The Genomic Variation in Textured Hair: Implications in Developing a Holistic Hair Care Routine
Abstract
:1. Introduction
2. Hair as a Composite Molecular System
2.1. Structure and Anatomy of Human Hair
2.2. The Role of Chemical Bonds in Hair Structure
2.3. Afro-Textured Hair Follicle Structure
3. Hair Growth Cycle
3.1. Anagen
3.2. Catagen
3.3. Telogen
3.4. Exogen
4. Variations in Afro-Textured Hair in Comparison to That of Other Ethnic Populations
4.1. Lipid and Moisture Content
4.2. Alopecia in the Black Population
5. Genetics of Curly Hair
5.1. Trichohyalin (TCHH)
5.2. EGF Receptor Feedback Inhibitor 1 (ERRFI1)
5.3. Peroxisomal Biogenesis Factor 14 (PEX14)
5.4. Peptidyl Arginine Deiminase 3 (PADI3)
5.5. Transforming Growth Factor Alpha (TGFA)
5.6. Wingless-Type MMTV Integration Site Family, Member 10A (WNT10A)
5.7. Fraser Extracellular Matrix Complex Subunit 1 (FRAS1)
5.8. GATA Binding Protein 3 (GATA3)
5.9. Leucine-Rich Repeat-Containing G Protein-Coupled Receptor 4 (LGR4)
5.10. Keratin Associated Protein (KRTAP)/Keratin (KRT)
5.11. Protein Tyrosine Kinase 6 (PTK6)
5.12. Ectodysplasin a Receptor (EDAR)
Gene | SNP | Association with Hair Curliness |
---|---|---|
Trichohyalin/Trichohyalin-like 1 (TCHH) 1 | rs1764694659 rs11803731 rs12130862 rs4845418 1q21.3 | Non-straight allele nearly fixed in East Asia; largest effect on hair shape in Europe |
EGF Receptor Feedback Inhibitor 1 (ERRFI1) 2 | rs8029326859 1p36.23 | Genome-wide association with hair shape |
Peroxisomal Biogenesis Factor 14 (PEX14) 2 | rs665821659 1p36.22 | Shape variation of European hair |
Peptidyl Arginine Deiminase 3 (PADI3) 3 | rs1120334659 1p36.13 | Non-straight allele nearly fixed in East Asia |
Transforming Growth Factor Alpha (TGFA) 2 | rs1299774259 | Non-straight allele with higher frequency in Africa |
Wingless-Type MMTV Integration Site Family, Member 10A (WNT10A) 2 | rs7433395059 2p13.3 | Hair shape variation in Europe, Latin America, and East Asia |
Fraser Extracellular Matrix Complex Subunit 1 (FRAS1) 2 | rs50686359 4q21.21 | Genome-wide association with hair shape variation |
GATA Binding Protein 3 (GATA3) 2 | rs199987459 10p14 | Genome-wide association with hair shape variation |
Leucine-Rich Repeat-Containing G Protein-Coupled Receptor 4 (LGR4) 2 | rs221978359 11p14.1 | Non-straight allele with higher frequency in Africa |
Keratin Associated Protein (KRTAP)/Keratin (KRT) 2 | rs1107897659 rs391263114 17q21.2 | Genome-wide association with hair shape |
Protein Tyrosine Kinase 6 (PTK6) 2 | rs31064259 20q13.33 | Non-straight allele associated with East Asia; higher frequency in Africa |
Ectodysplasin A receptor (EDAR) 4 | rs382776059 2q13 | Polymorphic variation linked to hair shape in Europe, Latin America, and East Asia |
Homeobox C13 (HOXC13) 2 | rs1117067859 12q13.13 | Genome-wide association with hair shape; gene polymorphism in Europe |
Serine Protease 53 (PRSS53) 4 | rs1115060659 16p11.2 | Polymorphic variation in hair shape in Latin America and Europe |
Orofacial cleft 1 candidate 1 (OFCC1) 5 | rs155654759 6p24.3 | Genome-wide association with hair shape in Europe, Latin America, and East Asia |
Late cornified envelope 3E (LCE3E) 2 | rs49969759 1q21.3 | Genome-wide association with hair shape; largest effect in Europe |
5.13. Homeobox C13 (HOXC13)
5.14. Serine Protease 53 (PRSS53)
5.15. Orofacial Cleft 1 Candidate 1 (OFCC1)
5.16. Late Cornified Envelope 3E (LCE3E)
5.17. Protein–Protein Interactive Network
6. The Need for Personalisation in Afro-Textured Hair Care
6.1. Curly and Coily Hair
