The Botany, Phytochemistry and the Effects of the Juglans regia on Healthy and Diseased Skin
Abstract
:1. Introduction
1.1. Taxonomy
1.2. Botany
1.3. Active Compounds
2. Dermatological Effects of J. regia
2.1. Antioxidant Activity
2.2. Antimicrobial Activity
2.3. Anti-Inflammatory Activity
3. Use of J. regia in Different Skin Conditions
3.1. Effects against UV Radiation-Induced Skin Damage and Chemoprotective Effects
3.2. Effects on Wound Healing
3.3. Anti-Aging Effects
3.4. Skin Hydration
3.5. Anti-Tyrosinase Effects
3.6. Hair Dyeing
4. Disscusion
5. Conclusions
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maleš, Ž.; Ledić Drvar, D.; Duka, I.; Žužul, K. Application of medicinal plants in several dermatovenerological entities. Acta Pharm. 2019, 69, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Reuter, J.; Merfort, I.; Schempp, C.M. Botanicals in dermatology: An evidence-based review. Am. J. Clin. Dermatol. 2010, 11, 247–267. [Google Scholar] [CrossRef] [PubMed]
- Hay, R.J.; Johns, N.E.; Williams, H.C.; Bolliger, I.W.; Dellavalle, R.P.; Margolis, D.J.; Marks, R.; Naldi, L.; Weinstock, M.A.; Wulf, S.K.; et al. The global burden of skin disease in 2010: An analysis of the prevalence and impact of skin conditions. J. Investig. Dermatol. 2014, 134, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Arun, B.; Amit, S.; Ranjana, S.P.; Sarita, B. Juglans regia L: A Review of its Traditional Uses Phytochemistry and Therapeutic Applications. J. Pharm. Negat. Results 2023, 14, 11–16. [Google Scholar]
- Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; Mcveigh, R.; O’Neill, K.; Robbertse, B. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database 2020, 2020, baaa062. [Google Scholar] [CrossRef]
- Hussain, S.; Naseer, B.; Qadri, T.; Fatima, T.; Bhat, T. Walnut (Juglans regia)- Morphology, Taxonomy, Composition and Health Benefits. In Fruits Grown in Highland Regions of the Himalayas; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Gupta, A.; Behl, T.; Panichayupakaranan, P. A review of phytochemistry and pharmacology profile of Juglans regia. Obes. Med. 2019, 16, 100142. [Google Scholar] [CrossRef]
- Verma, G.; Sharma, V. A Scientific Update on Juglans regia Linn. AJPRD 2020, 8, 166–175. [Google Scholar] [CrossRef]
- Sharma, M.; Sharma, M.; Sharma, M. A comprehensive review on ethnobotanical, medicinal and nutritional potential of walnut (Juglans regia L.). Proc. Indian Natl. Sci. Acad. 2022, 88, 601–616. [Google Scholar] [CrossRef]
- Jahanban-Esfahlan, A.; Ostadrahimi, A.; Tabibiazar, M.; Amarowicz, R. A Comparative Review on the Extraction, Antioxidant Content and Antioxidant Potential of Different Parts of Walnut (Juglans regia L.) Fruit and Tree. Molecules 2019, 24, 2133. [Google Scholar] [CrossRef]
- Delaviz, H.; Mohammadi, J.; Ghalamfarsa, G.; Mohammadi, B.; Farhadi, N. A Review Study on Phytochemistry and Pharmacology Applications of Juglans regia Plant. Pharmacogn. Rev. 2017, 11, 145–152. [Google Scholar] [CrossRef]
- Gharibzahedi, S.; Mousavi, S.M.; Hamedi, M.; Rezaei, K.; Khodaiyan, F. Evaluation of physicochemical properties and antioxidant activities of Persian walnut oil obtained by several extraction methods. Ind. Crops Prod. 2013, 45, 133–140. [Google Scholar] [CrossRef]
- Jokić, S.; Moslavac, T.; Bošnjak, A.; Aladić, K.; Rajić, M.; Bilić, M. Optimization of walnut oil production. CJFST 2014, 6, 27–35. [Google Scholar]
- Żurek, N.; Pycia, K.; Pawłowska, A.; Kapusta, I.T. Phytochemical Screening and Bioactive Properties of Juglans regia L. Pollen. Antioxidants 2022, 11, 2046. [Google Scholar] [CrossRef] [PubMed]
- Besrour, N.; Oludemi, T.; Mandim, F.; Pereira, C.; Dias, M.I.; Soković, M.; Stojković, D.; Ferreira, O.; Ferreira, I.C.F.R.; Barros, L. Valorization of Juglans regia Leaves as Cosmeceutical Ingredients: Bioactivity Evaluation and Final Formulation Development. Antioxidants 2022, 11, 677. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, K.; Rahman, S.; Ali, M.; Raisuddin, S. In vitro antioxidant activity of Juglans regia L. bark extract and its protective effect on cyclophosphamide-induced urotoxicity in mice. Redox Rep. 2006, 11, 273–279. [Google Scholar] [CrossRef]
- Kojicic, K.; Tadic, V.; Sovrlic, M.; Cupara, S. Antioxidant activity of Juglans regia L., Juglandaceae pericarp originated from Sumadija region. PONS Med. J. 2019, 16, 3–8. [Google Scholar] [CrossRef]
- Samaranayaka, A.; John, J.A.; Shahidi, F. Antioxidant activity of english walnut (Juglans regia L.). J. Food Lipids 2008, 15, 384–397. [Google Scholar] [CrossRef]
- Rafiei Dehkordi, Z.; Sedaghat, N.; Sabahi, S. Evaluation the chemical composition, phenol, flavonoid and antioxidant activity of walnut skin extract (Juglans regia L.). Iran. J. Food Sci. Ind. 2023, 135, 103–112. [Google Scholar] [CrossRef]
- Qadan, F.; Thewaini, A.J.; Ali, D.A.; Afifi, R.; Elkhawad, A.; Matalka, K.Z. The antimicrobial activities of Psidium guajava and Juglans regia leaf extracts to acne-developing organisms. Am. J. Chin. Med. 2005, 33, 197–204. [Google Scholar] [CrossRef]
- Huo, J.; Zhao, Z.; Hua, Z.; Fan, J.; Du, J.; Guo, B. Evaluation of Juglans regia L., root for wound healing via antioxidant, antimicrobial and anti-inflammatory activity. IJBB 2020, 57, 304–311. [Google Scholar] [CrossRef]
- Beiki, T.; Najafpour, G.D.; Hosseini, M. Evaluation of antimicrobial and dyeing properties of walnut (Juglans regia L.) green husk extract for cosmetics. Color. Technol. 2017, 134, 71–81. [Google Scholar] [CrossRef]
- Pereira, J.A.; Oliveira, I.; Sousa, A.; Ferreira, I.C.; Bento, A.; Estevinho, L. Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food Chem. Toxicol. 2008, 46, 2103–2111. [Google Scholar] [CrossRef] [PubMed]
- Mouhajir, F.; Hudson, J.B.; Rejdali, M.; Towers, G.H.N. Multiple Antiviral Activities of Endemic Medicinal Plants Usedby Berber Peoples of Morocco. Pharm. Biol. 2001, 39, 364–374. [Google Scholar] [CrossRef]
- Papoutsi, Z.; Kassi, E.; Chinou, I.; Halabalaki, M.; Skaltsounis, L.A.; Moutsatsou, P. Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483. Br. J. Nutr. 2008, 99, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Polat, D.; Yilmaz Sarialtin, S.; Coban, T.; Coskun, M. Comparison of Walnut (Juglans regia L.) and Olive (Olea europaea L.) Leaves in Terms of Antioxidant and Anti-inflammatory Activity. Adıyaman Univ. J. Sci. 2019, 9, 242–251. [Google Scholar] [CrossRef]
- Kumas, V.A.; Kshitij, A.; Prem, S. In vitro antiinflammatory activity of Juglans regia bark. JDDT 2013, 3, 122–123. [Google Scholar] [CrossRef]
- Abdulalsalam, H.; Ardalan, N.M.; Ahmed, S.H. Evaluation of anti-inflammatory effect by using iron nanoparticles prepared by Juglans regia water extract. CRMI 2017, 5, 1151–1156. [Google Scholar]
- Zaid, M.; Afaq, F.; Syed, D.N.; Dreher, M.H. Inhibition of UVB mediated oxidative stress markers of photoaging in immortalized HaCaT keratinocyte by pomegranate polyphenol extract POMx. Photochem. Photobiol. 2007, 83, 882–888. [Google Scholar] [CrossRef]
- Salucci, S.; Burattini, S.; Battistelli, M.; Baldassarri, V.; Maltarello, M.C.; Falcieri, E. Ultraviolet B (UVB) irradiation-induced apoptosis in various cell lineages in vitro. Int. J. Mol. Sci. 2012, 14, 532–546. [Google Scholar] [CrossRef]
