Effects of Lipid Phase Content on the Technological and Sensory Properties of O/W Emulsions Containing Bemotrizinol-Loaded Nanostructured Lipid Carriers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Characterization of Bemotrizinol-Loaded Nanostructured Lipid Carriers (NLC)
2.3. Preparation of O/W Emulsions
2.4. Stability Tests on O/W Emulsions
2.5. Spreadability
2.6. Occlusion Factor
2.7. Viscosity
2.8. In Vitro Release of Bemotrizinol
2.9. Determination of In Vitro Sun Protection Factor (SPF)
2.10. Sensory Evaluation
2.11. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sikora, E. Cosmetic Emulsions; Wydawnictwo PK: Kraków, Poland, 2019. [Google Scholar]
- Gold, M.H.; Nestor, M.S. A Supersaturated Oxygen Emulsion for Wound Care and Skin Rejuvenation. J. Drugs Dermatol. 2020, 19, 250–253. [Google Scholar] [CrossRef]
- Campanholi, K.d.S.S.; da Silva, J.B.; Batistela, V.R.; Gonçalves, R.S.; Said dos Santos, R.; Balbinot, R.B.; Lazarin-Bidóia, D.; Bruschi, M.L.; Nakamura, T.U.; Nakamura, C.V.; et al. Design and Optimization of Stimuli-Responsive Emulsion-Filled Gel for Topical Delivery of Copaiba Oil-Resin. J. Pharm. Sci. 2022, 111, 287–292. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Shang, Y.; Zeng, X. Study on the Development of Wax Emulsion with Liquid Crystal Structure and Its Moisturizing and Frictional Interactions with Skin. Colloids Surf. B Biointerfaces 2018, 171, 335–342. [Google Scholar] [CrossRef]
- Dyja, R.; Jankowski, A. The Effect of Additives on Release and in Vitro Skin Retention of Flavonoids from Emulsion and Gel Semisolid Formulations. Int. J. Cosmet. Sci. 2017, 39, 442–449. [Google Scholar] [CrossRef]
- Yu, H.; Zou, H.; Wang, R.; Zhang, Z.; Qiu, S. Salt of Organosilicon Framework as a Novel Emulsifier for Various Water–Oil Biphasic Systems and a Catalyst for Dibromination of Olefins in an Aqueous Medium. ACS Appl. Mater. Interfaces 2021, 13, 33693–33703. [Google Scholar] [CrossRef]
- Chen, X.; Hu, Q.; Li, X.; Ma, C. Systematic Comparison of Structural and Lipid Oxidation in Oil-in-water and Water-in-oil Biphasic Emulgels: Effect of Emulsion Type, Oil-phase Composition, and Oil Fraction. J. Sci. Food Agric. 2022, 102, 4200–4209. [Google Scholar] [CrossRef] [PubMed]
- Calvo, F.; Gómez, J.M.; Ricardez-Sandoval, L.; Alvarez, O. Integrated Design of Emulsified Cosmetic Products: A Review. Chem. Eng. Res. Des. 2020, 161, 279–303. [Google Scholar] [CrossRef]
- Wibowo, C.; Ng, K.M. Product-oriented Process Synthesis and Development: Creams and Pastes. AIChE J. 2001, 47, 2746–2767. [Google Scholar] [CrossRef]
- Barnes, T.M.; Mijaljica, D.; Townley, J.P.; Spada, F.; Harrison, I.P. Vehicles for Drug Delivery and Cosmetic Moisturizers: Review and Comparison. Pharmaceutics 2021, 13, 2012. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Jung, E.-C.; Zhu, H.; Zou, Y.; Hui, X.; Maibach, H. Vehicle Effects on Human Stratum Corneum Absorption and Skin Penetration. Toxicol. Ind. Health 2017, 33, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Karadzovska, D.; Brooks, J.D.; Monteiro-Riviere, N.A.; Riviere, J.E. Predicting Skin Permeability from Complex Vehicles. Adv. Drug Deliv. Rev. 2013, 65, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Nohynek, G.J.; Schaefer, H. Benefit and Risk of Organic Ultraviolet Filters. Regul. Toxicol. Pharmacol. 2001, 33, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, L.; Turnaturi, R.; Parenti, C.; Pasquinucci, L. In Vitro Evaluation of Sunscreen Safety: Effects of the Vehicle and Repeated Applications on Skin Permeation from Topical Formulations. Pharmaceutics 2018, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Nikolić, S.; Keck, C.M.; Anselmi, C.; Müller, R.H. Skin Photoprotection Improvement: Synergistic Interaction between Lipid Nanoparticles and Organic UV Filters. Int. J. Pharm. 2011, 414, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Wissing, S. Cosmetic Applications for Solid Lipid Nanoparticles (SLN). Int. J. Pharm. 2003, 254, 65–68. [Google Scholar] [CrossRef]
- Souto, E.B.; Jäger, E.; Jäger, A.; Štěpánek, P.; Cano, A.; Viseras, C.; de Melo Barbosa, R.; Chorilli, M.; Zielińska, A.; Severino, P.; et al. Lipid Nanomaterials for Targeted Delivery of Dermocosmetic Ingredients: Advances in Photoprotection and Skin Anti-Aging. Nanomaterials 2022, 12, 377. [Google Scholar] [CrossRef]
- Frank, L.A.; Contri, R.V.; Beck, R.C.R.; Pohlmann, A.R.; Guterres, S.S. Improving Drug Biological Effects by Encapsulation into Polymeric Nanocapsules. WIREs Nanomed. Nanobiotechnol. 2015, 7, 623–639. [Google Scholar] [CrossRef]
- Jee, J.-P.; Lim, S.-J.; Park, J.-S.; Kim, C.-K. Stabilization of All-Trans Retinol by Loading Lipophilic Antioxidants in Solid Lipid Nanoparticles. Eur. J. Pharm. Biopharm. 2006, 63, 134–139. [Google Scholar] [CrossRef]
- Müller, R.H.; Radtke, M.; Wissing, S.A. Nanostructured Lipid Matrices for Improved Microencapsulation of Drugs. Int. J. Pharm. 2002, 242, 121–128. [Google Scholar] [CrossRef]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Novel Drug Delivery Systems: Applications, Advantages and Disadvantages. Res. Pharm. Sci. 2018, 13, 288. [Google Scholar] [CrossRef]
- Müller, R.H.; Mäder, K.; Gohla, S. Solid Lipid Nanoparticles (SLN) for Controlled Drug Delivery- a Review of the State of the Art. Eur. J. Pharm. Biopharm. 2000, 50, 161–177. [Google Scholar] [CrossRef] [PubMed]
- Puglia, C.; Santonocito, D.; Bonaccorso, A.; Musumeci, T.; Ruozi, B.; Pignatello, R.; Carbone, C.; Parenti, C.; Chiechio, S. Lipid Nanoparticle Inclusion Prevents Capsaicin-Induced TRPV1 Defunctionalization. Pharmaceutics 2020, 12, 339. [Google Scholar] [CrossRef] [PubMed]
- Santonocito, D.; Raciti, G.; Campisi, A.; Sposito, G.; Panico, A.; Siciliano, E.A.; Sarpietro, M.G.; Damiani, E.; Puglia, C. Astaxanthin-Loaded Stealth Lipid Nanoparticles (AST-SSLN) as Potential Carriers for the Treatment of Alzheimer’s Disease: Formulation Development and Optimization. Nanomaterials 2021, 11, 391. [Google Scholar] [CrossRef]
- Eroğlu, C.; Sinani, G.; Ulker, Z. Current State of Lipid Nanoparticles (SLN and NLC) for Skin Applications. Curr. Pharm. Des. 2023, 29, 1632–1644. [Google Scholar] [CrossRef]
- Samee, A.; Usman, F.; Wani, T.A.; Farooq, M.; Shah, H.S.; Javed, I.; Ahmad, H.; Khan, R.; Zargar, S.; Kausar, S. Sulconazole-Loaded Solid Lipid Nanoparticles for Enhanced Antifungal Activity: In Vitro and In Vivo Approach. Molecules 2023, 28, 7508. [Google Scholar] [CrossRef] [PubMed]
- Cassano, R.; Serini, S.; Curcio, F.; Trombino, S.; Calviello, G. Preparation and Study of Solid Lipid Nanoparticles Based on Curcumin, Resveratrol and Capsaicin Containing Linolenic Acid. Pharmaceutics 2022, 14, 1593. [Google Scholar] [CrossRef]
- Sohaib, M.; Shah, S.U.; Shah, K.U.; Shah, K.U.; Khan, N.R.; Irfan, M.M.; Niazi, Z.R.; Alqahtani, A.A.; Alasiri, A.; Walbi, I.A.; et al. Physicochemical Characterization of Chitosan-Decorated Finasteride Solid Lipid Nanoparticles for Skin Drug Delivery. Biomed. Res. Int. 2022, 2022, 7792180. [Google Scholar] [CrossRef]
- Shidhaye, S.; Vaidya, R.; Sutar, S.; Patwardhan, A.; Kadam, V. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers – Innovative Generations of Solid Lipid Carriers. Curr. Drug Deliv. 2008, 5, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Gordillo-Galeano, A.; Mora-Huertas, C. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm. 2018, 133, 285–308. [Google Scholar] [CrossRef]
- Wolf, M.; Klang, V.; Stojcic, T.; Fuchs, C.; Wolzt, M.; Valenta, C. NLC versus Nanoemulsions: Effect on Physiological Skin Parameters during Regular in Vivo Application and Impact on Drug Penetration. Int. J. Pharm. 2018, 549, 343–351. [Google Scholar] [CrossRef]
- Puglia, C.; Blasi, P.; Ostacolo, C.; Sommella, E.; Bucolo, C.; Platania, C.B.M.; Romano, G.L.; Geraci, F.; Drago, F.; Santonocito, D.; et al. Innovative Nanoparticles Enhance N-Palmitoylethanolamide Intraocular Delivery. Front. Pharmacol. 2018, 9, 285. [Google Scholar] [CrossRef]
- Viegas, C.; Patrício, A.B.; Prata, J.M.; Nadhman, A.; Chintamaneni, P.K.; Fonte, P. Solid Lipid Nanoparticles vs. Nanostructured Lipid Carriers: A Comparative Review. Pharmaceutics 2023, 15, 1593. [Google Scholar] [CrossRef]
- Katari, O.; Jain, S. Solid Lipid Nanoparticles and Nanostructured Lipid Carrier-Based Nanotherapeutics for the Treatment of Psoriasis. Expert. Opin. Drug Deliv. 2021, 18, 1857–1872. [Google Scholar] [CrossRef] [PubMed]
- Souto, E.B.; Baldim, I.; Oliveira, W.P.; Rao, R.; Yadav, N.; Gama, F.M.; Mahant, S. SLN and NLC for Topical, Dermal, and Transdermal Drug Delivery. Expert. Opin. Drug Deliv. 2020, 17, 357–377. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, L.; Sarpietro, M.G.; Ottimo, S.; Puglisi, G.; Castelli, F. Differential Scanning Calorimetry Studies on Sunscreen Loaded Solid Lipid Nanoparticles Prepared by the Phase Inversion Temperature Method. Int. J. Pharm. 2011, 415, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Wissing, S.A.; Müller, R.H. Solid Lipid Nanoparticles as Carrier for Sunscreens: In Vitro Release and in Vivo Skin Penetration. J. Control. Release 2002, 81, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Puglia, C.; Damiani, E.; Offerta, A.; Rizza, L.; Tirendi, G.G.; Tarico, M.S.; Curreri, S.; Bonina, F.; Perrotta, R.E. Evaluation of Nanostructured Lipid Carriers (NLC) and Nanoemulsions as Carriers for UV-Filters: Characterization, in Vitro Penetration and Photostability Studies. Eur. J. Pharm. Sci. 2014, 51, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Lacatusu, I.; Badea, N.; Murariu, A.; Bojin, D.; Meghea, A. Effect of UV Sunscreens Loaded in Solid Lipid Nanoparticles: A Combinated SPF Assay and Photostability. Mol. Cryst. Liq. Cryst. 2010, 523, 247/[819]–259/[831]. [Google Scholar] [CrossRef]
- Chatelain, E.; Gabard, B. Photostabilization of Butyl Methoxydibenzoylmethane (Avobenzone) and Ethylhexyl Methoxycinnamate by Bis-Ethylhexyloxyphenol Methoxyphenyl Triazine (Tinosorb S), a New UV Broadband Filter. Photochem. Photobiol. 2001, 74, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Benevenuto, C.G.; Guerra, L.O.; Gaspar, L.R. Combination of Retinyl Palmitate and UV-Filters: Phototoxic Risk Assessment Based on Photostability and in Vitro and in Vivo Phototoxicity Assays. Eur. J. Pharm. Sci. 2015, 68, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, T.S.; Moreira, L.M.C.C.; Oliveira, T.M.T.; Melo, D.F.; Azevedo, E.P.; Gadelha, A.E.G.; Fook, M.V.L.; Oshiro-Júnior, J.A.; Damasceno, B.P.G.L. Bemotrizinol-Loaded Carnauba Wax-Based Nanostructured Lipid Carriers for Sunscreen: Optimization, Characterization, and In Vitro Evaluation. AAPS PharmSciTech 2020, 21, 288. [Google Scholar] [CrossRef]
- Teixeira Gomes, J.V.; Cherem Peixoto da Silva, A.; Lamim Bello, M.; Rangel Rodrigues, C.; Aloise Maneira Corrêa Santos, B. Molecular Modeling as a Design Tool for Sunscreen Candidates: A Case Study of Bemotrizinol. J. Mol. Model. 2019, 25, 362. [Google Scholar] [CrossRef]
- D’Ruiz, C.D.; Plautz, J.R.; Schuetz, R.; Sanabria, C.; Hammonds, J.; Erato, C.; Klock, J.; Vollhardt, J.; Mesaros, S. Preliminary Clinical Pharmacokinetic Evaluation of Bemotrizinol - A New Sunscreen Active Ingredient Being Considered for Inclusion under FDA’s over-the-Counter (OTC) Sunscreen Monograph. Regul. Toxicol. Pharmacol. 2023, 139, 105344. [Google Scholar] [CrossRef]
- Montenegro, L.; Santonocito, D.; Castelli, F.; Russo, R.; Puglia, C.; Sarpietro, M.G. Bemotrizinol-Loaded Nanostructured Lipid Carriers for the Development of Sunscreen Emulsions. Int. J. Cosmet. Sci. 2024. submitted. [Google Scholar]
- Lukic, M.; Jaksic, I.; Krstonosic, V.; Cekic, N.; Savic, S. A Combined Approach in Characterization of an Effective w/o Hand Cream: The Influence of Emollient on Textural, Sensorial and in Vivo Skin Performance. Int. J. Cosmet. Sci. 2012, 34, 140–149. [Google Scholar] [CrossRef]
- Montenegro, L.; Rapisarda, L.; Ministeri, C.; Puglisi, G. Effects of Lipids and Emulsifiers on the Physicochemical and Sensory Properties of Cosmetic Emulsions Containing Vitamin E. Cosmetics 2015, 2, 35–47. [Google Scholar] [CrossRef]
- Chaudhary, B.; Verma, S. Preparation and Evaluation of Novel In Situ Gels Containing Acyclovir for the Treatment of Oral Herpes Simplex Virus Infections. Sci. World J. 2014, 2014, 280928. [Google Scholar] [CrossRef]
- Wissing, S.; Lippacher, A.; Müller, R. Investigations on the Occlusive Properties of Solid Lipid Nanoparticles (SLN). J. Cosmet. Sci. 2001, 52, 313–324. [Google Scholar]
- Montenegro, L.; Santagati, L. Use of Vegetable Oils to Improve the Sun Protection Factor of Sunscreen Formulations. Cosmetics 2019, 6, 25. [Google Scholar] [CrossRef]
- Karamustafa, F.; Çelebi, N. Development of an Oral Microemulsion Formulation of Alendronate: Effects of Oil and Co-Surfactant Type on Phase Behaviour. J. Microencapsul. 2008, 25, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Neufahrt, A.; Förster, F.J.; Heine, H.; Schaeg, G.; Leonhardi, G. Long-Term Tissue Culture of Epithelial-like Cells from Human Skin (NCTC Strain 2544). Arch. Dermatol. Res. 1976, 256, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Puglia, C.; Tropea, S.; Rizza, L.; Santagati, N.A.; Bonina, F. In Vitro Percutaneous Absorption Studies and in Vivo Evaluation of Anti-Inflammatory Activity of Essential Fatty Acids (EFA) from Fish Oil Extracts. Int. J. Pharm. 2005, 299, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.R.; Dias-Ferreira, J.; Cabral, C.; Garcia, M.L.; Souto, E.B. Release Kinetics and Cell Viability of Ibuprofen Nanocrystals Produced by Melt-Emulsification. Colloids Surf. B Biointerfaces 2018, 166, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Madsen, F.B.; Eriksen, S.H.; Andersen, A.J.C.; Skov, A.L. A Reliable Quantitative Method for Determining CBD Content and Release from Transdermal Patches in Franz Cells. Phytochem. Anal. 2022, 33, 1257–1265. [Google Scholar] [CrossRef] [PubMed]
- Kirk, R.D.; Akanji, T.; Li, H.; Shen, J.; Allababidi, S.; Seeram, N.P.; Bertin, M.J.; Ma, H. Evaluations of Skin Permeability of Cannabidiol and Its Topical Formulations by Skin Membrane-Based Parallel Artificial Membrane Permeability Assay and Franz Cell Diffusion Assay. Med. Cannabis Cannabinoids 2022, 5, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.P.; Elkins, J.; Lam, S.-Y.; Skelly, J.P. Determination of in Vitro Drug Release from Hydrocortisone Creams. Int. J. Pharm. 1989, 53, 53–59. [Google Scholar] [CrossRef]
- Friend, D.R. In Vitro Skin Permeation Techniques. J. Control. Release 1992, 18, 235–248. [Google Scholar] [CrossRef]
- Li, H.; Colantonio, S.; Dawson, A.; Lin, X.; Beecker, J. Sunscreen Application, Safety, and Sun Protection: The Evidence. J. Cutan. Med. Surg. 2019, 23, 357–369. [Google Scholar] [CrossRef]
- Kim, M.; Shin, S.; Ryu, D.; Cho, E.; Yoo, J.; Park, D.; Jung, E. Evaluating the Sun Protection Factor of Cosmetic Formulations Containing Afzelin. Chem. Pharm. Bull. 2021, 69, c21-00398. [Google Scholar] [CrossRef]
- Breneman, A. Sun Protection Factor Testing: A Call for an In Vitro Method. Cutis 2022, 110, E15–E17. [Google Scholar] [CrossRef]
- Fageon, L.; Moyal, D.; Coutet, J.; Candau, D. Importance of Sunscreen Products Spreading Protocol and Substrate Roughness for in Vitro Sun Protection Factor Assessment. Int. J. Cosmet. Sci. 2009, 31, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid Nanoparticles (SLN, NLC) in Cosmetic and Pharmaceutical Dermal Products. Int. J. Pharm. 2009, 366, 170–184. [Google Scholar] [CrossRef] [PubMed]
- Dutra, E.A.; Oliveira, D.A.G.d.C.; Kedor-Hackmann, E.R.M.; Santoro, M.I.R.M. Determination of Sun Protection Factor (SPF) of Sunscreens by Ultraviolet Spectrophotometry. Rev. Bras. De. Ciências Farm. 2004, 40, 381–385. [Google Scholar] [CrossRef]
- Sayre, R.M.; Agin, P.P.; LeVee, G.J.; Marlowe, E. A Comparison of In Vivo and In Vitro Testing of Sunscreening Formulas. Photochem. Photobiol. 1979, 29, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Fallica, F.; Leonardi, C.; Toscano, V.; Santonocito, D.; Leonardi, P.; Puglia, C. Assessment of Alcohol-Based Hand Sanitizers for Long-Term Use, Formulated with Addition of Natural Ingredients in Comparison to Who Formulation 1. Pharmaceutics 2021, 13, 571. [Google Scholar] [CrossRef] [PubMed]
- Otto, A.; Du Plessis, J.; Wiechers, J.W. Formulation Effects of Topical Emulsions on Transdermal and Dermal Delivery. Int. J. Cosmet. Sci. 2009, 31, 1–19. [Google Scholar] [CrossRef]
- Lardy, F.; Vennat, B.; Pouget, M.P.; Pourrat, A. Functionalization of Hydrocolloids: Principal Component Analysis Applied to the Study of Correlations Between Parameters Describing the Consistency of Hydrogels. Drug Dev. Ind. Pharm. 2000, 26, 715–721. [Google Scholar] [CrossRef]
- Garg, A.; Aggarwal, D.; Garg, S.; Singla, A.K. Spreading of Semisolid Formulations: An Update. Pharm. Technol. 2002, 26, 84–105. [Google Scholar] [CrossRef]
- Montenegro, L.; Parenti, C.; Turnaturi, R.; Pasquinucci, L. Resveratrol-Loaded Lipid Nanocarriers: Correlation between In Vitro Occlusion Factor and In Vivo Skin Hydrating Effect. Pharmaceutics 2017, 9, 58. [Google Scholar] [CrossRef]
- Wissing, S.A.; Müller, R.H. The Influence of the Crystallinity of Lipid Nanoparticles on Their Occlusive Properties. Int. J. Pharm. 2002, 242, 377–379. [Google Scholar] [CrossRef]
- Wester, R.C.; Maibach, H.I. Cutaneous Pharmacokinetics: 10 Steps to Percutaneous Absorption. Drug Metab. Rev. 1983, 14, 169–205. [Google Scholar] [CrossRef] [PubMed]
- International Sun protection factor (SPF) Test Method. COLIPA Guidelines 2006. Available online: https://downloads.regulations.gov›attachment_65 (accessed on 2 February 2024).
- ISO 24444:2019(E); Cosmetics—Sun Protection Test Methods—In Vivo Determination of the Sun Protection Factor (SPF). International Organization for Standardization: Geneva, Switzerland, 2010. Available online: https://www.iso.org/obp/ui/#iso:std:iso:24444:ed-2:v1:en (accessed on 2 February 2024).
- Sheu, M.-T.; Lin, C.-W.; Huang, M.-C.; Shen, C.-H.; Ho, H.-O. Correlation of in Vivo and in Vitro Measurements of Sun Protection Factor. J. Food Drug Anal. 2020, 11, 12. [Google Scholar] [CrossRef]
- Pissavini, M.; Tricaud, C.; Wiener, G.; Lauer, A.; Contier, M.; Kolbe, L.; Trullás Cabanas, C.; Boyer, F.; Meredith, E.; de Lapuente, J.; et al. Validation of a New in Vitro Sun Protection Factor Method to Include a Wide Range of Sunscreen Product Emulsion Types. Int. J. Cosmet. Sci. 2020, 42, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.P.; Freitas, Z.M.; Souza, K.R.; Garcia, S.; Vergnanini, A. In Vitro and In Vivo Determinations of Sun Protection Factors of Sunscreen Lotions with Octylmethoxycinnamate. Int. J. Cosmet. Sci. 1999, 21, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Saraf, S.; Kaur, C. In Vitro Sun Protection Factor Determination of Herbal Oils Used in Cosmetics. Pharmacogn. Res. 2010, 2, 22. [Google Scholar] [CrossRef] [PubMed]
- Netto MPharm, G.; Jose, J. Development, Characterization, and Evaluation of Sunscreen Cream Containing Solid Lipid Nanoparticles of Silymarin. J. Cosmet. Dermatol. 2018, 17, 1073–1083. [Google Scholar] [CrossRef]
- Ácsová, A.; Hojerová, J.; Janotková, L.; Bendová, H.; Jedličková, L.; Hamranová, V.; Martiniaková, S. The Real UVB Photoprotective Efficacy of Vegetable Oils: In Vitro and in Vivo Studies. Photochem. Photobiol. Sci. 2021, 20, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.I.; Liu, S.; Brooks, G.J.; Lanctot, Y.; Gruber, J. V Reliable and Simple Spectrophotometric Determination of Sun Protection Factor: A Case Study Using Organic UV Filter-based Sunscreen Products. J. Cosmet. Dermatol. 2018, 17, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Hermund, D.B.; Torsteinsen, H.; Vega, J.; Figueroa, F.L.; Jacobsen, C. Screening for New Cosmeceuticals from Brown Algae Fucus Vesiculosus with Antioxidant and Photo-Protecting Properties. Mar. Drugs 2022, 20, 687. [Google Scholar] [CrossRef]
- Singh, B.G.; Bagora, N.; Nayak, M.; Ajish, J.K.; Gupta, N.; Kunwar, A. The Preparation of Curcumin-Loaded Pickering Emulsion Using Gelatin–Chitosan Colloidal Particles as Emulsifier for Possible Application as a Bio-Inspired Cosmetic Formulation. Pharmaceutics 2024, 16, 356. [Google Scholar] [CrossRef]
- Liu, Z.; Liao, H.; Dai, Y.; Qi, Y.; Zou, Z. Characterization and Anti-Ultraviolet Radiation Activity of Proanthocyanidin-Rich Extracts from Cinnamomum camphora by Ultrasonic-Assisted Method. Molecules 2024, 29, 796. [Google Scholar] [CrossRef] [PubMed]
- Wissing, S.A.; Müller, R.H. Solid Lipid Nanoparticles (SLN)-a Novel Carrier for UV Blockers. Pharmazie 2001, 56, 783–786. [Google Scholar] [PubMed]
- de Araújo, M.M.; Schneid, A.C.; Oliveira, M.S.; Mussi, S.V.; de Freitas, M.N.; Carvalho, F.C.; Bernes Junior, E.A.; Faro, R.; Azevedo, H. NLC-Based Sunscreen Formulations with Optimized Proportion of Encapsulated and Free Filters Exhibit Enhanced UVA and UVB Photoprotection. Pharmaceutics 2024, 16, 427. [Google Scholar] [CrossRef] [PubMed]
- Dubuisson, P.; Picard, C.; Grisel, M.; Savary, G. How Does Composition Influence the Texture of Cosmetic Emulsions? Colloids Surf. A Physicochem. Eng. Asp. 2018, 536, 38–46. [Google Scholar] [CrossRef]
- Szulc-Musioł, B.; Siemiradzka, W.; Dolińska, B. Formulation and Evaluation of Hydrogels Based on Sodium Alginate and Cellulose Derivatives with Quercetin for Topical Application. Appl. Sci. 2023, 13, 7826. [Google Scholar] [CrossRef]
- Gore, E.; Picard, C.; Savary, G. Spreading Behavior of Cosmetic Emulsions: Impact of the Oil Phase. Biotribology 2018, 16, 17–24. [Google Scholar] [CrossRef]
- Gonçalves, G.M.S.; Srebernich, S.M.; de Macedo Souza, J.A. Stability and Sensory Assessment of Emulsions Containing Propolis Extract and/or Tocopheryl Acetate. Braz. J. Pharm. Sci. 2011, 47, 585–592. [Google Scholar] [CrossRef]
- Kilcast, D.; Clegg, S. Sensory Perception of Creaminess and Its Relationship with Food Structure. Food Qual. Prefer. 2002, 13, 609–623. [Google Scholar] [CrossRef]
Ingredients | Emulsion Code | |||||
---|---|---|---|---|---|---|
A12 | A12NLC | A14 | A14NLC | A16 | A16NLC | |
Phase A | ||||||
Almond oil | 1.50 | 1.50 | 1.75 | 1.75 | 2.00 | 2.00 |
Glycine Soja oil | 1.50 | 1.50 | 1.75 | 1.75 | 2.00 | 2.00 |
Acemol TN | 3.60 | 3.60 | 4.20 | 4.20 | 4.80 | 4.80 |
Cetiol SN | 1.20 | 1.20 | 1.40 | 1.40 | 1.60 | 1.60 |
IPM | 1.20 | 1.20 | 1.40 | 1.40 | 1.60 | 1.60 |
Montanov 68 | 2.40 | 2.40 | 2.80 | 2.80 | 3.20 | 3.20 |
Beeswax | 0.30 | 0.30 | 0.35 | 0.35 | 0.40 | 0.40 |
Cutina MD | 0.30 | 0.30 | 0.35 | 0.35 | 0.40 | 0.40 |
BMTZ | 2.40 | --- | 2.40 | --- | 2.40 | --- |
Phase B | ||||||
EDTA | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Water | q.s. | q.s. | q.s. | q.s. | q.s. | q.s. |
Phase C | ||||||
Kemipur 100 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
Benzyl alcohol | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Phase D | ||||||
BMTZ-NLC | --- | 30.00 | --- | 30.00 | --- | 30.00 |
Phase | Sensory Attribute | Description |
---|---|---|
Before and during pick-up | Color (in the container) | 1. White; 2. Whitish; 3. Yellowish; 4. Pale yellow; 5. Yellow |
Glossiness (in the container) | 1. Not glossy; 2. Slightly glossy; 3. Moderately glossy; 4. Glossy; 5. Very glossy | |
Adhesiveness Amount of sample that stays on forefinger after short contact (2 s) with sample in container | 1. Not adhesive; 2. Slightly adhesive; 3. Moderately adhesive; 4. Adhesive; 5. Very adhesive | |
Elasticity Degree to which product expands between thumb and forefinger | 1. Not elastic; 2. Slightly elastic; 3. Moderately elastic; 4. Elastic; 5. Very elastic | |
Firmness (during pick-up) Resistance to deformation and difficulty of lifting from container. | 1. Not firm; 2. Slightly firm; 3. Moderately firm; 4. Firm; 5. Very firm | |
During rub-in | Oiliness Degree to which the sample feels oily | 1. Not oily; 2. Slightly oily; 3. Moderately oily; 4. Oily; 5. Very oily |
Spreadability Impression of the area that the sample will cover while being rubbed 8 times in a circular motion over the back of the hand | 1. Not spreadable; 2. Slightly spreadable; 3. Moderately spreadable; 4. Spreadable; 5. Very spreadable | |
Stickiness Degree to which the sample feels sticky (force required to separate finger from the skin) | 1. Not sticky; 2. Slightly sticky; 3. Moderately sticky; 4. Sticky; 5. Very sticky | |
Absorbency Impression of the rate of absorption of the sample into the skin | 1. Not absorbed; 2. Slowly absorbed; 3. Moderately absorbed; 4. Absorbed; 5. Fast absorbed | |
After feel | Stickiness Degree to which the sample leaves the skin feeling sticky 10 min after its application | 1. Not sticky; 2. Slightly sticky; 3. Moderately sticky; 4. Sticky; 5. Very sticky |
Oiliness Degree to which the sample leaves the skin feeling oily 10 min after its application | 1. Not oily; 2. Slightly oily; 3. Moderately oily; 4. Oily; 5. Very oily | |
Glossiness Degree to which the sample leaves the skin looking glossy 10 min after its application | 1. Not glossy; 2. Slightly glossy; 3. Moderately glossy; 4. Glossy; 5. Very glossy |
EMULSION CODE | PH | F ± S.D. | S ± S.D. (CM) | V ± S.D. (CPS) | Q (μG/CM2) |
---|---|---|---|---|---|
A12 | 6.3 | 35.53 ± 5.69 | 8.80 ± 0.17 | 9722 ± 1295 | N.D. |
A12NLC | 6.3 | 25.91 ± 1.57 | 9.35 ± 0.21 | 8017 ± 143 | N.D. |
A14 | 6.4 | 47.75 ± 1.16 | 8.10 ± 0.17 | 13,000 ± 441 | N.D. |
A14NLC | 6.3 | 39.76 ± 2.99 | 8.03 ± 0.25 | 13,389 ± 1004 | N.D. |
A16 | 6.5 | 46.81 ± 1.55 | 7.60 ± 0.10 | 15,611 ± 1549 | N.D. |
A16NLC | 6.4 | 32.48 ± 2.09 | 7.50 ± 0.10 | 16,444 ± 770 | N.D. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santonocito, D.; Puglia, C.; Montenegro, L. Effects of Lipid Phase Content on the Technological and Sensory Properties of O/W Emulsions Containing Bemotrizinol-Loaded Nanostructured Lipid Carriers. Cosmetics 2024, 11, 123. https://doi.org/10.3390/cosmetics11040123
Santonocito D, Puglia C, Montenegro L. Effects of Lipid Phase Content on the Technological and Sensory Properties of O/W Emulsions Containing Bemotrizinol-Loaded Nanostructured Lipid Carriers. Cosmetics. 2024; 11(4):123. https://doi.org/10.3390/cosmetics11040123
Chicago/Turabian StyleSantonocito, Debora, Carmelo Puglia, and Lucia Montenegro. 2024. "Effects of Lipid Phase Content on the Technological and Sensory Properties of O/W Emulsions Containing Bemotrizinol-Loaded Nanostructured Lipid Carriers" Cosmetics 11, no. 4: 123. https://doi.org/10.3390/cosmetics11040123
APA StyleSantonocito, D., Puglia, C., & Montenegro, L. (2024). Effects of Lipid Phase Content on the Technological and Sensory Properties of O/W Emulsions Containing Bemotrizinol-Loaded Nanostructured Lipid Carriers. Cosmetics, 11(4), 123. https://doi.org/10.3390/cosmetics11040123