In Vitro Toxicity Evaluation of Some Plant Extracts and Their Potential Application in Xerosis cutis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Cell Culture
2.3. Dry Hydroalcoholic Extracts
2.4. Cytotoxicity Assay (LDH Assay)
2.5. Cell Viability Assay (MTS Assay)
2.6. Total Antioxidant Capacity Assay (TAC Assay)
2.7. Daphnia Species Acute Toxicity Assay
2.8. Daphnia Magna Embryo Developmental Assay
2.9. The “Scratch-Test” on Human Epidermal Keratinocytes
2.10. Statistical Analysis
3. Results
3.1. Cytotoxicity Assay (LDH Assay)
3.2. Cell Viability Assay (MTS Assay)
3.3. Total Antioxidant Capacity Assay (TAC Assay)
3.4. Toxicity Bioassays on Daphnia Species
3.5. Daphnia Magna Embryo Developmental Assay
3.6. The “Scratch-Test” on Human Epidermal Keratinocytes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Humphrey, S.; Manson Brown, S.; Cross, S.J.; Mehta, R. Defining Skin Quality: Clinical Relevance, Terminology, and Assessment. Dermatol Surg. 2021, 47, 974–981. [Google Scholar] [CrossRef]
- Férnandez-Guarino, M.; Naharro-Rodriguez, J.; Bacci, S. Disturbances in the Skin Homeostasis: Wound Healing, an Undefined Process. Cosmetics 2024, 11, 90. [Google Scholar] [CrossRef]
- Gade, A.; Matin, T.; Rubenstein, R. Xeroderma. In StatPearls [Internet]; Updated 29 October 2023; StatPearls Publishing: Treasure Island, FL, USA, 2024; Bookshelf ID: NBK565884. Available online: https://www.ncbi.nlm.nih.gov/books/NBK565884/ (accessed on 10 June 2024). [PubMed]
- Mekic, S.; Jacobs, L.C.; Gunn, D.A.; Mayes, A.E.; Arfan Ikram, M.; Pardo, L.M.; Nijsten, T. Prevalence and determinants for xerosis cutis in the middle-aged and elderly population: A cross-sectional study. J. Am. Acad. Dermatol. 2019, 81, 963–969.e2. [Google Scholar] [CrossRef] [PubMed]
- Augustin, M.; Wilsmann-Theis, D.; Körber, A.; Kerscher, M.; Itschert, G.; Dippel, M.; Staubach, P. Diagnosis and treatment of xerosis cutis—A position paper. J. Dtsch. Dermatol. Ges. 2018, 16, 3–35. [Google Scholar] [CrossRef] [PubMed]
- Von Stulpnagel, C.C.; Augustin, M.; da Silva, N.; Schmidt, L.; Nippel, G.; Sommer, R. Exploring the burden of xerosis cutis and the impact of dermatological skin care from patient’s perspective. J. Dermatol. Treat. 2022, 33, 2482–2487. [Google Scholar] [CrossRef]
- Guenther, L.; Lynde, C.W.; Andriessen, A.; Barankin, B.; Goldstein, E.; Skotnicki, S.; Gupta, S.N.; Choi, K.L.; Rosen, N.; Shapiro, L.; et al. Pathway to Dry Skin Prevention and Treatment. J. Cutan. Med. Surg. 2012, 16, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Gorog, A.; Banvolgyi, A.; Hollo, P. Characteristics of the ageing skin, xerosis cutis and its complications. Dev. Health Sci. 2022, 4, 77–80. [Google Scholar] [CrossRef]
- Fronza, M.; Heinzmann, B.; Hamburger, M.; Laufer, S.; Merfort, I. Determination of the wound healing effect of Calendula extracts using the scratch assay with 3T3 fibroblasts. J. Ethnopharmacol. 2009, 126, 463–467. [Google Scholar] [CrossRef]
- Ribeiro, A.S.; Estanqueiro, M.; Oliveira, B.M.; Sousa Lobo, J.M. Main Benefits and Applicability of Plant Extracts in Skin Care Products. Cosmetics 2015, 2, 48–65. [Google Scholar] [CrossRef]
- Stallings, A.F.; Lupo, M.P. Practical Uses of Botanicals in Skin Care. J. Clin. Aesthet. Dermatol. 2009, 2, 36–40. [Google Scholar] [PubMed] [PubMed Central]
- Xie, M.; Jiang, Z.; Lin, X.; Wei, X. Application of plant extracts cosmetics in the field of anti-aging. J. Dermatol. Sci. Cosmet. Technol. 2024, 1, 100014. [Google Scholar] [CrossRef]
- Michalak, M. Plant Extracts as Skin Care and Therapeutic Agents. Int. J. Mol. Sci. 2023, 24, 15444. [Google Scholar] [CrossRef] [PubMed]
- Cizmarova, B.; Hubkova, B.; Tomeckova, V.; Birkova, A. Flavonoids as Promising Natural Compounds in the Prevention and Treatment of Selected Skin Diseases. Int. J. Mol. Sci. 2023, 24, 6324. [Google Scholar] [CrossRef]
- Yang, W.; Chen, X.; Li, Y.; Guo, S.; Wang, Z.; Yu, X. Advances in Pharmacological Activities of Terpenoids. Nat. Prod. Commun. 2020, 15, 1934578X2090355. [Google Scholar] [CrossRef]
- Zerbinati, N.; Sommatis, S.; Maccario, C.; Di Francesco, S.; Capillo, M.C.; Grimaldi, G.; Rauso, R.; Herrera, M.; Bencini, P.L.; Mocchi, R. A Practical Approach for the In Vitro Safety and Efficacy Assessment of an Anti-Ageing Cosmetic Cream Enriched with Functional Compounds. Molecules 2021, 26, 7592. [Google Scholar] [CrossRef] [PubMed]
- Bácskay, I.; Nemes, D.; Fenyvesi, F.; Váradi, J.; Vasvári, G.; Fehér, P.; Vecsernyés, M.; Ujhelyi, Z. Role of Cytotoxicity Experiments in Pharmaceutical Development. In E-Book Cytotoxicity; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Aslantürk, Ö.S. In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages. In E-Book Genotoxicity; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Abd’quadri-Abojukoro, A.N.; Nkadimeng, S.M.; McGaw, L.J.; Nsahlai, I.V. Phytochemical composition and cytotoxicity of ethanolic extracts of some selected plants. J. Appl. Anim. Res. 2022, 50, 656–665. [Google Scholar] [CrossRef]
- Gavanji, S.; Bakhtari, A.; Famurewa, A.C.; Othman, E.M. Cytotoxic Activity of Herbal Medicines as Assessed In Vitro: A Review. Chem. Biodivers. 2023, 20, e202201098. [Google Scholar] [CrossRef]
- Ghica, A.; Drumea, V.; Morosan, A.; Mihaiescu, D.E.; Costea, L.; Luta, E.A.; Mihai, D.P.; Balaci, D.T.; Fita, A.C.; Olaru, O.T.; et al. Phytochemical Screening and Antioxidant Potential of Selected Extracts from Betula alba var. pendula Roth., Glycyrrhiza glabra L., and Avena sativa L. Plants 2023, 12, 2510. [Google Scholar] [CrossRef]
- Jaganjac, M.; Sredoja Tisma, V.; Zarkovic, N. Short Overview of Some Assays for the Measurement of Antioxidant Activity of Natural Products and Their Relevance in Dermatology. Molecules 2021, 26, 5301. [Google Scholar] [CrossRef]