- Muzaffer, U.; Paul, V.I.; Prasad, N.R.; Karthikeyan, R. Juglans regia L. protects against UVB induced apoptosis in human epidermal keratinocytes. Biochem. Biophys. Rep. 2018, 13, 109–115. [Google Scholar] [CrossRef]
- Varani, J.; Spearman, D.; Perone, P.; Fligiel, S.E.; Datta, S.C. Inhibition of type I procollagen synthesis by damaged collagen in photoaged skin and by collagenase-degraded collagen in vitro. Am. J. Pathol. 2001, 158, 931–942. [Google Scholar] [CrossRef] [PubMed]
- Calcabrini, C.; De Bellis, R.; Mancini, U.; Cucchiarini, L.; Stocchi, V.; Potenza, L. Protective Effect of Juglans regia L. Walnut Extract Against Oxidative DNA Damage. Plant Foods Hum. Nutr. 2017, 72, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Shah, H.; Singh Joshan, D.; Rawal Mahajan, S. Comparative Analysis of SPF of Calendula officinalis Flower, Juglans regia Seeds and Ficus bengalensis Bark by UV-VIS Spectroscopy. Inven. Rapid: Cosmeceuticals 2013, 2, 1–2. [Google Scholar]
- Carvalho, M.; Ferreira, P.J.; Mendes, V.S.; Silva, R.; Pereira, J.A.; Jerónimo, C.; Silva, B.M. Human cancer cell antiproliferative and antioxidant activities of Juglans regia L. Food Chem. Toxicol. 2010, 48, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Qin, Y.; Qi, L.; Fang, Q.; Zhao, L.; Chen, S.; Li, Q.; Zhang, D.; Wang, L. Juglone exerts antitumor effect in ovarian cancer cells. Iran. J. Basic Med. Sci. 2015, 18, 544–548. [Google Scholar]
- Enoch, S.; Leaper, D.J. Basic science of wound healing. Surgery 2008, 26, 31–37. [Google Scholar] [CrossRef]
- Ibrahim, N.; Wong, S.K.; Mohamed, I.N.; Mohamed, N.; Chin, K.Y.; Ima-Nirwana, S.; Shuid, A.N. Wound Healing Properties of Selected Natural Products. Int. J. Environ. Res. Public Health 2018, 15, 2360. [Google Scholar] [CrossRef]
- Taheri, A.; Mirghazanfari, S.M.; Dadpay, M. Wound healing effects of Persian walnut (Juglans regia L.) green husk on the incision wound model in rats. Eur. J. Transl. Myol. 2020, 30, 8671. [Google Scholar] [CrossRef]
- Nasiry, D.; Khalatbary, A.R.; Ghaemi, A.; Ebrahimzadeh, M.A.; Hosseinzadeh, M.H. Topical administration of Juglans regia L. leaf extract accelerates diabetic wound healing. BMC Complement. Med. Ther. 2022, 22, 255. [Google Scholar] [CrossRef]
- Islam, M.A.; Jacob, M.V.; Antunes, E. A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar. J. Environ. Manag. 2021, 281, 111918. [Google Scholar] [CrossRef]
- Al-Nadaf, A.H.; Awadallah, A.; Thiab, S. Superior rat wound-healing activity of green synthesized silver nanoparticles from acetonitrile extract of Juglans regia L.: Pellicle and leaves. Heliyon 2024, 10, e24473. [Google Scholar] [CrossRef] [PubMed]
- Puizina-Ivić, N. Skin aging. Acta Dermatovenerol. Alp. Pannonica Adriat. 2008, 17, 47–54. [Google Scholar] [PubMed]
- Somavanshi, D.; Kamble, P.; Jadhav, K. Development and Evaluation of Polyherbal Based Novel Antiaging Synergistic Formulation. J. Pharm. Res. Int. 2021, 33, 278–291. [Google Scholar] [CrossRef]
- Baini, G. Research and development of botanicals obtained from local medicinal plant, potentially active in skin aging by air pollution. Molecules 2022, 27, 7518. [Google Scholar] [CrossRef]
- Hashizume, H. Skin aging and dry skin. J. Dermatol. 2004, 31, 603–609. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, X.; Tao, G.J.; Chen, J.; Zheng, Z.P. Investigating the inhibitory activity and mechanism differences between norartocarpetin and luteolin for tyrosinase: A combinatory kinetic study and computational simulation analysis. Food Chem. 2017, 223, 40–48. [Google Scholar] [CrossRef]