6.2. Increased Sensitivity of Afro-Textured Hair to Chemical Relaxers and Hair Dye Products
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cruz, C.F.; Costa, C.; Gomes, A.C.; Matama, T.; Cavaco-Paulo, A. Human hair and the impact of cosmetic procedures: A review on cleansing and shape-modulating cosmetics. Cosmetics 2016, 3, 26. [Google Scholar] [CrossRef]
- De La Mettrie, R.; Saint-Léger, D.; Loussouarn, G.; Garcel, A.; Porter, C.; Langaney, A. Shape variability and classification of human hair: A worldwide approach. Hum. Biol. 2007, 79, 265–281. [Google Scholar] [CrossRef]
- Loussouarn, G.; Lozano, I.; Panhard, S.; Collaudin, C.; El Ravadi, C.; Genain, G. Diversity in human hair growth, diameter, colour and shape. An in vivo study on young adults from 24 different ethnic groups observed in the five continents. Eur. J. Dermatol. 2016, 26, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Roseborough, I.E.; McMichael, A.J. Hair care practices in African-American patients. Semin. Cutan. Med. Surg. 2009, 28, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Callender, V.D.; McMichael, A.J.; Cohen, G.F. Medical and surgical therapies for alopecias in black women. Dermatol. Ther. 2004, 17, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.R.; Francis, S.; Whitt-Glover, M.; Loftin-Bell, K.; Swett, K.; McMichael, A.J. Hair care practices as a barrier to physical activity in African American women. JAMA Dermatol. 2013, 149, 310–314. [Google Scholar] [CrossRef]
- Nnoruka, N.E. Hair loss: Is there a relationship with hair care practices in Nigeria? Int. J. Dermatol. 2005, 44, 13–17. [Google Scholar] [CrossRef]
- Dadzie, O.E.; Salam, A. The hair grooming practices of women of African descent in London, United Kingdom: Findings of a cross-sectional study. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 1021–1024. [Google Scholar] [CrossRef]
- Verschoore, M.; Dlova, N. Advances in dermatology in sub-Saharan Africa in the past 20 years from workshops to the birth of the African Society of Dermatology and Venereology. Int. J. Dermatol. 2022, 61, 841–847. [Google Scholar] [CrossRef]
- Cruz, C.F.; Martins, M.; Egipto, J.; Osorio, H.; Ribeiro, A.; Cavaco-Paulo, A. Changing the shape of hair with keratin peptides. RSC Adv. 2017, 7, 51581–51592. [Google Scholar] [CrossRef]
- Yang, W.; Yu, Y.; Ritchie, R.O.; Meyers, M.A. On the strength of hair across species. Matter 2020, 2, 136–149. [Google Scholar] [CrossRef]
- Malinauskyte, E.; Cornwell, P.A.; Reay, L.; Shaw, N.; Petkov, J. Effect of equilibrium pH on the structure and properties of bleach-damaged human hair fibers. Biopolymers 2020, 111, e23401. [Google Scholar] [CrossRef]
- Madnani, N.; Khan, K. Hair cosmetics. Indian J. Dermatol. Venereol. Leprol. 2013, 79, 654. [Google Scholar] [CrossRef]
- Westgate, G.E.; Ginger, R.S.; Green, M.R. The biology and genetics of curly hair. Exp. Dermatol. 2017, 26, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Breakspear, S.; Noecker, B.; Popescu, C. Relevance and evaluation of hydrogen and disulfide bond contribution to the mechanics of hard α-keratin fibers. J. Phys. Chem. B 2019, 123, 4505–4511. [Google Scholar] [CrossRef] [PubMed]
- Breakspear, S.; Frueh, P.; Neu, A.; Noecker, B.; Popescu, C.; Uellner, Q. Learning from hair moisture sorption and hysteresis. Int. J. Cosmet. Sci. 2022, 44, 555–568. [Google Scholar] [CrossRef]
- Tonanzi, G. How to Strengthen & Repair Hair Bonds. Curlsmith EU. Available online: https://eu.curlsmith.com/blogs/product-guides/how-to-strengthen-repair-hair-bonds (accessed on 29 March 2023).