- Honzel, D.; Carter, S.G.; Redman, K.A.; Schauss, A.G.; Endres, J.R.; Jensen, G.S. Comparison of Chemical and Cell-Based Antioxidant Methods for Evaluation of Foods and Natural Products: Generating Multifaceted Data by Parallel Testing Using Erythrocytes and Polymorphonuclear Cells. J. Agric. Food Chem. 2008, 56, 8319–8325. [Google Scholar] [CrossRef]
- Wolfe, K.L.; Liu, R.H. Cellular Antioxidant Activity (CAA) Assay for Assessing Antioxidants, Foods, and Dietary Supplements. J. Agric. Food Chem. 2007, 55, 8896–8907. [Google Scholar] [CrossRef] [PubMed]
- Granato, D. Cellular antioxidant activity measurement: An alternative to chemical antioxidant methods? Food Saf. Health 2023, 1, 9–12. [Google Scholar] [CrossRef]
- Heckmann, M.; Stadlbauer, V.; Drotarova, I.; Gramatte, T.; Feichtinger, M.; Arnaut, V.; Atzmüller, S.; Schwarzinger, B.; Röhrl, C.; Blank-Landeshammer, B.; et al. Identification of Oxidative-Stress-Reducing Plant Extracts from a Novel Extract Library—Comparative Analysis of Cell-Free and Cell-Based In Vitro Assays to Quantitate Antioxidant Activity. Antioxidants 2024, 13, 297. [Google Scholar] [CrossRef] [PubMed]
- Riss, T.; Niles, A.; Moravec, R.; Karassina, N.; Vidugiriene, J. Cytotoxicity Assays: In Vitro Methods to Measure Dead Cells. In Assay Guidance Manual; Markossian, S., Grossman, A., Brimacombe, K., Arkin, M., Auld, D., Austin, C., Baell, J., Chung, T.D., Coussens, N.P., Dahlin, J.L., et al., Eds.; e-book, Eli Lilly & Company; The National Center for Advancing Translational Sciences; 2019. Available online: https://www.ncbi.nlm.nih.gov/books/NBK540958/ (accessed on 12 June 2024).
- CytoTox 96® Non-Radioactive Cytotoxicity Assay, Technical Bulletin, Promega. Available online: https://www.promega.ro/resources/protocols/technical-bulletins/0/cytotox-96-non-radioactive-cytotoxicity-assay-protocol/ (accessed on 10 June 2024).
- OxiSelectTM Total Antioxidant Capacity (TAC) Assay Kit, Product Manual, Cell Biolabs Inc. Available online: https://www.cellbiolabs.com/sites/default/files/STA-360-total-antioxidant-capacity-assay-kit.pdf (accessed on 10 June 2024).
- Kamiloglu, S.; Sari, G.; Ozdal, T.; Capanoglu, E. Guidelines for cell viability assays. Food Front. 2020, 1, 332–349. [Google Scholar] [CrossRef]
- CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS), Technical Bulletin, Promega. Available online: https://www.promega.com/-/media/files/resources/protocols/technical-bulletins/0/celltiter-96-aqueous-one-solution-cell-proliferation-assay-system-protocol.pdf (accessed on 10 June 2024).
- Al Yousef, Z.M.; Alaswad, E.A.; ElAssouli, M.Z.M.; Nori, D.A.; Filimban, F.Z.; Choudhry, H.; Alam, M.Z.; Al Sadoun, H.; Helmi, N.M.W. Anti-sickling effect of Senna alexandrina, Aerva javanica, and Ficus palmata extracts on sickle cell disorder. Trop. J. Pharm. Res. 2023, 22, 571–577. [Google Scholar] [CrossRef]
- Diao, J.; Xu, P.; Wang, P.; Lu, D.; Lu, Y.; Zhou, Z. Enantioselective Degradation in Sediment and Aquatic Toxicity to Daphnia magna of the Herbicide Lactofen Enantiomers. J. Agric. Food Chem. 2010, 58, 2439–2445. [Google Scholar] [CrossRef]