- Akin, M.; Arabaci, G.; Saki, N. Total Phenols, Antioxidant Potential and Tyrosinase Inhibitory Activity of Walnut (Juglans regia L.) Leaf, Husk and Seed. Asian J. Chem. 2013, 25, 9337–9340. [Google Scholar] [CrossRef]
- Patil, N.N.; Datar, A.G. Applications of natural dye from Ixora coccinea L. in the field of textiles and cosmetics. Color. Technol. 2016, 132, 98. [Google Scholar] [CrossRef]
- Shah, T.I.; Sharma, E.; Ahmad, G. Juglans regia Linn: A Phytopharmacological Review. WJPS 2014, 2, 264–273. [Google Scholar]
- Zhang, J.B.; Liu, J.X.; Zha, F.; Di, L. Chemical constituents in green walnut husks of Juglans regia. Chin. Tradit. Herb. Drugs 2009, 40, 847–849. [Google Scholar]
- Mokhtari, M.; Shariati, M.; Sadegh, N. Effect of alcohol extract from leave Juglans regia on antinociceptive induced by morphine in formalin test. Med. Sci. J. Islam. Azad. Univ. 2008, 18, 85–90. [Google Scholar]
- Al-Nadaf, A.; Seder, N.J.; Rayyan, W.A. Wound healing; antimicrobial and anti-oxidant activity for Jordanian Juglans regia L. unripe fruits. JIPBS 2018, 5, 26–34. [Google Scholar]
- Palma, L.; Marques, L.T.; Bujan, J.; Rodrigues, L.M. Dietary water affects human skin hydration and biomechanics. Clin. Cosmet. Investig. Dermatol. 2015, 8, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Thawabteh, A.M.; Jibreen, A.; Karaman, D.; Thawabteh, A.; Karaman, R. Skin Pigmentation Types, Causes and Treatment—A Review. Molecules 2023, 28, 4839. [Google Scholar] [CrossRef]
- Bonamonte, D.; Foti, C.; Angelini, G. Hyperpigmentation and contact dermatitis due to Juglans regia. Contact Dermat. 2001, 44, 101–102. [Google Scholar] [CrossRef]
Part of the Plant | Active Compound | Reference |
---|---|---|
Leaf | Phenolic acids, tannins, essential fatty acids, ascorbic acid, flavonoids, caffeic acid, paracomaric acid, juglone, napthaquinones | Verma et al. [8] Delaviz et al. [11] |
Green husk of the fruit | Emulsion, glucose, organic materials such as citric acid, malic acid, phosphate and calcium oxalate, naphtols, tannins | Gupta et al. [7] Verma et al. [8] |
Fruit and walnut oil | Fatty acids, tocopherols, phytosterols, total phenolic (tannins), monoacylglycerol, diacylglycerol, triacylglycerol, oleic and linoleic acid, poly unsaturated fatty acids | Gupta et al. [7] Verma et al. [8] |
Bark | Polyphenols | Verma et al. [8] |
Seed | Glutelins, globulins, albumin and prolamins | Gupta et al. [7] |
Flower | Gallic acid, coumarin, quercetin, polyphenols, flavonoids, sterols, fats, proteins, vitamins, minerals | Verma et al. [8] |
Stem | Juglone, sitosterol, ascorbic acid, quercetin-3-larabinoside, phenols, flavonoids, napthquinones | Verma et al. [8] |
Chemical Compound | Nutritional Content per 100 g | Part of the Plant |
---|---|---|
Vitamin A | 20 mg | Walnuts |
Vitamin C | 1.3 mg | |
Vitamin E | 20.83 mg | |
Vitamin K | 207 mg | |
Folates | 98 mg | |
Niacin | 1.125 mg | |
Pantothenic acid | 0.570 mg | |
Pyridoxine | 0.537 mg | |
Ribofavin | 0.150 mg | |
Thiamin | 0.541 mg | |
Palmitoleic acid | 0.77 mg | |
Oleic acid | 25.26 mg | |
Gadoleic acid | 0.05 mg | |
Linoleic acid | 57.10 mg | |
Linolenic acid | 10.34 mg | |
Myristic acid | 0.24 mg | |
Palmitic acid | 4.28 mg | |
Stearic acid | 1.85 mg | |
Arachidic acid | 0.19 mg |
J. regia Formulation | Effect | Model | Material | Dosage/Concentration | Mechanism | Reference |
---|---|---|---|---|---|---|