- Molamodi, K.; Fajuyigbe, D.; Sewraj, P.; Gichuri, J.; Sijako, B.; Galliano, A.; Laurent, A. Quantifying the impact of braiding and combing on the integrity of natural African hair. Int. J. Cosmet. Sci. 2021, 43, 321–331. [Google Scholar] [CrossRef]
- Aryiku, S.A.; Salam, A.; Dadzie, O.E.; Jablonski, N.G. Clinical and anthropological perspectives on chemical relaxing of afro-textured hair. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 1689–1695. [Google Scholar] [CrossRef]
- Khan, I.; Maldonado, E.; Vasconcelos, V.; O’Brien, S.J.; Johnson, W.E.; Antunes, A. Mammalian keratin associated proteins (Krtaps) subgenomes: Disentangling hair diversity and adaptation to terrestrial and aquatic environments. BMC Genom. 2014, 15, 779. [Google Scholar] [CrossRef]
- Lin, X.; Zhu, L.; He, J. Morphogenesis, growth cycle and molecular regulation of hair follicles. Front. Cell Dev. Biol. 2022, 10, 823. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, Y.; Yang, X.; Jing, J.; Wu, X.; Zhang, J.; Lu, Z. Kartogenin regulates hair growth and hair cycling transition. Int. J. Med. Sci. 2022, 19, 537–546. [Google Scholar] [CrossRef]
- Grymowicz, M.; Rudnicka, E.; Podfigurna, A.; Napierala, P.; Smolarczyk, R.; Smolarczyk, K.; Meczekalski, B. Hormonal effects on hair follicles. Int. J. Mol. Sci. 2020, 21, 5342. [Google Scholar] [CrossRef]
- Hoover, E.; Alhajj, M.; Flores, J.L. Physiology, Hair. In StatPearls Internet; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Buffoli, B.; Rinaldi, F.; Labanca, M.; Sorbellini, E.; Trink, A.; Guanziroli, E.; Rezzani, R.; Rodella, L.F. The human hair: From anatomy to physiology. Int. J. Dermatol. 2014, 53, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Martel, J.L.; Miao, J.H.; Badri, T.; Fakoya, A.O. Anatomy, hair follicle. In StatPearls Internet; StatPearls Publishing: Treasure Island, FL, USA, 2017. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470195/ (accessed on 14 April 2023).
- Fernandes, B.; Cavaco-Paulo, A.; Matamá, T.A. Comprehensive review of mammalian pigmentation: Paving the way for innovative hair colour-changing cosmetics. Biology 2023, 12, 290. [Google Scholar] [CrossRef] [PubMed]
- Lan, S.; Liu, F.; Zhao, G.; Zhou, T.; Wu, C.; Kou, J.; Fan, R.; Qi, X.; Li, Y.; Jiang, Y.; et al. Cyclosporine A increases hair follicle growth by suppressing apoptosis-inducing factor nuclear translocation: A new mechanism. Fundam. Clin. Pharmacol. 2015, 29, 191–203. [Google Scholar] [CrossRef]
- Salam, A.; Aryiku, S.; Dadzie, O.E. Hair and scalp disorders in women of African descent: An overview. Br. J. Dermatol. 2013, 169, 19–32. [Google Scholar] [CrossRef]
- Higgins, C.A.; Westgate, G.E.; Jahoda, C.A. From telogen to exogen: Mechanisms underlying formation and subsequent loss of the hair club fiber. J. Investig. Dermatol. 2009, 129, 2100–2108. [Google Scholar] [CrossRef] [PubMed]
- Roland, J. Stages of Hair Growth Plus How to Maintain Hair Health in Every Stage. Healthline. Available online: https://www.healthline.com/health/stages-of-hair-growth#growing-phase. (accessed on 29 March 2023).
- De Mirecki-Garrido, M.; Santana-Farré, R.; Guedes-Hernandez, N.; Jimenez-Acosta, F.; Lorenzo-Villegas, D. Ginseng in hair growth and viability. In Ginseng: Modern Aspects of the Famed Traditional Medicine; Benzie, I.F.F., Wachtel-Galor, S., Eds.; IntechOpen: London, UK, 2022; p. 69. [Google Scholar] [CrossRef]
- Cruz, C.F.; Fernandes, M.M.; Gomes, A.C.; Coderch, L.; Martí, M.; Méndez, S.; Gales, L.; Azoia, N.G.; Shimanovich, U.; Cavaco-Paulo, A. Keratins and lipids in ethnic hair. Int. J. Cosmet. Sci. 2013, 35, 244–249. [Google Scholar] [CrossRef]
- Song, S.H.; Lim, J.H.; Son, S.K.; Choi, J.; Kang, N.G.; Lee, S.M. Prevention of lipid loss from hair by surface and internal modification. Sci. Rep. 2019, 9, 9834. [Google Scholar] [CrossRef]
- Leerunyakul, K.; Suchonwanit, P. Asian hair: A review of structures, properties, and distinctive disorders. Clin. Cosmet. Investig. Dermatol. 2020, 13, 309–318. [Google Scholar] [CrossRef]
- Oliver, M.A.; Marti, M.; Coderch, L.; Carrer, V.; Kreuzer, M.; Barba, C. Lipid loses and barrier function modifications of the brown-to-white hair transition. Skin Res. Technol. 2019, 25, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Wade, M.; Tucker, I.; Cunningham, P.; Skinner, R.; Bell, F.; Lyons, T.; Patten, K.; Gonzalez, L.; Wess, T. Investigating the origins of nanostructural variations in differential ethnic hair types using X-ray scattering techniques. Int. J. Cosmet. Sci. 2013, 35, 430–441. [Google Scholar] [CrossRef]
- Ji, J.H.; Park, T.S.; Lee, H.J.; Kim, Y.D.; Pi, L.Q.; Jin, X.H.; Lee, W.S. The ethnic differences of the damage of hair and integral hair lipid after ultra violet radiation. Ann. Dermatol. 2013, 25, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Franbourg, A.; Hallegot, P.; Baltenneck, F.; Toutaina, C.; Leroy, F. Current research on ethnic hair. J. Am. Acad. Dermatol. 2003, 48, S115–S119. [Google Scholar] [CrossRef]
- Martí, M.; Barba, C.; Manich, A.M.; Rubio, L.; Alonso, C.; Coderch, L. The influence of hair lipids in ethnic hair properties. Int. J. Cosmet. Sci. 2015, 38, 77–84. [Google Scholar] [CrossRef]
- Coderch, L.; Oliver, M.A.; Martínez, V.; Manich, A.M.; Rubio, L.; Martí, M. Exogenous and endogenous lipids of human hair. Skin Res. Technol. 2017, 23, 479–485. [Google Scholar] [CrossRef]
- Kreplak, L.; Briki, F.; Duvault, Y.; Doucet, J.; Merigoux, C.; Leroy, F.; Lévêque, J.L.; Miller, L.; Carr, G.L.; Williams, G.P.; et al. Profiling lipids across Caucasian and Afro-American hair transverse cuts, using synchrotron infrared microspectrometry. Int. J. Cosmet. Sci. 2001, 23, 369–374. [Google Scholar] [CrossRef]
- McMichael, A.J. Hair Breakage in Normal and Weathered Hair: Focus on the Black Patient. JID Symp. Proc. 2007, 12, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Coderch, L.; Oliver, M.A.; Carrer, V.; Manich, A.M.; Martí, M. External lipid function in ethnic hairs. J. Cosmet. Dermatol. 2019, 18, 1912–1920. [Google Scholar] [CrossRef]
- Khumalo, N.P. African hair length: The picture is clearer. J. Am. Acad. Dermatol. 2006, 20, 556–560. [Google Scholar] [CrossRef]
- Aguh, C.; McMichael, A. Central centrifugal cicatricial alopecia. JAMA Dermatol. 2020, 156, 1036. [Google Scholar] [CrossRef]
- Jamerson, T.A.; Talbot, C.C., Jr.; Dina, Y.; Kwatra, S.G.; Garza, L.A.; Aguh, C. Gene expression profiling suggests severe, extensive central centrifugal cicatricial alopecia may be both clinically and biologically distinct from limited disease subtypes. Exp. Dermatol. 2022, 31, 789–793. [Google Scholar] [CrossRef]
- Lawson, C.N.; Bakayoko, A.; Callender, V.D. Central centrifugal cicatricial alopecia: Challenges and treatments. Dermatol. Clin. 2021, 39, 389–405. [Google Scholar] [CrossRef] [PubMed]
- Malki, L.; Sarig, O.; Romano, M.T.; Méchin, M.C.; Peled, A.; Pavlovsky, M.; Warshauer, E.; Samuelov, L.; Uwakwe, L.; Briskin, V.; et al. Variant PADI3 in central centrifugal cicatricial alopecia. N. Engl. J. Med. 2019, 380, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Aguh, C.; Dina, Y.; Talbot, C.C., Jr.; Garza, L. Fibroproliferative genes are preferentially expressed in central centrifugal cicatricial alopecia. J. Am. Acad. Dermatol. 2018, 79, 904–912. [Google Scholar] [CrossRef] [PubMed]
- Blumeyer, A.; Tosti, A.; Messenger, A.; Reygagne, P.; Del Marmol, V.; Spuls, P.I.; Trakatelli, M.; Finner, A.; Kiesewetter, F.; Trüeb, R.; et al. Evidence-based (S3) guideline for the treatment of androgenetic alopecia in women and in men. J. Dtsch. Dermatol. Ges. 2011, 9, S1–S57. [Google Scholar] [CrossRef]
- Kutlu, Ö. Dexpanthenol may be a novel treatment for male androgenetic alopecia: Analysis of nine cases. Dermatol. Ther. 2020, 33, e13381. [Google Scholar] [CrossRef]
- Inui, S. Trichoscopy for common hair loss diseases: Algorithmic method for diagnosis. J. Dermatol. 2011, 38, 71–75. [Google Scholar] [CrossRef]
- Ho, C.H.; Sood, T.; Zito, P.M. Androgenetic alopecia. In StatPearls Internet; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Premanand, A.; Reena Rajkumari, B. Androgen modulation of Wnt/β-catenin signaling in androgenetic alopecia. Arch. Dermatol. Res. 2018, 310, 391–399. [Google Scholar] [CrossRef]
- Shashank, B.; Bhushan, M. Injectable Platelet-Rich Fibrin (PRF): The newest biomaterial and its use in various dermatological conditions in our practice: A case series. J. Cosmet. Dermatol. 2021, 20, 1421–1426. [Google Scholar] [CrossRef]
- Sobhy, N.; Aly, H.; El Shafee, A.; El Deeb, M. Evaluation of the effect of injection of dutasteride as mesotherapeutic tool in treatment of androgenetic alopecia in males. Our Dermatol. Online 2013, 4, 40. [Google Scholar] [CrossRef]
- Avci, P.; Gupta, G.K.; Clark, J.; Wikonkal, N.; Hamblin, M.R. Low-level laser (light) therapy (LLLT) for treatment of hair loss. Lasers Surg. Med. 2014, 46, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Chen, Y.; Zhu, G.; Hysi, P.G.; Wu, S.; Adhikari, K.; Breslin, K.; Pośpiech, E.; Hamer, M.A.; Peng, F.; et al. Meta-analysis of genome-wide association studies identifies 8 novel loci involved in shape variation of human head hair. Hum. Mol. Gen. 2018, 27, 559–575. [Google Scholar] [CrossRef]
- Cloete, E.; Khumalo, N.P.; Ngoepe, M.N. The what, why and how of curly hair: A review. Proc. R. Soc. A 2019, 475, 20190516. [Google Scholar] [CrossRef] [PubMed]
- Steinert, P.M.; Parry, D.A.; Marekov, L.N. Trichohyalin mechanically strengthens the hair follicle: Multiple cross-bridging roles in the inner root sheath. J. Biol. Chem. 2003, 278, 41409–41419. [Google Scholar] [CrossRef] [PubMed]
- Medland, S.E.; Nyholt, D.R.; Painter, J.N.; McEvoy, B.P.; McRae, A.F.; Zhu, G.; Gordon, S.D.; Ferreira, M.A.; Wright, M.J.; Henders, A.K.; et al. Common variants in the trichohyalin gene are associated with straight hair in Europeans. Am. J. Hum. Genet. 2009, 85, 750–755. [Google Scholar] [CrossRef]
- Eriksson, N.; Macpherson, J.; Tung, J.; Hon, L.S.; Naughton, B.; Saxonov, S.; Avey, L.; Wojcicki, A.; Pe’er, I.; Mountain, J. Web-based, participant-driven studies yield novel genetic associations for common traits. PLoS Genet. 2010, 6, e1000993. [Google Scholar] [CrossRef]
- Ferby, I.; Reschke, M.; Kudlacek, O.; Knyazev, P.; Pantè, G.; Amann, K.; Sommergruber, W.; Kraut, N.; Ullrich, A.; Fässler, R.; et al. Mig6 is a negative regulator of EGF receptor-mediated skin morphogenesis and tumor formation. Nat. Med. 2006, 12, 568–573. [Google Scholar] [CrossRef]
- Bharti, P.; Schliebs, W.; Schievelbusch, T.; Neuhaus, A.; David, C.; Kock, K.; Herrmann, C.; Meyer, H.E.; Wiese, S.; Warscheid, B.; et al. PEX14 is required for microtubule-based peroxisome motility in human cells. J. Cell Sci. 2011, 124, 1759–1768. [Google Scholar] [CrossRef]
- Vikhe Patil, K.; Mak, K.H.; Genander, M. A Hairy Cituation—PADIs in Regeneration and Alopecia. Front. Cell Dev. Biol. 2021, 9, 789676. [Google Scholar] [CrossRef]
- Basmanav, F.B.Ü.; Cau, L.; Tafazzoli, A.; Méchin, M.C.; Wolf, S.; Romano, M.T.; Valentin, F.; Wiegmann, H.; Huchenq, A.; Kandil, R.; et al. Mutations in three genes encoding proteins involved in hair shaft formation cause uncombable hair syndrome. Am. J. Hum. Genet. 2016, 99, 1292–1304. [Google Scholar] [CrossRef]
- Hassan, M.; Netchiporouk, E. Autosomal-Dominant Mutation in PADI3 Responsible for up to 25% of Central Centrifugal Cicatricial Alopecia Cases. J. Cutan. Med. Surg. 2019, 23, 553. [Google Scholar] [CrossRef] [PubMed]
- Appleton, C.T.G.; Usmani, S.E.; Mort, J.S.; Beier, F. Rho/ROCK and MEK/ERK activation by transforming growth factor-α induces articular cartilage degradation. Lab. Investig. 2010, 90, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Luetteke, N.C.; Qiu, T.H.; Peiffer, R.L.; Oliver, P.; Smithies, O.; Lee, D.C. TGF alpha deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. Cell 1993, 73, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Hochfeld, L.M.; Bertolini, M.; Broadley, D.; Botchkareva, N.V.; Betz, R.C.; Schoch, S.; Nöthen, M.M.; Heilmann-Heimbach, S. Evidence for a functional interaction of WNT10A and EBF1 in male-pattern baldness. PLoS ONE 2021, 16, e0256846. [Google Scholar] [CrossRef] [PubMed]
- Doolan, B.J.; Onoufriadis, A.; Kantaputra, P.; McGrath, J.A. WNT10A, dermatology and dentistry. Br. J. Dermatol. 2021, 185, 1105–1111. [Google Scholar] [CrossRef]
- Sun, Q.; Lee, L.W.; Hall, E.K.; Choate, K.A.; Elder, R.W. Hair and skin predict cardiomyopathies: Carvajal and erythrokeratodermia cardiomyopathy syndromes. Pediatr. Dermatol. 2020, 38, 31–38. [Google Scholar] [CrossRef]
- Short, K.; Wiradjaja, F.; Smyth, I. Let’s stick together: The role of the Fras1 and Frem proteins in epidermal adhesion. IUBMB Life 2007, 59, 427–435. [Google Scholar] [CrossRef]
- Kalekar, L.A.; Cohen, J.N.; Prevel, N.; Sandoval, P.M.; Mathur, A.N.; Moreau, J.M.; Lowe, M.M.; Nosbaum, A.; Wolters, P.J.; Haemel, A.; et al. Regulatory T cells in skin are uniquely poised to suppress profibrotic immune responses. Sci. Immunol. 2019, 4, eaaw2910. [Google Scholar] [CrossRef]
- Chikh, A.; Sayan, E.; Thibaut, S.; Lena, A.M.; DiGiorgi, S.; Bernard, B.A.; Melino, G.; Candi, E. Expression of GATA-3 in epidermis and hair follicle: Relationship to p63. Biochem. Biophys. Res. Commun. 2007, 361, 1–6. [Google Scholar] [CrossRef]
- Ren, X.; Xia, W.; Xu, P.; Shen, H.; Dai, X.; Liu, M.; Shi, Y.; Ye, X.; Dang, Y. Lgr4 Deletion Delays the Hair Cycle and Inhibits the Activation of Hair Follicle Stem Cells. J. Investig. Dermatol. 2020, 140, 1706–1712. [Google Scholar] [CrossRef] [PubMed]
- Chastkofsky, M.I.; Bie, W.; Ball-Kell, S.M.; He, Y.Y.; Tyner, A.L. Protein Tyrosine Kinase 6 Regulates UVB-Induced Signaling and Tumorigenesis in Mouse Skin. J. Investig. Dermatol. 2015, 135, 2492–2501. [Google Scholar] [CrossRef]
- Cui, C.Y.; Schlessinger, D. EDA signaling and skin appendage development. Cell Cycle 2006, 5, 2477–2483. [Google Scholar] [CrossRef] [PubMed]
- Mou, C.; Jackson, B.; Schneider, P.; Overbeek, P.A.; Headon, D.J. Generation of the primary hair follicle pattern. Proc. Natl. Acad. Sci. USA 2006, 103, 9075–9080. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Tan, J.; Yang, Y.; Peng, Q.; Zhang, M.; Li, J.; Lu, D.; Liu, Y.; Lou, H.; Feng, Q.; et al. Genome-wide scans reveal variants at EDAR predominantly affecting hair straightness in Han Chinese and Uyghur populations. Hum. Genet. 2016, 135, 1279–1286. [Google Scholar] [CrossRef]
- Jave-Suarez, L.F.; Winter, H.; Langbein, L.; Rogers, M.A.; Schweizer, J. HOXC13 is involved in the regulation of human hair keratin gene expression. J. Biol. Chem. 2002, 277, 3718–3726. [Google Scholar] [CrossRef]
- Adhikari, K.; Fontanil, T.; Cal, S.; Mendoza-Revilla, J.; Fuentes-Guajardo, M.; Chacón-Duque, J.C.; Al-Saadi, F.; Johansson, J.A.; Quinto-Sanchez, M.; Acuña-Alonzo, V.; et al. A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features. Nat. Commun. 2016, 7, 10815. [Google Scholar] [CrossRef]
- Deng, J.; Song, Y.; Liu, H.; Sui, T.; Chen, M.; Zhang, Y.; Yao, B.; Xu, Y.; Liu, