17H14O7 | −1.35 | 316.0575 (C16H12O7), 303.0512 (C15H11O7) | 5,7-dimethyl quercetin | |
13 | 16.64 | 385.1616 | C20H26O6 | −0.57 | 303.1209 (C15H20O5Na), 285.1098 (C15H18O4Na) | Hydroxyisonobilin | |
14 | 17.49 | 383.1459 | C20H24O6 | 283.0945 (C15H16O4Na), 239.1050 (C14H16O2Na) | Nobilinon A/B/C | ||
15 | 17.90 | 369.1671 | C20H26O5 | −0.28 | 269.1140 (C15H18O3Na), 251.1039 (C15H16O2Na) | Nobilin | |
16 | 18.25 | 316.2838 | C18H37O3N | −2.65 | 280.2634 (C18H34ON), 262.2528 (C18H32N) | Myristic diethanolamide | |
17 | 18.70 | 227.1064 | C15H14O2 | −0.99 | 199.1119 (C14H15O), 181.1010 (C14H13) | 3-Flavanol | |
18 | 18.95 | 315.0862 | C17H14O6 | −0.33 | 300.0627 (C16H12O6) | Kumatakenin | |
19 | 19.28 | 247.1326 | C15H18O3 | −1.05 | 229.1221 (C15H17O2), 201.1274 (C14H17O) | Achillin | |
20 | 19.42 | 211.1118 | C15H14O | −0.71 | 196.0884 (C14H12O), 193.1013 (C15H13), 183.1168 (C14H15) | Linderazulene | |
21 | 20.64 | 229.1219 | C15H16O2 | −1.82 | 227.1064(C15H15O2), 199.1117(C14H15O) | Chamazulene carboxylic acid isomer | |
22 | 20.98 | 229.1218 | C15H16O2 | −1.81 | 211.1116 (C15H15O), 183.1167 (C14H15), 157.1010 (C12H13), 143.0854 (C11H11) | Chamazulene carboxylic acid | |
23 | 21.27 | 353.2677 | C21H36O4 | −2.56 | 261.2212 (C18H29O), 92.0911 (C3H8O3) | Linolenoylglycerol | |
24 | 21.65 | 353.2676 | C21H36O4 | −2.82 | 261.2209 (C18H29O) | Linolenoylglycerol isomer | |
25 | 22.10 | 293.2109 | C18H28O3 | −0.92 | 219.1381 (C14H19O2) | Oxo-octadecatrienoic acid | |
26 | 23.00 | 359.2186 | C20H32O4 | −1.89 | 273.1453 (C15H22O3Na), 259.1668 (C15H24O2Na) | Dihydroxy-eicosatetraenoic acid | |
27 | 24.16 | 231.1377 | C15H18O2 | −1.84 | 213.1272 (C15H17O), 195.1170 (C15H15), 159.1167 (C12H15) | Dehydrocostus lactone | |
28 | 24.39 | 231.1375 | C15H18O2 | −2.10 | 213.1273 (C15H17O), 185.1325 (C14H17), 159.1167 (C12H15) | Dehydrocostus lactone isomer | |
29 | 29.28 | 282.2785 | C18H35ON | −2.27 | 265.2520 (C18H33O), 247.2420 (C18H31) | Oleamide | |
30 | 30.56 | 593.2745 | C27H45O12P | 3.94 | 413.2088(C21H34O6P), 277.2161 (C18H29O2) | Polar fatty acid | |
31 | 33.28 | 637.3007 | C29H49O12P | 3.57 | 441.2402 (C23H38O6P), 305.2475 (C20H33O2) | Polar fatty acid | |
32 | 34.24 | 338.3416 | C22H43ON | −0.56 | 321.3149 (C22H41O), 303.3046 (C22H39) | Erucamide |
Extracts | UAE | NAV | MAC 21days | MAC |
---|---|---|---|---|
EtOH/H2O 50% | 1.50 ± 0.02 | 4.86 ± 0.29 | 4.78 ± 0.31 | 3.12 ± 0.18 |
EtOH/H2O 60% | 1.22 ± 0.03 | 2.98 ± 0.12 | 2.22 ± 0.23 | 3.62 ± 0.24 |
EtOH/H2O 75% | 1.01 ± 0.91 | 2.66 ± 0.18 | 2.10 ± 0.12 | 0.23 ± 0.03 |
EtOH 100% | 0.20 ± 0.14 | 2.31 ± 0.23 | 0.23 ± 0.11 | 0.33 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polcaro, L.M.; Cerulli, A.; Montella, F.; Ciaglia, E.; Masullo, M.; Piacente, S. Chemical Profile and Antioxidant and Tyrosinase Inhibitory Activity of Chamaemelum nobile L. Green Extracts. Cosmetics 2024, 11, 94. https://doi.org/10.3390/cosmetics11030094
Polcaro LM, Cerulli A, Montella F, Ciaglia E, Masullo M, Piacente S. Chemical Profile and Antioxidant and Tyrosinase Inhibitory Activity of Chamaemelum nobile L. Green Extracts. Cosmetics. 2024; 11(3):94. https://doi.org/10.3390/cosmetics11030094
Chicago/Turabian StylePolcaro, Luciana Maria, Antonietta Cerulli, Francesco Montella, Elena Ciaglia, Milena Masullo, and Sonia Piacente. 2024. "Chemical Profile and Antioxidant and Tyrosinase Inhibitory Activity of Chamaemelum nobile L. Green Extracts" Cosmetics 11, no. 3: 94. https://doi.org/10.3390/cosmetics11030094
APA StylePolcaro, L. M., Cerulli, A., Montella, F., Ciaglia, E., Masullo, M., & Piacente, S. (2024). Chemical Profile and Antioxidant and Tyrosinase Inhibitory Activity of Chamaemelum nobile L. Green Extracts. Cosmetics, 11(3), 94. https://doi.org/10.3390/cosmetics11030094