- Wang, K.-S.; Lu, C.-Y.; Chang, S.-H. Evaluation of acute toxicity and teratogenic effects of plant growth regulators by Daphnia magna embryo assay. J. Hazard. Mater. 2011, 190, 520–528. [Google Scholar] [CrossRef]
- Neagu, R.; Popovici, V.; Ionescu, L.-E.; Ordeanu, V.; Biță, A.; Popescu, D.M.; Ozon, E.A.; Gîrd, C.E. Phytochemical Screening and Antibacterial Activity of Commercially Available Essential Oils Combinations with Conventional Antibiotics against Gram-Positive and Gram-Negative Bacteria. Antibiotics 2024, 13, 478. [Google Scholar] [CrossRef]
- Marques, S.S.; Magalhães, L.M.; Tóth, I.V.; Segundo, M.A. Insights on antioxidant assays for biological samples based on the reduction of copper complexes-the importance of analytical conditions. Int. J. Mol. Sci. 2014, 15, 11387–11402. [Google Scholar] [CrossRef]
- Reilly, K.; Ellis, L.-J.A.; Davoudi, H.H.; Supian, S.; Maia, M.T.; Silva, G.H.; Guo, Z.; Martinez, D.S.T.; Lynch, I. Daphnia as a model organism to probe biological responses to nanomaterials—From individual to population effects via adverse outcome pathways. Front. Toxicol. 2023, 5, 1178482. [Google Scholar] [CrossRef] [PubMed]
- Teplova, V.V.; Andreeva-Kovalevskaya, Z.I.; Sineva, E.V.; Solonin, A.S. Quick assessment of cytotoxins effect on Daphnia magna using in vivo fluorescence microscopy. Environ. Toxicol. Chem. 2010, 29, 1345–1348. [Google Scholar] [CrossRef] [PubMed]
- Guilhermino, L.; Lopes, M.C.; Carvalho, A.P.; Soa-res, A.M.V.M. Inhibition of acetylcholinesterase activity as effect criterion in acute tests with juvenile Daphnia magna. Chemosphere 1996, 32, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Ivan, I.M.; Popovici, V.; Chițescu, C.L.; Popescu, L.; Luță, E.A.; Ilie, E.I.; Brașoveanu, L.I.; Hotnog, C.M.; Olaru, O.T.; Nițulescu, G.M.; et al. Phytochemical Profile, Antioxidant and Cytotoxic Potential of Capsicum annuum (L.) Dry Hydro-Ethanolic Extract. Pharmaceutics 2024, 16, 245. [Google Scholar] [CrossRef] [PubMed]
- Planz, V.; Wang, J.; Windbergs, M. Establishment of a cell-based wound healing assay for bio-relevant testing of wound therapeutics. J. Pharmacol.Toxicol. Methods 2018, 89, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Gaidau, C.; Rapa, M.; Stanca, M.; Tanase, M.-L.; Olariu, L.; Constantinescu, R.R.; Lazea-Stoyanova, A.; Alexe, C.-A.; Tudorache, M. Fish Scale Gelatin Nanofibers with Helichrysum italicum and Lavandula latifolia Essential Oils for Bioactive Wound-Healing Dressings. Pharmaceutics 2023, 15, 2692. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.-C.; Park, A.Y.; Guan, J.-L. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2007, 2, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Masae, R.; Kazuyoshi, K.; Emi, K.; Hiromasa, T.; Keiko, I.; Yoshimichi, I.; Ryoko, M.; Masahiro, T. Critical role of tumos necrosis factor-α in the early process of wound healing in skin. J. Dermatol. Dermatol. Surg. 2017, 21, 14–19. [Google Scholar] [CrossRef]
- Damascena, H.L.; Silveira, W.A.A.; Castro, M.S.; Fontes, W. Neutrophil activated by the famous and potent PMA (Phorbol Myristate Acetate). Cells 2022, 11, 2889. [Google Scholar] [CrossRef] [PubMed]
- Nakurte, I.; Stankus, K.; Virsis, I.; Paze, A.; Rizhikovs, J. Characterization of Antioxidant Activity and Total Phenolic Compound Content of Birch Outer Bark Extracts Using Micro Plate Assay. Environ. Technol. Resour. Proc. Int. Sci. Pract. Conf. 2017, 1, 197–201. [Google Scholar] [CrossRef]
- Smiljanic, S.; Messaraa, C.; Lafon-Kolb, V.; Hrapovic, N.; Amini, N.; Osterlund, C.; Visdal-Johnsen, L. Betula alba Bark Extract and Empetrum nigrum Fruit Juice, a Natural Alternative to Niacinamide for Skin Barrier Benefits. Int. J. Mol. Sci. 2022, 23, 12507. [Google Scholar] [CrossRef]
- Assar, D.H.; Elhabashi, N.; Mokhbatly, A.-A.; Ragab, A.E.; Elbialy, Z.I.; Rizk, S.A.; Albalawi, A.E.; Althobaiti, N.A.; Jaouni, S.A.; Atiba, A. Wound healing potential of licorice extract in rat model: Antioxidants, histopathological, immunohistochemical and gene expression evidences. Biomed. Pharmacother. 2021, 143, 112151. [Google Scholar] [CrossRef] [PubMed]
- Zabihi, M.; Taherifard, P.; Ranjbar, A.M.; Shishehbor, F. Licorice (Glyccyrhiza glabra) Accelerates the Burn Wound Healing in Rats and Inhibits Growth of Skin Pathogens In-Vitro. Toxicol. Appl. Pharmacol. Insights 2021, 4, 27–32. [Google Scholar]
- Kupeli Akkol, E.; Suntar, I.; Erdogan Orhan, I.; Keles, H.; Kan, A.; Coksari, G. Assessment of dermal wound healing and in vitro antioxidant properties of Avena sativa L. J. Cereal Sci. 2011, 53, 285–290. [Google Scholar] [CrossRef]
(I) Treatment_BE | (J) Control_Group | Mean Difference (I-J) | Std. Error | Sig. | 95% Confidence Interval |
---|---|---|---|---|---|
Upper Bound | |||||
BE 12.5 µg/mL | Control_Group | −0.6590 * | 0.20869 | 0.006 | −0.2197 |
BE 25 µg/mL | Control_Group | −0.5989 * | 0.19321 | 0.007 | −0.1921 |
BE 50 µg/mL | Control_Group | −0.6041 * | 0.20869 | 0.011 | −0.1648 |
(I) Treatment_LE | (J) Control_Group | Mean Difference (I-J) | Std. Error | Sig. | 95% Confidence Interval |
---|---|---|---|---|---|
Upper Bound | |||||
LE 12.5 µg/mL | Control_Group | −0.6276 * | 0.20630 | 0.008 | −0.1933 |
LE 25 µg/mL | Control_Group | −0.6464 * | 0.19099 | 0.004 | −0.2443 |
LE 50 µg/mL | Control_Group | −0.5405 * | 0.20630 | 0.019 | −0.1062 |
(I) Treatment_AE | (J) Control_Group | Mean Difference (I-J) | Std. Error | Sig. | 95% Confidence Interval |
---|---|---|---|---|---|
Upper Bound | |||||
AE 25 µg/mL | Control_Group | −0.6527 * | 0.20893 | 0.007 | −0.2128 |
AE 50 µg/mL | Control_Group | −0.5972 * | 0.19343 | 0.007 | −0.1900 |
AE 100 µg/mL | Control_Group | −0.6138 * | 0.20890 | 0.010 | −0.1740 |
Plant Extract | Concentration, µg/mL | % Cytotoxicity |
---|---|---|
Betulae extractum | 12.5 | 5.74 ± 0.46 |
50 | 9.63 ± 1.73 | |
Liquiritiae extractum | 12.5 | 5.81 ± 0.64 |
50 | 9.54 ± 2.58 | |
Avenae extractum | 50 | 8.59 ± 1.20 |
100 | 8.71 ± 0.35 |
Plant Extract | Concentration, µg/mL | % Viability |
---|---|---|
Betulae extractum | 12.5 | 99.13 ± 7.93 |
Liquiritiae extractum | 12.5 | 99.44 ± 14.92 |
Avenae extractum | 50 | 102.07 ± 13.27 |
Plant Extract | Concentration of Extract Solution, µg/mL | mM Uric Acid Equivalent, UAE | µM Reducing Copper Equivalent, RCE |
---|---|---|---|
Ethanol | 50 | 0.062 ± 0.005 | 136.54 ± 9.95 |
Betulae extractum | 12.5 | 0.068 ± 0.003 | 149.15 ± 7.89 |
25 | 0.074 ± 0.008 | 162.55 ± 16.97 | |
Liquiritiae extractum | 12.5 | 0.067 ± 0.005 | 146.08 ± 11,26 |
25 | 0.072 ± 0.008 | 158.55 ± 17.60 | |
Avenae extractum | 25 | 0.069 ± 0.003 | 151.03 ± 6,95 |
50 | 0.071 ± 0.008 | 155.82 ± 16.84 |
(I) Treatment | (J) Control_Group | Sig. (p-Value) |
---|---|---|
BE 25 µg/mL | Control_Group | 0.020 * |
LE 25 µg/mL | Control_Group | 0.029 * |
AE 25 µg/mL | Control_Group | 0.043 * |
AE 50 µg/mL | Control_Group | 0.001 * |
(I) Treatment | (J) Control_Group | Sig. (p-Value) |
---|---|---|
BE 25 µg/mL | Control_Group | 0.019 * |
LE 25 µg/mL | Control_Group | 0.025 * |
AE 25 µg/mL | Control_Group | 0.037 * |
AE 50 µg/mL | Control_Group | 0.001 * |
Daphnia Species | Plant Extract | LC50 (µg/mL) | 95% CI | ||
---|---|---|---|---|---|
24 h | 48 h | 24 h | 48 h | ||
Daphnia pulex | AE | 1507 | 1152 | 906.3–2506 | 853.6–1555 |
LE | 318.5 | 77.47 | 254.5–398.6 | 63.31–94.80 | |
BE | 321.2 | 97.58 | 252.0–409.5 | 57.83–164.60 | |
Daphnia magna | AE | NC * | NC * | NC * | NC * |
LE | 83.74 | 47.15 | 63.06–111.2 | NC ** | |
BE | 154.1 | NC ** | 96.28–246.7 | NC ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghica, A.; Tănase, M.L.; Niculițe, C.M.; Tocilă, A.; Popescu, L.; Luță, E.A.; Olaru, O.T.; Popovici, V.; Balaci, T.D.; Duțu, L.E.; et al. In Vitro Toxicity Evaluation of Some Plant Extracts and Their Potential Application in Xerosis cutis. Cosmetics 2024, 11, 124. https://doi.org/10.3390/cosmetics11040124
Ghica A, Tănase ML, Niculițe CM, Tocilă A, Popescu L, Luță EA, Olaru OT, Popovici V, Balaci TD, Duțu LE, et al. In Vitro Toxicity Evaluation of Some Plant Extracts and Their Potential Application in Xerosis cutis. Cosmetics. 2024; 11(4):124. https://doi.org/10.3390/cosmetics11040124
Chicago/Turabian StyleGhica, Adelina, Mariana Luiza Tănase, Cristina Mariana Niculițe, Anca Tocilă, Liliana Popescu, Emanuela Alice Luță, Octavian Tudorel Olaru, Violeta Popovici, Teodora Dalila Balaci, Ligia Elena Duțu, and et al. 2024. "In Vitro Toxicity Evaluation of Some Plant Extracts and Their Potential Application in Xerosis cutis" Cosmetics 11, no. 4: 124. https://doi.org/10.3390/cosmetics11040124
APA StyleGhica, A., Tănase, M. L., Niculițe, C. M., Tocilă, A., Popescu, L., Luță, E. A., Olaru, O. T., Popovici, V., Balaci, T. D., Duțu, L. E., Boscencu, R., & Gîrd, C. E. (2024). In Vitro Toxicity Evaluation of Some Plant Extracts and Their Potential Application in Xerosis cutis. Cosmetics, 11(4), 124. https://doi.org/10.3390/cosmetics11040124