Plant Essential Oil Nanoemulgel as a Cosmeceutical Ingredient: A Review
Abstract
:1. Introduction
2. Methodology
3. Essential Oils
3.1. Extraction Methods for Essential Oils
3.1.1. Steam Distillation
3.1.2. Hydrodistillation
3.1.3. Cold Pressing
3.1.4. Other Extraction Methods
3.2. Strengths and Drawbacks of EOs
4. Fabrication of EO Nanoemulgel
4.1. First Stage: Nanoemulsion Preparation
4.1.1. Low-Energy Methods
4.1.2. High-Energy Methods
4.2. Second Stage: Gelation of Nanoemulsion
5. Factors Affecting the Preparation of EO Nanoemulgel
5.1. Surfactants and Co-Surfactants
5.2. Choice of Gelling Agent
6. Characterization of EO Nanoemulgels
7. Potential Cosmeceutical Application of EO Nanoemulgels
7.1. Anti-Inflammatory Properties
7.2. Antimicrobial Properties
7.3. Antioxidant Properties
7.4. Penetration Enhancer
8. Future Prospects of EO Nanoemulgels
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guzmán, E.; Lucia, A. Essential Oils and Their Individual Components in Cosmetic Products. Cosmetics 2021, 8, 114. [Google Scholar] [CrossRef]
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef] [PubMed]
- Pulidindi, K.; Ahuja, K. Essential Oils Market Size by Product (Orange Oil, Lemon Oil, Eucalyptus Oil, Clove Oil, Peppermint Oil, Jasmine Oil, Rosemary Oil, Corn Mint Oil, Citronella Oil, Geranium Oil, Spearmint Oil, Lavender Oil, Tea Tree Oil), Application & Forecast 2023–2032. 2023. Available online: https://www.gminsights.com/industry-analysis/essential-oil-market (accessed on 27 May 2024).
- Sethunga, M.; Ranaweera, K.; Gunathilake, K.; Munaweera, I. Recent Advances in the Extraction Methods of Essential Oils and Oleoresins from Plant Materials and its Potential Applications: A Comprehensive Review. J. Food Bioprocess Eng. 2022, 5, 151–167. [Google Scholar] [CrossRef]
- Paul, S.; Hmar, E.B.; Zothantluanga, J.H.; Sharma, H.K. Essential Oils: A Review on Their Salient Biological Activities and Major Delivery Strategies. Sci. Vis. 2020, 20, 54–71. [Google Scholar] [CrossRef]
- Scuteri, D.; Rombolà, L.; Crudo, M.; Watanabe, C.; Mizoguchi, H.; Sakurada, S.; Hamamura, K.; Sakurada, T.; Morrone, L.A.; Tonin, P.; et al. Translational Value of the Transdermal Administration of Bergamot Essential Oil and of Its Fractions. Pharmaceutics 2022, 14, 1006. [Google Scholar] [CrossRef]
- Radu, C.M.; Radu, C.C.; Bochiș, S.A.; Arbănași, E.M.; Lucan, A.I.; Murvai, V.R.; Zaha, D.C. Revisiting the Therapeutic Effects of Essential Oils on the Oral Microbiome. Pharmacy 2023, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Barradas, T.N.; de Holanda e Silva, K.G. Nanoemulsions of Essential Oils to Improve Solubility, Stability and Permeability: A Review. Environ Chem Lett 2021, 19, 1153–1171. [Google Scholar] [CrossRef]
- Sindle, A.; Martin, K. Art of Prevention: Essential Oils—Natural Products Not Necessarily Safe. Int. J. Women’s Dermatol. 2020, 7, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Niakousari, M.; Damyeh, M.S.; Gahruie, H.H.; Bekhit, A.E.D.A.; Greiner, R.; Roohinejad, S. Conventional emulsions. In Emulsion-Based Systems for Delivery of Food Active Compounds: Formation, Application, Health and Safety; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 1–27. [Google Scholar] [CrossRef]
- Aswathanarayan, J.B.; Vittal, R.R. Nanoemulsions and Their Potential Applications in Food Industry. Front. Sustain. Food Syst. 2019, 3, 95. [Google Scholar] [CrossRef]
- Kumar, M.; Mandal, U.K.; Mahmood, S. Novel Drug Delivery System. In Advanced and Modern Approaches for Drug Delivery; Academic Press: Cambridge, MA, USA, 2023; pp. 1–32. [Google Scholar] [CrossRef]
- Mushtaq, A.; Mohd Wani, S.; Malik, A.R.; Gull, A.; Ramniwas, S.; Ahmad Nayik, G.; Ercisli, S.; Alina Marc, R.; Ullah, R.; Bari, A. Recent Insights into Nanoemulsions: Their Preparation, Properties and Applications. Food Chem. X 2023, 18, 100684. [Google Scholar] [CrossRef]
- Mehanna, M.M.; Abla, K.K.; Elmaradny, H.A. Tailored Limonene-Based Nanosized Microemulsion: Formulation, Physicochemical Characterization and In Vivo Skin Irritation Assessment. Adv. Pharm. Bull. 2021, 11, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Donthi, M.R.; Munnangi, S.R.; Krishna, K.V.; Saha, R.N.; Singhvi, G.; Dubey, S.K. Nanoemulgel: A Novel Nano Carrier as a Tool for Topical Drug Delivery. Pharmaceutics 2023, 15, 164. [Google Scholar] [CrossRef] [PubMed]