Bark extract | Antioxidant activity | Measuring of DPPH, ABTS, superoxide, hydrogen peroxide scavenging activity, | DPPH, ABTS, superoxide, hydrogen peroxide assays | 0.1–1.5 mg/mL | Scavenging of different free radicals and reactive oxygen species | Bhatia et al. [16] |
Pericarp extract | Antioxidant activity | Measuring of DPPH scavenging activity | DPPH assay | 0.5–2.0 mg/mL | Scavenging of free radicals | Kojicic et al. [17] |
Leaf extract | Antioxidant activity | Measuring of DPPH scavenging activity, reducing power, TBARS, formation inhibition and OxHLIA inhibition | DPPH, ferric reducing power, OxHLIA assays | 10 mg/mL | Scavenging of free radicals, inhibition of the lipid peroxidation activity, inhibition of the oxidative hemolysis | Besrour et al. [15] |
Whole shelled nut, skin and kernel extract | Antioxidant activity | Measuring of DPPH and ABTS scavenging activity, reducing power, TBARS, TEAC method | DPPH, ABTS, TBARS, TEAC, iron reducing, Bulk Stripped Corn Oil Model System assays | 0.02–0.05 mg; 0.005–0.0125 mg; 0.5–0.75 mg | Scavenging of different free radicals, ion chelating ability | Samaranayaka et al. [18] |
Green walnut skin extract | Antioxidant activity | Measuring of DPPH scavenging activity | DPPH assay | 0.1 −1 mg/mL | Scavenging of free radicals | Rafiei Dehkordi et al. [19] |
Male flower pollen extract | Antioxidant activity | Measuring of ABTS and ROS scavenging activity, assessment of the copper and iron reducing capacity | ABTS, ROS, CUPRAC, iron reducing assays | 80%, v/v | Scavenging of free radicals and ion reducing activity | Żurek et al. [14] |
J. regia Formulation | Effect | Model | Material | Dosage/Concentration | Mechanism | Reference |
---|---|---|---|---|---|---|
Leaf extract | Antibacterial and antifungal activity, effects against acne vulgaris | Determination of the diameter of the zone inhibition of obtained isolates | Isolates of several microorganisms obtained from the human skin | 10%, 15% and 20% | The antimicrobial effects of tannins, triterpenoids and flavonoid glycosides | Qadan et al. [20] |
Leaf extract | Antibacterial activity | Determination of the MIC and MBC | Isolates of several microorganisms obtained from the human skin | 10 mg/mL | The antimicrobial effects of present active compounds | Besrour et al. [15] |
Root extract | Antibacterial and antifungal activity | Determination of MIC | Disc diffusion assays | 12.5, 25, 50 mg | Not entirely determined antimicrobial mechanism, formation of a barrier against microbial contamination | Huo et al. [21] |
Green husk extract | Antibacterial activity | Determination of the inhibition diameter | Disc diffusion assays | 6% (w/v), 12% (w/v) | Penetration into the hair interior and antimicrobial activity | Beiki et al. [22] |
Fruit extract | Antibacterial and antifungal activity | Determination of MIC | Microorganism assays | 100 mg/mL | The antimicrobial effects of present active compounds | Pereira et al. [23] |
Leaf and bark extract | Antiviral activity | Determination of MIC | Vero cell cultures | 200 µg/mL | Direct antiviral effects | Mouhajir et al. [24] |
J. regia Formulation | Effect | Model | Material | Dosage/Concentration | Mechanism | Reference |
---|---|---|---|---|---|---|
Leaf extract | Anti-inflammatory activity | in vitro determination of the EC50 value | RAW 264.7 macrophages cells | 10 mg/mL | Reduction in mRNA expression levels of TNF-α, IL-1, IL-6, NF-κB and COX-2 | Besrour et al. [15] |
Root extract incorporated into an ointment | Anti-inflammatory activity | Carrageenan-induced rat paw edema model | Wistar albino rats | 1% w/w, 2.5% w/w, 5% w/w, 10% w/w, | Effects attributed to antioxidant activity | Huo et al. [21] |
