An Alternative Approach to Validate the Cleaning Efficiency of a Skin Cleansing Wipe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluation of Wipe Product Cleaning Efficiency in Removing FecloneTM
2.1.1. FecloneTM Preparation
2.1.2. FecloneTM Application on Human Forearm
2.2. Evaluation of Wipe Product Impact on Human Skin Pores
- Total pore volume (mm3) V = sum of depth for every pixel * pixel area.
- Total pores area (mm2) = number of depressed pixels * pixel area.
- Pore count = isolated depression islands inside the selected region of interest.
2.3. Evaluation of Wipe Product Cleaning Efficiency against E. Coli (NCTC 10538)
2.3.1. Bacterial Culture
2.3.2. Application of Bacteria to the Forearm of Volunteers
3. Results
3.1. Evaluation of Wipe Product Cleaning Efficiency in Removing Simulated Faecal Material (FecloneTM)
3.2. Evaluation of Wipe Product on Human Skin Pores
3.3. Evaluation of Wipe Product Cleaning Efficiency in Removing E. Coli
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheriaa, R.; Boubaker, J. Quality assessment of baby wet wipes. J. Ind. Text. 2022, 51, 2124S–2147S. [Google Scholar] [CrossRef]
- Visscher, M.; Odio, M.; Taylor, T.; White, T.; Sargent, S.; Sluder, L.; Smith, L.; Flower, T.; Mason, B.; Rider, M.; et al. Skin care in the NICU patient: Effects of wipes versus cloth and water on stratum corneum integrity. Neonatology 2009, 96, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Garcia Bartels, N.; Massoudy, L.; Scheufele, R.; Dietz, E.; Proquitté, H.; Wauer, R.; Bertin, C.; Serrano, J.; Blume-Peytavi, U. Standardized diaper care regimen: A prospective, randomized pilot study on skin barrier function and epidermal IL-1α in newborns. Pediatr. Dermatol. 2012, 29, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, K.J.; Cunningham, C.; Foxenberg, R.; Hoffman, D.; Vongsa, R. The science behind wet wipes for infant skin: Ingredient review, safety, and efficacy. Pediatr. Dermatol. 2020, 37, 447–454. [Google Scholar] [CrossRef]
- Odio, M.; Streicher-Scott, J.; Hansen, R.C. Disposable baby wipes: Efficacy and skin mildness. Dermatol. Nurs. 2001, 13, 107–112, 117–118, 121. [Google Scholar]
- Ehretsmann, C.; Schaefer, P.; Adam, R. Cutaneous tolerance of baby wipes by infants with atopic dermatitis, and comparison of the mildness of baby wipe and water in infant skin. J. Eur. Acad. Dermatol. Venereol. 2001, 15, 16–21. [Google Scholar] [CrossRef]
- Blume-Peytavi, U.; Lavender, T.; Jenerowicz, D.; Ryumina, I.; Stalder, J.; Torrelo, A.; Cork, M.J. Recommendations from a European Roundtable Meeting on Best Practice Healthy Infant Skin Care. Pediatr. Dermatol. 2016, 33, 311–321. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Oh, K.W. Image analysis: A novel technique to determine the efficiency of wiping cloths. Fibers Polym. Fiber Polym. 2006, 7, 73–78. [Google Scholar] [CrossRef]
- Kandil, S.M.; Soliman, I.I.; Diab, H.M.; Bedair, N.I.; Mahrous, M.H.; Abdou, E.M. Magnesium ascorbyl phosphate vesicular carriers for topical delivery; preparation, in-vitro and ex-vivo evaluation, factorial optimization and clinical assessment in melasma patients. Drug Deliv. 2022, 29, 534–547. [Google Scholar] [CrossRef]
- Prendergast, P.M. Skin Imaging in Aesthetic Medicine. In Aesthetic Medicine: Art and Techniques; Prendergast, P.M., Shiffman, M.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 59–68. ISBN 978-3-642-20113-4. [Google Scholar]
- Messaraa, C.; Metois, A.; Walsh, M.; Hurley, S.; Doyle, L.; Mansfield, A.; O’Connor, C.; Mavon, A. Wrinkle and roughness measurement by the Antera 3D and its application for evaluation of cosmetic products. Skin Res. Technol. 2018, 24, 359–366. [Google Scholar] [CrossRef]
- Araco, A.; Francesco, A. Prospective randomized clinical study of a new topical formulation for face wrinkle reduction and dermal regeneration. J. Cosmet. Dermatol. 2021, 20, 2832–2840. [Google Scholar] [CrossRef] [PubMed]
- Anqi, S.; Xiukun, S.; Ai’e, X. Quantitative evaluation of sensitive skin by ANTERA 3D® combined with GPSkin Barrier®. Skin Res. Technol. 2022, 28, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Parvar, S.Y.; Amani, M.; Shafiei, M.; Rastaghi, F.; Hosseini, S.A.; Ahramiyanpour, N. The efficacy and adverse effects of treatment options for facial pores: A review article. J. Cosmet. Dermatol. 2023, 22, 763–775. [Google Scholar] [CrossRef] [PubMed]
- WaterWipe. Our Baby Wipes Story|WaterWipes UK. WaterWipes. Available online: https://www.waterwipes.com/uk/en/our-story (accessed on 12 July 2024).
- Marsh, R.G.; Miller, K.H.; Dannenberg, A. Method for Assessing Adhesion of Soils or Exudates to the Skin. US20100228107A1, 9 September 2010. Available online: https://patents.google.com/patent/US20100228107A1/en (accessed on 3 July 2024).
- Jubinville, E.; Girard, M.; Trudel-Ferland, M.; Fliss, I.; Jean, J. Inactivation of Murine Norovirus Suspended in Organic Matter Simulating Actual Conditions of Viral Contamination. Food Environ. Virol. 2021, 13, 544–552. [Google Scholar] [CrossRef]
- Araco, A.; Araco, F. Preliminary Prospective and Randomized Study of Highly Purified Polynucleotide vs Placebo in Treatment of Moderate to Severe Acne Scars. Aesthet. Surg. J. 2021, 41, NP866–NP874. [Google Scholar] [CrossRef]
- Niemeyer-van der Kolk, T.; Buters, T.P.; Krouwels, L.; Boltjes, J.; de Kam, M.L.; van der Wall, H.; van Alewijk, D.C.J.G.; van den Munckhof, E.H.A.; Becker, M.J.; Feiss, G.; et al. Topical antimicrobial peptide omiganan recovers cutaneous dysbiosis but does not improve clinical symptoms in patients with mild to moderate atopic dermatitis in a phase 2 randomized controlled trial. J. Am. Acad. Dermatol. 2022, 86, 854–862. [Google Scholar] [CrossRef]
- Hossain, M.M.; Jones, J.M.; Dey, S.; Carr, G.J.; Visscher, M.O. Quantitation of baby wipes lotion transfer to premature and neonatal skin. Food Chem. Toxicol. 2015, 84, 106–114. [Google Scholar] [CrossRef]
- Gitlina, Y.; Guarnera, G.C.; Dhillon, D.S.; Hansen, J.; Lattas, A.; Pai, D.; Ghosh, A. Practical Measurement and Reconstruction of Spectral Skin Reflectance. Comput. Graph. Forum 2020, 39, 75–89. [Google Scholar] [CrossRef]
- Messaraa, C.; Metois, A.; Walsh, M.; Flynn, J.; Doyle, L.; Robertson, N.; Mansfield, A.; O’Connor, C.; Mavon, A. Antera 3D capabilities for pore measurements. Skin Res. Technol. 2018, 24, 606–613. [Google Scholar] [CrossRef]
- Vachiramon, V.; Namasondhi, A.; Anuntrangsee, T.; Kositkuljorn, C.; Jurairattanaporn, N. A study of combined microfocused ultrasound and hyaluronic acid dermal filler in the treatment of enlarged facial pores in Asians. J. Cosmet. Dermatol. 2021, 20, 3467–3474. [Google Scholar] [CrossRef]
- Shahzad, Y.; Louw, R.; Gerber, M.; du Plessis, J. Breaching the skin barrier through temperature modulations. J. Control. Release 2015, 202, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.M.; Kellogg, D.L. Local thermal control of the human cutaneous circulation. J. Appl. Physiol. 2010, 109, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Charkoudian, N. Skin Blood Flow in Adult Human Thermoregulation: How It Works, When It Does Not, and Why. Mayo Clin. Proc. 2003, 78, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-K.; Kim, S.-B. Antimicrobial Activity of Grapefruit Seed Extract. Korean J. Food Nutr. 2006, 19, 526–531. [Google Scholar]
- Sung-Hwan, C.H.O.; Il-Won, S.E.O.; Jong-Duck, C.; In-Saeng, J.O.O. Antimicrobial and Antioxidant Activity of Grapefruit and Seed Extract on Fishery Products. Korean J. Fish. Aquat. Sci. 1990, 23, 289–296. [Google Scholar]
- Jong-Duck, C.; Il-Won, S.E.O.; Sung-Hwan, C.H.O. Studies on the Antimicrobial Activity of Grapefruit Seed Extract. Korean J. Fish. Aquat. Sci. 1990, 23, 297–302. [Google Scholar]
- Saaty, A.H. Grapefruit Seed Extracts’ Antibacterial and Antiviral Activity: Anti-Severe Acute Respiratory Syndrome Coronavirus 2 Impact. Arch. Pharm. Pract. 2022, 13, 68–73. [Google Scholar] [CrossRef]
- Khaiat, A.; Saliou, C. Botanical Extracts. In Cosmeceuticals and Active Cosmetics, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Yarovaya, L.; Waranuch, N.; Wisuitiprot, W.; Khunkitti, W. Clinical study of Asian skin changes after application of a sunscreen formulation containing grape seed extract. J. Cosmet. Dermatol. 2022, 21, 4523–4535. [Google Scholar] [CrossRef]
- MTU. MTU Human Research Ethics Policy. Available online: https://www.mtu.ie/media/mtu-website/governance/policies-and-publications/academic-council-poli-cies-and-regulations/research-innovation-and-postgraduate-study/Human_Research_Ethics_Policy_AC_app_030622.pdf (accessed on 16 July 2024).
- Wood, K. National Policy Statement on Ensuring Research Integrity in Ireland. Available online: https://www.iua.ie/publications/national-policy-statement-on-ensuring-research-integrity-in-ireland/ (accessed on 5 September 2024).
Volunteer Number | % FecloneTM Removed | Volunteer Number | % FecloneTM Removed |
---|---|---|---|
1 | 99.96 | 14 | 100.06 |
2 | 100.33 | 15 | 100.02 |
3 | 100.10 | 16 | 99.63 |
4 | 101.35 | 17 | 99.50 |
5 | 100.26 | 18 | 99.93 |
6 | 108.90 | 19 | 102.75 |
7 | 98.52 | 20 | 100.06 |
8 | 100.02 | 21 | 99.91 |
9 | 99.89 | 22 | 100.25 |
10 | 99.79 | 23 | 103.57 |
11 | 100.06 | 24 | 100.05 |
12 | 99.90 | 25 | 108.93 |
13 | 99.97 | ||
%Total average | 100.92 |
Pore Parameters | Pre-Wipe (Average) | Post-Wipe (Average) | % Reduction (Average) |
---|---|---|---|
Pore total area (mm2) | 42.07 | 25.64 | 39.04 |
Pore count | 341.4 | 224 | 34.38 |
Pore total volume (mm3) | 0.59 | 0.35 | 39.98 |
Volunteer Number | %Bacteria Removed | Volunteer Number | %Bacteria Removed |
---|---|---|---|
1 | 99.99 | 14 | 99.99 |
2 | 99.99 | 15 | 99.99 |
3 | 99.99 | 16 | 99.99 |
4 | 99.99 | 17 | 99.99 |
5 | 99.99 | 18 | 99.99 |
6 | 99.99 | 19 | 99.99 |
7 | 99.99 | 20 | 99.99 |
8 | 99.99 | 21 | 99.99 |
9 | 99.99 | 22 | 99.99 |
10 | 99.99 | 23 | 99.99 |
11 | 99.99 | 24 | 99.99 |
12 | 99.99 | 25 | 99.99 |
13 | 99.99 | ||
%Total average | 99.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marisa, A.; Shadrach, W.; Holohan, K.; Abu Alhaija, A.A.; Gilligan, E.; Sommerville, J.; Burke, N.; Yeomans, T. An Alternative Approach to Validate the Cleaning Efficiency of a Skin Cleansing Wipe. Cosmetics 2024, 11, 172. https://doi.org/10.3390/cosmetics11050172
Marisa A, Shadrach W, Holohan K, Abu Alhaija AA, Gilligan E, Sommerville J, Burke N, Yeomans T. An Alternative Approach to Validate the Cleaning Efficiency of a Skin Cleansing Wipe. Cosmetics. 2024; 11(5):172. https://doi.org/10.3390/cosmetics11050172
Chicago/Turabian StyleMarisa, Arnold, Wisdom Shadrach, Kerrie Holohan, Abed Alkarem Abu Alhaija, Emer Gilligan, Jill Sommerville, Niall Burke, and Tim Yeomans. 2024. "An Alternative Approach to Validate the Cleaning Efficiency of a Skin Cleansing Wipe" Cosmetics 11, no. 5: 172. https://doi.org/10.3390/cosmetics11050172
APA StyleMarisa, A., Shadrach, W., Holohan, K., Abu Alhaija, A. A., Gilligan, E., Sommerville, J., Burke, N., & Yeomans, T. (2024). An Alternative Approach to Validate the Cleaning Efficiency of a Skin Cleansing Wipe. Cosmetics, 11(5), 172. https://doi.org/10.3390/cosmetics11050172