- Eid, A.M.; Istateyeh, I.; Salhi, N.; Istateyeh, T. Antibacterial Activity of Fusidic Acid and Sodium Fusidate Nanoparticles Incorporated in Pine Oil Nanoemulgel. Int. J. Nanomed 2019, 14, 9411–9421. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, D.P.; Damasceno, R.O.S.; Amorati, R.; Elshabrawy, H.A.; de Castro, R.D.; Bezerra, D.P.; Nunes, V.R.V.; Gomes, R.C.; Lima, T.C. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules 2023, 13, 1144. [Google Scholar] [CrossRef] [PubMed]
- Fokou, J.B.H.; Dongmo, P.M.J.; Boyom, F.F. Essential Oils—Oils of Nature; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Souiy, Z. Essential Oils—Recent Advances, New Perspectives and Applications; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Kapadia, P.; Newell, A.S.; Cunningham, J.; Roberts, M.R.; Hardy, J.G. Extraction of High-Value Chemicals from Plants for Technical and Medical Applications. Int. J. Mol. Sci. 2022, 23, 10334. [Google Scholar] [CrossRef] [PubMed]
- Machado, C.A.; Oliveira, F.O.; de Andrade, M.A.; Hodel, K.V.S.; Lepikson, H.; Machado, B.A.S. Steam Distillation for Essential Oil Extraction: An Evaluation of Technological Advances Based on an Analysis of Patent Documents. Sustainability 2022, 14, 7119. [Google Scholar] [CrossRef]
- Tan, C.X. Virgin Avocado Oil: An Emerging Source of Functional Fruit Oil. J. Funct. Foods 2019, 54, 381–392. [Google Scholar] [CrossRef]
- Kabutey, A.; Herák, D.; Mizera, Č. Assessment of Quality and Efficiency of Cold-Pressed Oil from Selected Oilseeds. Foods 2023, 12, 3636. [Google Scholar] [CrossRef]
- Majid, I.; Khan, S.; Aladel, A.; Dar, A.H.; Adnan, M.; Khan, M.I.; Awadelkareem, A.M.; Ashraf, S.A. Recent Insights into Green Extraction Techniques as Efficient Methods for the Extraction of Bioactive Components and Essential Oils from Foods. CyTA—J. Food 2023, 21, 101–114. [Google Scholar] [CrossRef]
- Durczyńska, Z.; Żukowska, G. Properties and Applications of Essential Oils: A Review. J. Ecol. Eng. 2024, 25, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Angane, M.; Swift, S.; Huang, K.; Perera, J.; Chen, X.; Butts, C.A.; Quek, S.Y. Synergistic Antimicrobial Interaction of Plant Essential Oils and Extracts Against Foodborne Pathogens. Food Sci. Nutr. 2024, 12, 1189–1206. [Google Scholar] [CrossRef] [PubMed]
- Anholeto, L.A.; Blanchard, S.; Wang, H.V.; Chagas, A.C.; Hillier, N.; Faraone, N. In Vitro Acaricidal Activity of Essential Oils and their Binary Mixtures Against Ixodes scapularis (Acari: Ixodidae). Ticks Tick-Borne Dis. 2024, 15, 102309. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.A.; Alotaibi, B.M. Essential Oils of some Medicinal Plants and their Biological Activities: A Mini Review. J. Umm Al-Qura Univ. Appl. Sci. 2023, 9, 40–49. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Satyal, P.; Setzer, W.N. Authentication of Citrus s Cold-Pressed Essential Oils by Their Oxygenated Heterocyclic Components. Molecules 2022, 27, 6277. [Google Scholar] [CrossRef] [PubMed]
- Barbaud, A.; Kurihara, F.; Raison-Peyron, N.; Milpied, B.; Valois, A.; Assier, H.; Morice, C.; Manciet, J.R.; Gener, G.; Giordano-Labadie, F.; et al. Allergic Contact Dermatitis from Essential Oil in Consumer Products: Mode of Uses and Value of Patch Tests with an Essential Oil Series. Results of a French study of the DAG (Dermato-Allergology group of the French Society of Dermatology). Contact Dermat. 2023, 89, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Eid, A.M.; Jaradat, N.; Issa, L.; Abu-Hasan, A.; Salah, N.; Dalal, M.; Mousa, A.; Zarour, A. Evaluation of Anticancer, Antimicrobial, and Antioxidant Activities of Rosemary (Rosmarinus Officinalis) Essential Oil and its Nanoemulgel. Eur. J. Integr. Med. 2022, 55, 102175. [Google Scholar] [CrossRef]
- Anand, K.; Ray, S.; Rahman, M.; Shaharyar, A.; Bhowmik, R.; Bera, R.; Karmakar, S. Nano-emulgel: Emerging as a Smarter Topical Lipidic Emulsion-based Nanocarrier for Skin Healthcare Applications. Recent Pat. Anti-Infect. Drug Discov. 2019, 14, 16–35. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Bishnoi, R.S.; Shukla, A.K.; Jain, C.P. Techniques for Formulation of Nanoemulsion Drug Delivery System: A Review. Prev. Nutr. Food Sci. 2019, 24, 225. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Darkwa, J.; Kokogiannakis, G. Review of Phase Change Emulsions (PCMEs) and Their Applications in HVAC Systems. Energy Build. 2015, 94, 200–217. [Google Scholar] [CrossRef]
- Sneha, K.; Kumar, A. Nanoemulsions: Techniques for the Preparation and the Recent Advances in their Food Applications. Innov. Food Sci. Emerg. Technol. 2022, 76, 102914. [Google Scholar] [CrossRef]
- Tadros, T.F. Chapter 9: Low Energy Methods for Preparation of Nanoemulsions and Practical Examples of Nanoemulsions in Nanodispersions; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2016. [Google Scholar] [CrossRef]
- Md, S.; Alhakamy, N.A.; Aldawsari, H.M.; Kotta, S.; Ahmad, J.; Akhter, S.; Alam, M.S.; Khan, M.A.; Awan, Z.; Sivakumar, P.M. Improved Analgesic and Anti-Inflammatory Effect of Diclofenac Sodium by Topical Nanoemulgel: Formulation Development—In Vitro and In Vivo Studies. J. Chem. 2020, 2020, 4071818. [Google Scholar] [CrossRef]
- Tan, C.X.; Gun Hean, C.; Hamzah, H.; Ghazali, H.M. Optimization of Ultrasound-assisted Aqueous Extraction to Produce Virgin Avocado Oil with Low Free Fatty Acids. J. Food Process Eng. 2018, 41, e12656. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, X.; Zhang, J.; Li, Z.; Kang, W.; He, H.; Wu, Z.; Dong, Z. Nanoemulsification of Soybean Oil Using Ultrasonic Microreactor: Process Optimization, Scale-up and Numbering-up in Series. Ultrasonics Sonochemistry 2023, 97, 106451. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Huang, H.; Chen, H.; Lin, J.; Wang, Q. Food-grade Nanoemulsions: Preparation, Stability and Application in Encapsulation of Bioactive Compounds. Molecules 2019, 24, 4242. [Google Scholar] [CrossRef] [PubMed]
- Banasaz, S.; Morozova, K.; Ferrentino, G.; Scampicchio, M. The Effect of Microfluidization Pressure and Tocopherol Content on the Retention of Vitamin A in Oil-In-Water Emulsions. Foods 2021, 10, 504. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Qin, D.; Vu, G.; McClements, D.J. Impact of Operating Parameters on the Production of Nanoemulsions Using a High-Pressure Homogenizer with Flow Pattern and Back Pressure Control. Colloids Interfaces 2023, 7, 21. [Google Scholar] [CrossRef]
- de Sousa, I.F.; Rebouças, L.M.; de Goes Sampaio, C.; Pontes Silva Ricardo, N.M.; Alves Santos, E.M.; da Silva, A.L.F. Nanoemulgel Based on Guar Gum and Pluronic® F127 Containing Encapsulated Hesperidin with Antioxidant Potential. J. Appl. Pharm. Sci. Res. 2022, 5, 28–32. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, H.; Han, Y.; Cui, Y.; Han, X. Study on the Relationships between the Oil HLB Value and Emulsion Stabilization. RSC Adv. 2023, 13, 24692–24698. [Google Scholar] [CrossRef] [PubMed]
- Cui, N.; Dai, C.Y.; Mao, X.; Lv, X.; Gu, Y.; Lee, E.S.; Jiang, H.B.; Sun, Y. Poloxamer-Based Scaffolds for Tissue Engineering Applications: A Review. Gels 2022, 8, 360. [Google Scholar] [CrossRef] [PubMed]
- Azeem, A.; Rizwan, M.; Ahmad, F.J.; Iqba, L.Z.; Khar, R.K.; Aqil, M.; Talegaonkar, S. Nanoemulsion Components Screening and Selection: A Technical Note. AAPS PharmSciTech 2009, 10, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ge, D.; Wang, X.; Wang, W.; Cui, D.; Yuan, G.; Wang, K.; Zhang, W. Influence of Surfactant and Weak-Alkali Concentrations on the Stability of O/W Emulsion in an Alkali-Surfactant-Polymer Compound System. ACS Omega 2021, 6, 5001–5008. [Google Scholar] [CrossRef] [PubMed]
- Iskandar, N.; Mei, H.C.; Liu, T.W.; Lin, H.M.; Lee, C.K. Evaluating the Effects of Surfactant Types on the Properties and Stability of Oil-in-Water Rhodiola rosea Nanoemulsion. Colloids Surf. B Biointerfaces 2024, 234, 113692. [Google Scholar] [CrossRef] [PubMed]
- Salomon, G.; Giordano-Labadie, F. Surfactant Irritations and Allergies. Eur. J. Dermatol. 2022, 32, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Shen, Y.; Shi, L.; Jin, Y.; Lai, S.; Tang, Y. Synthesis, Characterization and Properties of Novel Nonionic Hydrocarbon/Fluorocarbon Hybrid Surfactants Containing a Short Fluoroalkyl Chain. J. Dispers. Sci. Technol. 2023, 44, 1–11. [Google Scholar] [CrossRef]
- Kurpanik, R.; Lechowska-Liszka, A.; Mastalska-Popławska, J.; Nocuń, M.; Rapacz-Kmita, A.; Ścisłowska-Czarnecka, A.; Stodolak-Zych, E. Effect of Ionic and Non-ionic Surfactant on Bovine Serum Albumin Encapsulation and Biological Properties of Emulsion-electrospun Fibers. Molecules 2022, 27, 3232. [Google Scholar] [CrossRef] [PubMed]
- Baranauskaite, J.; Ockun, M.A.; Uner, B.; Tas, C.; Ivanauskas, L. Effect of the Amount of Polysorbate 80 and Oregano Essential Oil on the Emulsion Stability and Characterization Properties of Sodium Alginate Microcapsules. Molecules 2021, 26, 6304. [Google Scholar] [CrossRef] [PubMed]
- Cortés, H.; Hernández-Parra, H.; Bernal-Chávez, S.A.; Prado-Audelo, M.L.D.; Caballero-Florán, I.H.; Borbolla-Jiménez, F.V.; González-Torres, M.; Magaña, J.J.; Leyva-Gómez, G. Non-Ionic Surfactants for Stabilization of Polymeric Nanoparticles for Biomedical Uses. Materials 2021, 14, 3197. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, V.; Lee, M.; Nguyen Cao, T.G.; Shim, M.S. Polysorbate-Based Drug Formulations for Brain-Targeted Drug Delivery and Anticancer Therapy. Appl. Sci. 2021, 11, 9336. [Google Scholar] [CrossRef]
- Griffin, W.C. Classification of Surface-active Agents by” HLB”. J. Soc. Cosmet. Chem. 1949, 1, 311–325. [Google Scholar]
- Kim, J.; Kwak, S.S.; Park, M.; Rhee, C.; Yang, G.; Lee, J.; Son, W.; Kang, W. Safety Verification for Polysorbate 20, Pharmaceutical Excipient for Intramuscular Administration, in Sprague-Dawley Rats and New Zealand White Rabbits. PLoS ONE 2021, 16, e0256869. [Google Scholar] [CrossRef] [PubMed]
- Ojha, B.; Jain, V.K.; Gupta, S.; Talegaonkar, S.; Jain, K. Nanoemulgel: A Promising Novel Formulation for Treatment of Skin Ailments. Polym. Bull. 2021, 79, 4441–4465. [Google Scholar] [CrossRef]
- Manna, S.; Karmakar, S.; Sen, O.; Sinha, P.; Jana, S.; Jana, S. Recent Updates on Guar Gum Derivatives in Colon Specific Drug Delivery. Carbohydr. Polym. 2024, 334, 122009. [Google Scholar] [CrossRef] [PubMed]
- Safitri, F.I.; Nawangsari, D.; Febrina, D. Overview: Application of Carbopol 940 in Gel. In Proceedings of the International Conference on Health and Medical Sciences (AHMS 2020); Atlantis Press: Amsterdam, The Netherlands, 2021; Volume 34, pp. 80–84. [Google Scholar] [CrossRef]
- Almoshari, Y. Novel Hydrogels for Topical Applications: An Updated Comprehensive Review Based on Source. Gels 2022, 8, 174. [Google Scholar] [CrossRef] [PubMed]
- Eid, A.M.; Issa, L.; Al-Kharouf, O.; Jaber, R.; Hreash, F. Development of Coriandrum sativum Oil Nanoemulgel and Evaluation of Its Antimicrobial and Anticancer Activity. BioMed Res. Int. 2021, 2021, 5247816. [Google Scholar] [CrossRef] [PubMed]
- Yeo, E.; Chieng, C.J.Y.; Choudhury, H.; Pandey, M.; Gorain, B. Tocotrienols-rich Naringenin Nanoemulgel for the Management of Diabetic Wound: Fabrication, Characterization and Comparative In Vitro Evaluations. Curr. Res. Pharmacol. Drug Discov. 2021, 2, 100019. [Google Scholar] [CrossRef] [PubMed]
- Ullah, N.; Amin, A.; Farid, A.; Selim, S.; Rashid, S.A.; Aziz, M.I.; Kamran, S.H.; Khan, M.A.; Rahim Khan, N.; Mashal, S.; et al. Development and Evaluation of Essential Oil-Based Nanoemulgel Formulation for the Treatment of Oral Bacterial Infections. Gels 2023, 9, 252. [Google Scholar] [CrossRef] [PubMed]
- Eid, A.M.; Naseef, H.; Jaradat, N.; Ghanim, L.; Moqadeh, R.; Yaseen, M. Antibacterial and Anti-Acne Activity of Benzoyl Peroxide Nanoparticles Incorporated in Lemongrass Oil Nanoemulgel. Gels 2023, 9, 186. [Google Scholar] [CrossRef] [PubMed]
- Sultan, M.H.; Javed, S.; Madkhali, O.A.; Alam, M.I.; Almoshari, Y.; Bakkari, M.A.; Sivadasan, D.; Salawi, A.; Jabeen, A.; Ahsan, W. Development and Optimization of Methylcellulose-Based Nanoemulgel Loaded with Nigella sativa Oil for Oral Health Management: Quadratic Model Approach. Molecules 2021, 27, 1796. [Google Scholar] [CrossRef]
- Mulia, K.; Ramadhan, R.M.; Krisanti, E.A. Formulation and Characterization of Nanoemulgel Mangosteen Extract in Virgin Coconut Oil for Topical Formulation. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 156, p. 01013. [Google Scholar]
- Wallace, L.A.; Gwynne, L.; Jenkins, T. Challenges and Opportunities of pH in Chronic Wounds. Ther. Deliv. 2019, 10, 719–735. [Google Scholar] [CrossRef]
- Chinnaiyan, S.K.; Pandiyan, R.; Natesan, S.; Chindam, S.; Gouti, A.K.; Sugumaran, A. Fabrication of Basil Oil Nanoemulsion Loaded Gellan Gum Hydrogel—Evaluation of its Antibacterial and Anti-Biofilm Potential. J. Drug Deliv. Sci. Technol. 2022, 68, 103129. [Google Scholar] [CrossRef]
- Alqarni, M.H.; Foudah, A.I.; Aodah, A.H.; Alkholifi, F.K.; Salkini, M.A.; Alam, A. Caraway Nanoemulsion Gel: A Potential Antibacterial Treatment against Escherichia coli and Staphylococcus aureus. Gels 2023, 9, 193. [Google Scholar] [CrossRef] [PubMed]
- Aman, R.M.; Abu Hashim, I.I.; Meshali, M.M. Novel Clove Essential Oil Nanoemulgel Tailored by Taguchi’s Model and Scaffold-Based Nanofibers: Phytopharmaceuticals with Promising Potential as Cyclooxygenase-2 Inhibitors in External Inflammation. Int. J. Nanomed. 2020, 15, 2171–2195. [Google Scholar] [CrossRef] [PubMed]
- Kamal, I.; Khedr, A.I.M.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Elshaarawy, R.F.M.; Saad, A.S. Chemotherapeutic and Chemopreventive Potentials of ρ-coumaric acid—Squid Chitosan Nanogel Loaded with Syzygium aromaticum Essential Oil. Int. J. Biol. Macromol. 2021, 188, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Razdan, K.; Kanta, S.; Chaudhary, E.; Kumari, S.; Rahi, D.K.; Yadav, A.K.; Sinha, V.R. Levofloxacin Loaded Clove Oil Nanoscale Emulgel Promotes Wound Healing in Pseudomonas aeruginosa Biofilm Infected Burn Wound in Mice. Colloids Surf. B Biointerfaces 2023, 222, 113113. [Google Scholar] [CrossRef] [PubMed]
- Pinto, E.P.; Menezes, R.P.; Tavares, W.D.S.; Ferreira, A.M.; Sousa, F.F.O.; da Silva, G.A.; Zamora, R.R.M.; Araújo, R.S.; de Souza, T.M. Copaiba Essential Oil Loaded-Nanocapsules Film as a Potential Candidate for Treating Skin Disorders: Preparation, Characterization, and Antibacterial Properties. Int. J. Pharm. 2023, 633, 122608. [Google Scholar] [CrossRef] [PubMed]
- Morteza-Semnani, K.; Saeedi, M.; Akbari, J.; Eghbali, M.; Babaei, A.; Hashemi, S.M.H.; Nokhodchi, A. Development of a Novel Nanoemulgel Formulation Containing Cumin Essential Oil as Skin Permeation Enhancer. Drug Deliv. Transl. Res. 2022, 12, 1455–1465. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, R.; Zarenezhad, E.; Abdollahi, A.; Nasrizadeh, M.; Firooziyan, S.; Namdar, N.; Osanloo, M. Nanoemulsion and Nanogel Containing Cuminum cyminum L Essential Oil: Antioxidant, Anticancer, Antibacterial, and Antilarval Properties. J. Trop. Med. 2023, 2023, 5075581. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, A.; Miana, G.A.; Naureen, H.; Rehman, M.; Anum, K.; Malik, I.R. Formulation, Characterization and Wound-Healing Potential of Emulgel and In-Situ Gel Containing Root Extract of Saussurea lappa Clarke (Asteraceae). Trop. J. Pharm. Res. 2020, 19, 1–9. [Google Scholar] [CrossRef]
- Alhakamy, N.A.; Md, S.; Alam, M.S.; Shaik, R.A.; Ahmad, J.; Ahmad, A.; Kutbi, H.I.; Noor, A.O.; Bagalagel, A.A.; Bannan, D.; et al. Development, Optimization, and Evaluation of Luliconazole Nanoemulgel for the Treatment of Fungal Infection. J. Chem. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Cai, K.; Zhang, B.; Tang, S.; Zhang, W.; Liu, W. Antibacterial Polysaccharide-Based Hydrogel Dressing Containing Plant Essential Oil for Burn Wound Healing. Burn. Trauma 2021, 9, tkab041. [Google Scholar] [CrossRef] [PubMed]
- Shehata, T.M.; Elnahas, H.M.; Elsewedy, H.S. Development, Characterization and Optimization of the Anti-Inflammatory Influence of Meloxicam Loaded into a Eucalyptus Oil-Based Nanoemulgel. Gels 2022, 8, 262. [Google Scholar] [CrossRef] [PubMed]
- Alhasso, B.; Ghori, M.U.; Conway, B.R. Development of a Nanoemulgel for the Topical Application of Mupirocin. Pharmaceutics 2023, 15, 2387. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, H.; Khan, I.U.; Asif, M.; Khan, R.U.; Asghar, S.; Khalid, I.; Khalid, S.H.; Irfan, M.; Rehman, F.; Shahzad, Y.; et al. In Vitro and In Vivo Evaluation of Gellan Gum Hydrogel Films: Assessing the Co Impact of Therapeutic Oils and Ofloxacin on Wound Healing. International. J. Biol. Macromol. 2020, 166, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, J.; Alfaro-Rodríguez, M.C.; Prieto-Vargas, P.; Lobo, C.; Garcia, M.C. Preparation of Nanoemulgels Containing Lemon Essential Oil and Pectin: Physical Stability and Rheological Properties. Appl. Sci. 2023, 13, 12662. [Google Scholar] [CrossRef]
- Pinto, N.O.; Rodrigues, T.H.; Pereira, R.D.; Silva, L.M.; Caceres, C.A.; Azeredo, H.M.; Muniz, C.R.; Brito, E.; Canuto, K.M. Production and Physico-Chemical Characterization of Nanocapsules of the Essential Oil from Lippia sidoides Cham. Ind. Crops Prod. 2016, 86, 279–288. [Google Scholar] [CrossRef]
- Rasti, F.; Yousefpoor, Y.; Abdollahi, A.; Safari, M.; Roozitalab, G.; Osanloo, M. Antioxidative, Anticancer, and Antibacterial Activities of a Nanogel Containing Mentha spicata L. Essential Oil and Electrospun Nanofibers of Polycaprolactone-Hydroxypropyl Methylcellulose. BMC Complement. Med. Ther. 2022, 22, 261. [Google Scholar] [CrossRef]
- Abdallah, M.H.; Abu Lila, A.S.; Unissa, R.; Elsewedy, H.S.; Elghamry, H.A.; Soliman, M.S. Preparation, Characterization and Evaluation of Anti-Inflammatory and Anti-Nociceptive Effects of Brucine-Loaded Nanoemulgel. Colloids Surf. B Biointerfaces 2021, 205, 111868. [Google Scholar] [CrossRef] [PubMed]
- Soliman, W.E.; Shehata, T.M.; Mohamed, M.E.; Younis, N.S.; Elsewedy, H.S. Enhancement of Curcumin Anti-Inflammatory Effect via Formulation into Myrrh Oil-Based Nanoemulgel. Polymers 2021, 13, 577. [Google Scholar] [CrossRef] [PubMed]
- Almostafa, M.M.; Elsewedy, H.S.; Shehata, T.M.; Soliman, W.E. Novel Formulation of Fusidic Acid Incorporated into a Myrrh-Oil-Based Nanoemulgel for the Enhancement of Skin Bacterial Infection Treatment. Gels 2022, 8, 245. [Google Scholar] [CrossRef] [PubMed]
- Badri, W.; El Asbahani, A.; Miladi, K.; Baraket, A.; Agusti, G.; Nazari, Q.A.; Errachid, A.; Fessi, H.; Elaissari, A. Poly (ε-caprolactone) Nanoparticles Loaded with Indomethacin and Nigella Sativa L. Essential Oil for the Topical Treatment of Inflammation. J. Drug Deliv. Sci. Technol. 2018, 46, 234–242. [Google Scholar] [CrossRef]
- Teo, C.T.; Amat Rahim, N.F.; Che Zaudin, N.A.; Abdullah, N.H.; Mohamad, M.; Shoparwe, N.F.; Mhd Ramle, S.F.; Abdul Hamid, Z.A.; Yusoff, A.H. Development and Characterization of Nanoemulgel Containing Piper betle Essential Oil as Active Ingredient. In IOP Conference Series Earth and Environmental Science; IOP publishing: Bristol, UK, 2020; Volume 569, p. 012032. [Google Scholar] [CrossRef]
- Miranda, M.; Cruz, M.T.; Vitorino, C.; Cabral, C. Nanostructuring Lipid Carriers Using Ridolfia segetum L. Moris Essential Oil. Mater. Sci. Eng. C 2019, 103, 09804. [Google Scholar] [CrossRef]
- Abdallah, H.M.; Koshak, A.E.; Farag, M.A.; El Sayed, N.S.; Badr-Eldin, S.M.; Ahmed, O.A.; Algandaby, M.M.; Abdel-Naim, A.B.; Ibrahim, S.R.; Mohamed, G.A.; et al. Taif Rose Oil Ameliorates UVB-Induced Oxidative Damage and Skin Photoaging in Rats via Modulation of MAPK and MMP Signaling Pathways. ACS Omega 2023, 8, 33943–33954. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, L.; Pasquinucci, L.; Zappalà, A.; Chiechio, S.; Turnaturi, R.; Parenti, C. Rosemary Essential Oil-Loaded Lipid Nanoparticles: In Vivo Topical Activity from Gel Vehicles. Pharmaceutics 2017, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Barradas, T.N.; Senna, J.P.; Cardoso, S.A.; Nicoli, S.; Padula, C.; Santi, P.; Rossi, F.; de Holanda, E.; Silva, K.G.; Mansur, C.R.E. Hydrogel-Thickened Nanoemulsions based on Essential Oils for Topical Delivery of Psoralen: Permeation and Stability Studies. Eur. J. Pharm. Biopharm. 2016, 116, 38–50. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, E.; Silva Guerrero, A.; da Silva, T.N.; Cardoso, S.A.; da Silva, F.F.F.; de Carvalho Patricio, B.F.; Gonçalves, R.P.; Weissmuller, G.; El-Cheikh, M.C.; Carneiro, K. Chitosan-Based Films Filled with Nanoencapsulated Essential Oil: Physical-Chemical Characterization and Enhanced Wound Healing Activity. Int. J. Biol. Macromol. 2024, 261, 129049. [Google Scholar] [CrossRef]
- Sinha, P.; Srivastava, S.; Mishra, N.; Singh, D.K.; Luqman, S.; Chanda, D.; Yadav, N.P. Development, Optimization, and Characterization of a Novel Tea Tree Oil Nanogel Using Response Surface Methodology. Drug Dev. Ind. Pharm. 2016, 42, 1434–1445. [Google Scholar] [CrossRef]
- Flores, F.C.; De Lima, J.A.; Da Silva, C.R.; Benvegnú, D.; Ferreira, J.; Burger, M.E.; Beck, R.C.; Rolim, C.M.; Rocha, M.I.; Da Veiga, M.L.; et al. Hydrogels Containing Nanocapsules and Nanoemulsions of Tea Tree Oil Provide Antiedematogenic Effect and Improved Skin Wound Healing. J. Nanosci. Nanotechnol. 2015, 15, 800–809. [Google Scholar] [CrossRef] [PubMed]
- Najafi-Taher, R.; Ghaemi, B.; Amani, A. Delivery of Adapalene Using a Novel Topical Gel Based on Tea Tree Oil Nano-emulsion: Permeation, Antibacterial and Safety Assessments. Eur. J. Pharm. Sci. 2018, 120, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, J.; Gautam, A.; Komath, S.; Bano, M.; Garg, A.; Jain, K. Topical Nano-emulgel for Skin Disorders: Formulation Approach and Characterization. Recent Pat. Anti-Infect. Drug Discov. 2019, 14, 36–48. [Google Scholar] [CrossRef]
- Elsewedy, H.S.; Shehata, T.M.; Soliman, W.E. Tea Tree Oil Nanoemulsion-Based Hydrogel Vehicle for Enhancing Topical Delivery of Neomycin. Life 2022, 12, 1011. [Google Scholar] [CrossRef]
- Noor, A.; Jamil, S.; Sadeq, T.W.; Mohammed Ameen, M.S.; Kohli, K. Development and Evaluation of Nanoformulations Containing Timur Oil and Rosemary Oil for Treatment of Topical Fungal Infections. Gels 2023, 9, 516. [Google Scholar] [CrossRef] [PubMed]
- Farahani, H.; Barati, A.; Arjomandzadegan, M.; Vatankhah, E. Nanofibrous Cellulose Acetate/Gelatin Wound Dressing Endowed with Antibacterial and Healing Efficacy Using Nanoemulsion of Zataria multiflora. Int. J. Biol. Macromol. 2020, 162, 762–773. [Google Scholar] [CrossRef] [PubMed]
- Osanloo, M.; Noori, F.; Varaa, N.; Tavassoli, A.; Goodarzi, A.; Moghaddam, M.T.; Ebrahimi, L.; Abpeikar, Z.; Farmani, A.R.; Safaei, M.; et al. The Wound Healing Effect of Polycaprolactone-Chitosan Scaffold Coated with a Gel Containing Zataria multiflora Boiss. Volatile Oil Nanoemulsions. BMC Complement. Med. Ther. 2024, 24, 56. [Google Scholar] [CrossRef] [PubMed]
- Habibullah, T.; Habibullah, A.; Simsim, R. Skills in Rheumatology; Springer: Berlin/Heidelberg, Germany, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK585749/ (accessed on 18 March 2024).
- Celik, H.; İlhan, K. Antioxidant effective aromatic compounds. In Life in Extreme Environments-Diversity, Adaptability and Valuable Resources of Bioactive Molecules; Intechopen: London, UK, 2023. [Google Scholar]
- Zeb, A. Concept, Mechanism, and Applications of Phenolic Antioxidants in Foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef] [PubMed]
- Lohani, A.; Mishra, A.K.; Verma, A. Cosmeceutical Potential of Geranium and Calendula Essential Oil: Determination of Antioxidant Activity and In Vitro Sun Protection Factor. J. Cosmet. Dermatol. 2019, 18, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shang, S.; Yan, F.; Jiang, H.; Zhao, G.; Tian, S.; Dang, Y. Antioxidant Activities of Essential Oils and Their Major Components in Scavenging Free Radicals, Inhibiting Lipid Oxidation and Reducing Cellular Oxidative Stress. Molecules 2023, 28, 4559. [Google Scholar] [CrossRef] [PubMed]
- Martincic, R.; Mravljak, J.; Švajger, U.; Perdih, A.; Anderluh, M.; Novič, M. In Silico Discovery of Novel Potent Antioxidants on the Basis of Pulvinic Acid and Coumarine Derivatives and Their Experimental Evaluation. PLoS ONE 2015, 10, e0140602. [Google Scholar] [CrossRef] [PubMed]
- Eid, A.M.; Jaradat, N.A.; Al-Masri, M.; Issa, L.; Zubidat, F.; Asrawi, H.; Ahmad, S. Development and Antimicrobial Evaluation of Eruca sativa Oil Nanoemulgel with Determination of the Oil Antioxidant, Sun Protection Factor and Elastase Inhibition. Curr. Pharm. Biotechnol. 2020, 21, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Nining, N.; Amalia, A.; Zahrok, F. Response Surface Methodology for Optimization of Turmeric Essential Oil-loaded Nanoemulgel. J. Res. Pharm. 2023, 27, 1499–1512. [Google Scholar] [CrossRef]
- Alam, P.; Imran, M.; Ali, A.; Majid, H. Cananga odorata (Ylang-Ylang) Essential Oil Containing Nanoemulgel for the Topical Treatment of Scalp Psoriasis and Dandruff. Gels 2024, 10, 303. [Google Scholar] [CrossRef] [PubMed]
- Bhalani, D.V.; Nutan, B.; Kumar, A.; Singh Chandel, A.K. Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines 2022, 10, 2055. [Google Scholar] [CrossRef] [PubMed]
- Barakat, S.; Nasr, M.; Ahmed, R.F.; Badawy, S.S.; Mortada, N. Recent Formulation Advances of Mangiferin. Rev. Bras. Farmacogn. 2022, 32, 871–882. [Google Scholar] [CrossRef]
EO | Main Compounds |
---|---|
Bergamot | Limonene, linalool |
Clove | Eugenol |
Chamomile | Bisabolol, matricin |
Cedarwood | Cedrol, widdrol |
Eucalyptus | 1,8-Cineole, limonene |
Frankincense | α-Pinene, limonene |
Ginger | Gingerol, zingiberene |
Lavender | Linalool, linalyl acetate |
Lemongrass | Geranial, neral |
Patchouli | Patchoulol |
Peppermint | Menthol, menthone |
Rosemary | 1,8-Cineole, α-pinene |
Sandalwood | Santalol |
Tea tree | Terpinen-4-ol, γ-terpinene |
Vetiver | Vetivone, khusimol |
Ylang ylang | Linalool, geranyl acetate |
Parameter | Rationale |
---|---|
Rheological behavior | To understand the flow characteristics of nanoemulgels, a viscometer can be used. The higher the viscosity of nanoemulgels, the more difficult the diffusion through the skin [61]. This results in low bioavailability. Moreover, nanoemulgels exhibit pseudoplastic properties [61], indicating that the viscosity of nanoemulgels decreases as the shear rate increases. |
Droplet size | The droplet size influences the rate of release and absorption [61]. Smaller droplets result in greater bioavailability due to the smaller particle size and larger interfacial region. The conversion of a plant EO or plant oil nanoemulsion into nanoemulgel form did not cause a substantial variation in their droplet size [31,61]. |
Dispersion stability | The stability of nanoemulgels is influenced by the magnitude of zeta potential. Large positive and negative values of the zeta potential lead to a repulsion force between particles [61], resulting in dispersion-stable nanoemulgels. |
Release test | To understand the release of the drug or active ingredient from the nanoemulgel, the dialysis bag technique can be used. The results of this test assist in selecting the optimal concentration of the gelling agent used in the nanoemulgel [16]. |
Spreadability | Spreadability measures how readily a nanoemulgel can spread over the site of application on the skin. Nanoemulgels with good spreadability are preferred. The spreadability of a nanoemulgel decreases with an increase in the gelling agent concentration used [62]. Additionally, the spreadability of nanoemulgels is inversely related to their viscosity [15,63]. |
Homogeneity | The polydispersity index (PDI), also known as droplet size distribution, is commonly used to measure homogeneity. When the PDI is near zero, particles form a more uniform emulsion, resulting in higher physical stability [64]. |
Organoleptic test | The color and odor of nanoemulgels can be visually inspected [65]. |
Phase separation | Phase separation measures the kinetic stability of nanoemulgels using a centrifugation approach [63]. No phase separation after centrifugation indicates that the nanoemulgels are kinetically stable and can be stored for at least one year [66]. |
pH | The topical nanoemulgel should be skin pH-friendly to prevent any irritation or allergic reactions [62]. However, pH levels typically shift from neutral to acidic during wound healing, while chronic wounds often remain in a persistently elevated alkaline environment [67]. Hence, for the management of chronic wounds, nanoemulgels with a slightly acidic pH (4.9 to 5.3) were recommended [62]. |
Oil Phase | Functional Properties of EO | Surfactant | Gelling Agent | Potential Application | Reference |
---|---|---|---|---|---|
Basil EO | Antimicrobial; anti-biofilm | Span 60 | Gellan gum | Microbial skin infections treatment | [68] |
Caraway EO | Antibacterial | Tween 80; polyglycerol myristate; polyglycerol monolaurate | Carbopol 940 | Bacterial skin infection treatment | [69] |
Clove EO | Anti-inflammatory | Tween 80; Labrasol | Chitosan + guar gum + gum acacia | Skin inflammatory disorders treatment | [70] |
Clove EO + diclofenac sodium | Anti-inflammatory | Tween 20; PEG 400 | Carbopol 980 | Skin inflammatory disorders treatment | [37] |
Clove EO | Antibacterial | Methanol | Squid chitosan + ρ-coumaric acid | Bacterial skin infection treatment | [71] |
Clove EO + levofloxacin | Antibacterial; antibiofilm | Tween 80; PEG 300 | Carbopol 934P | Biofilm-infected burn wound treatment | [72] |
Copaiba EO | Antibacterial | Tween 80; Span 80 | Poly (ε-caprolactone) | Bacterial skin infection treatment | [73] |
Cumin seeds EO + diclofenac sodium | Permeation-enhancing | Tween 80; Span 80 | Carbopol 940 | Penetration enhancer/topical carrier | [74] |
Cumin EO | Antioxidant; antibacterial | Tween 80; Tween 20 | Carboxymethylcellulose | Skin disorder treatment | [75] |
Eucalyptus EO + Saussurea lappa root extract | Unspecified | Tween 80; Span 80 | Carbopol 940 | Skin inflammatory disorders and wound healing treatment | [76] |
Eucalyptus EO + luliconazole | Antifungal | Tween 20; PEG 200 | Carbopol 934 | Skin fungal infections treatment | [77] |
Eucalyptus EO | Antibacterial | Tween 20 | Carboxymethyl chitosan (CMC) and carbomer 940 | Burn wound treatment | [78] |
Eucalyptus EO + meloxicam | Anti-inflammatory | Tween 80; PEG 400 | Hydroxypropylmethyl cellulose (HPMC) | Skin inflammatory disorders treatment | [79] |
Eucalyptus EO + mupirocin | Antibacterial | Tween 80; Span 80 | Carbopol 940 | Skin lesions and inflammatory disorders treatment | [80] |
Lavender EO + ofloxacin | Antibacterial; antioxidant | Tween 80 | Gellan gum | Wound healing treatment | [81] |
Lemon EO | Unspecified | Tween 80; Span 20 | Pectin gel | General cosmeceutical applications | [82] |
Lemongrass EO + benzoyl peroxide | Antibacterial | Tween 80; Span 80 | Carbopol 940 | Acne treatment | [64] |
Lippia sidoides EO | Antimicrobial; anti-inflammatory | Kolliphor P 188 | Polycaprolactone | General cosmeceutical applications | [83] |
Mint EO | Antioxidant; antibacterial | Tween 20 | Carboxymethylcellulose | Skin disorder treatment | [84] |
Myrrh EO + brucine | Unspecified | Tween 80; PEG 400 | Carboxymethylcellulose sodium (NaCMC) | Skin inflammatory disorders treatment | [85] |
Myrrh EO + curcumin | Anti-inflammatory | Tween 80; propylene glycol (PG) | Carboxymethylcellulose sodium (NaCMC) | Skin inflammatory disorders treatment | [86] |
Myrrh EO + fusidic acid | Antibacterial | Tween 80; Transcutol P | Carboxymethylcellulose sodium (NaCMC) | Bacterial skin infection treatment | [87] |
Nigella sativa L. seeds EO + indomethacin | Anti-inflammatory | Tween 80 | Poly (ε-caprolactone) | Skin inflammatory disorders treatment | [88] |
Piper betle EO + soybean oil | Antioxidant | Tween 80 | Carbopol 940 | Penetration enhancer/topical carrier | [89] |
Ridolfia segetum EO | Anti-inflammatory; antioxidant | Tween 80 | Hydroxypropylmethyl cellulose (HPMC) | Penetration enhancer/topical carrier | [90] |
Rose EO | Antioxidant | α-cyclodextrin | HPMC | Sunscreen product | [91] |
Rosemary EO + cetyl palmitate | Antioxidant | Tween 20 | Carbopol Ultrez 21 | Skin disorder treatment | [92] |
Rosemary EO | Antioxidant; antibacterial | Tween 80; Span 80 | Carbopol 940 | Bacterial skin infection treatment | [31] |
Sweet fennel EO + clove EO + 8-methoxsalen | Unspecified | Pluronic F68; Cremophor RH40 | Chitosan | Psoriasis and vitiligo treatment | [93] |
Sweet fennel EO | Antimicrobial; antioxidant; anti-inflammatory | Cremophor RH40 | Chitosan + polyvinyl alcohol (PVA) | Wound healing treatment | [94] |
Tea tree EO | Antibacterial; antifungal | Tween 20; Cremophor EL | Carbopol 940 | Skin bacterial and fungal infections treatment | [95] |
Tea tree EO | Anti-inflammatory; antiedematogenic | Tween 80; Span 80 | Carbopol Ultrez | Sunscreen and cutaneous wound treatment | [96] |
Tea tree EO + adapalene | Antibacterial | Tween 80; Span 80 | Carbopol 934 | Acne vulgaris treatment | [97] |
Tea tree EO + caprylic acid + isopropyl myristate + thymol | Antimicrobial; anti-inflammatory | Tween 20; PEG 400 | Carbopol 940 | Acne vulgaris treatment | [98] |
Tea tree EO + neomycin | Antibacterial | Tween 80; Transcutol P | Carboxymethylcellulose sodium (NaCMC) | Bacterial skin infection treatment | [99] |
Timur EO + rosemary EO | Antifungal | Tween 80; Transcutol P | Carbopol 940 | Skin fungal infection treatment | [100] |
Zataria multiflora EO | Antimicrobial; anti-inflammatory | Tween 80 | Cellulose acetate + gelatin | Wound healing treatment | [101] |
Zataria multiflora EO | Antimicrobial; anti-inflammatory | Tween 20; Tween 80; Span 80 | Hydroxypropylmethyl cellulose (HPMC) | Wound healing treatment | [102] |
Microorganisms | Zone of Inhibition (mm) | ||
---|---|---|---|
EO | EO Nanoemulgel | Ampicillin | |
Staphylococcus aureus | 11 | 13 | 8 |
Klebsiella pneumoniae | 15 | 17 | Resistance |
Escherichia coli | 10 | 13 | 15 |
MRSA | 10 | 6 | 36 |
Proteus vulgaris | Resistance | Resistance | Resistance |
Pseudomonas aeruginosa | 7 | 12 | Resistance |
Candida albicans | 12 | 16 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yap, X.F.; Saw, S.H.; Lim, V.; Tan, C.X. Plant Essential Oil Nanoemulgel as a Cosmeceutical Ingredient: A Review. Cosmetics 2024, 11, 116. https://doi.org/10.3390/cosmetics11040116
Yap XF, Saw SH, Lim V, Tan CX. Plant Essential Oil Nanoemulgel as a Cosmeceutical Ingredient: A Review. Cosmetics. 2024; 11(4):116. https://doi.org/10.3390/cosmetics11040116
Chicago/Turabian StyleYap, Xing Fui, Seow Hoon Saw, Vuanghao Lim, and Chin Xuan Tan. 2024. "Plant Essential Oil Nanoemulgel as a Cosmeceutical Ingredient: A Review" Cosmetics 11, no. 4: 116. https://doi.org/10.3390/cosmetics11040116
APA StyleYap, X. F., Saw, S. H., Lim, V., & Tan, C. X. (2024). Plant Essential Oil Nanoemulgel as a Cosmeceutical Ingredient: A Review. Cosmetics, 11(4), 116. https://doi.org/10.3390/cosmetics11040116