Fruit extract | Anti-inflammatory activity | in vitro determination of the ICAM-1 and VCAM-1 expression | Cell-enzyme linked immunosorbent assay, endothelial and KS483 osteoblastic cell cultures | 10–200 mg/mL | Inhibition of the TNF-a-induced endothelial activation and inhibition of the expression of ICAM-1 and VCAM-1 | Papoutsi et al. [25] |
Leaf extract | Anti-inflammatory activity | Stabilization of human red blood cell membrane by heat induced membrane lysis model | Human red blood cell culture | 7.69% (w/w) | Membrane stabilization effect by inhibiting heat induced lysis of human red blood cell membrane as an indicator of anti-inflammatory function | Polat el al. [26] |
Bark extract | Anti-inflammatory activity | Stabilization of human red blood cell membrane by heat induced membrane lysis model | Human red blood cell culture | 100, 200 mg/mL | Stabilization of lysosomal membranes, limiting the inflammatory response by preventing the release of lysosomal constituents of activated neutrophiles (bactericidal enzymes and proteases) | Kumar et al. [27] |
Fruit peel extract | Anti-inflammatory activity | Determination of the albumin denaturation inhibition and heat induced hemolysis inhibition | Human albumin and human red blood cell cultures | 2 mg/mL | Inhibiting protein denaturation and preventing the inflammation, protection against damaging effect of heat solution | Abdulalsalam et al. [28] |
J. regia Formulation | Effect | Model | Material | Dosage/Concentration | Mechanism | Reference |
---|---|---|---|---|---|---|
Flower extract | UVB protection | in vitro determination of the effects against UVB irradiation efects | HaCaT cell line | 80 µg/mL | Increase in the mitochondrial membrane potential, prevention of the UVB-induced loss of the mitochondrial membrane potential, reduction of the UVB-induced DNA damage and UVB-induced activation of the apoptotic markers and genes in HaCaT | Muzaffer et al. [31] |
Kernel extract | UVC protection | in vitro determination of the UVC protection using the acellular and cellular models | HaCaT cell line, Plasmid DNA cleavage, Hallo assay, | 7.5 mg/μL | Prevention of the UVC induced oxidative DNA damage by the reduction of the linear or double helix forms of the strand | Calcabrini et al. [33] |
Seed extract | UV protection | in vitro determination of the SPF | in vitro SPF calculation | 200 µg/mL | Prevention of the UV induced skin damage | Shah et al. [34] |
Seed, green husk and leaf extracts | Anticancer activity | evaluation of the cancer cell proliferation inhibition potential | Human renal epithelial cancer cells A-498, 769-P and colon cancer Caco-2 cell line | 31.25, 62.5, 125, 250 and 500 mg/mL | Prevention of the initiation of the carcinogenic process and inhibition of the cancer promotion and progression | Carvalho et al. [35] |
Juglone | Anticancer activity | evaluation of the cancer cell proliferation inhibition potential | Ovarian cancer SKOV3 cell line and MTT assay | 6.25, 12.5, 25, 50 or 100 μM | Induction of the cell G0/G1 phase arrest and cell apoptosis, and the inhibition of the cell invasion in SKOV3 cells | Fang et al. [36] |
J. regia Formulation | Effect | Model | Material | Dosage/Concentration | Mechanism | Reference |
---|---|---|---|---|---|---|
Root extract incorporated into an ointment | Wound healing process | Incision wound methodology | Wistar albino rats | 1%, 2.5%, 5%, 10% w/w | Increase in collagen synthesis, support of the collagen crosslink and decrease of the soluble collagen degradation | Huo et al. [21] |
Green husk extract incorporated into an ointment | Wound healing process | Incision wound methodology | Wistar albino rats | 20% w/w | Increase in re-epithelization, neovascularization and polymorphonuclear cell count | Taheri et al. [39] |
Leaf extract incorporated into an ointment | Wound healing process | Wound initiation methodology | Wistar albino rats | 2%, 5% | Increase in density of fibroblasts, collagen density and cell proliferation | Nasiry et al. [40] |
Pellicle and leaf extracts incorporated into silver nanoparticles | Wound healing process | Incision wound methodology | Wistar albino rats | 2% | Increase in the tensile strength of a wound, collagen synthesis and angiogenesis | Al-Nadaf et al. [42] |
J. regia Formulation | Effect | Model | Material | Dosage/Concentration | Mechanism | Reference |
---|---|---|---|---|---|---|
Seed extract | Anti-aging effects | in vitro determination of the anti-aging effects | Anticollagenase and antielastase assay | 1% w/w | Collagenase enzyme inhibition, elastase enzyme inhibition, antioxidant activity | Somavanshi et al. [44] |
Leaf extract | Anti-aging effects | Hyperosmotic Aging Model, Immunosuppressive Skin Aging Model | NaCl-stimulated keratinocytes, enzymatic assays | 1 mg/mL | Collagenase, elastase and hyaluronidase inhibition, antioxidant activity, UV-protective effects | Baini [45] |
J. regia Formulation | Effect | Model | Material | Dosage/Concentration | Mechanism | Reference |
---|---|---|---|---|---|---|
Leaf extract | Hydrating effects | in vivo determination of safety and hydrating effects | Human volunteers | 3% | Increase of skin moisturization and skin elasticity and the reduction of skin roughness | Baini [45] |
Leaf, green husk and seed extracts | Anti-tyrosinase activity | modified dopachrome method with L-DOPA | Tyrosinase inhibitory assay (mushroom tyrosinase) | 1.33, 6.66, 13.33 mg/mL | Tyrosinase inhibition of flavonoids and phenolic acid | Akin et al. [48] |
Green husk extract | Hair dyeing properties | in vitro determination of hair color with the Kubelka–Munk equation | Hair samples | 0.3 g | Interaction of hair protein with colorant molecules | Beiki et al. [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamovic, M.; Adamovic, A.; Andjic, M.; Dimitrijevic, J.; Zdravkovic, N.; Kostic, O.; Pecarski, D.; Pecarski, T.; Obradovic, D.; Tomovic, M. The Botany, Phytochemistry and the Effects of the Juglans regia on Healthy and Diseased Skin. Cosmetics 2024, 11, 163. https://doi.org/10.3390/cosmetics11050163
Adamovic M, Adamovic A, Andjic M, Dimitrijevic J, Zdravkovic N, Kostic O, Pecarski D, Pecarski T, Obradovic D, Tomovic M. The Botany, Phytochemistry and the Effects of the Juglans regia on Healthy and Diseased Skin. Cosmetics. 2024; 11(5):163. https://doi.org/10.3390/cosmetics11050163
Chicago/Turabian StyleAdamovic, Miljan, Ana Adamovic, Marijana Andjic, Jovana Dimitrijevic, Nebojsa Zdravkovic, Olivera Kostic, Danijela Pecarski, Teodora Pecarski, Dusica Obradovic, and Marina Tomovic. 2024. "The Botany, Phytochemistry and the Effects of the Juglans regia on Healthy and Diseased Skin" Cosmetics 11, no. 5: 163. https://doi.org/10.3390/cosmetics11050163
APA StyleAdamovic, M., Adamovic, A., Andjic, M., Dimitrijevic, J., Zdravkovic, N., Kostic, O., Pecarski, D., Pecarski, T., Obradovic, D., & Tomovic, M. (2024). The Botany, Phytochemistry and the Effects of the Juglans regia on Healthy and Diseased Skin. Cosmetics, 11(5), 163. https://doi.org/10.3390/cosmetics11050163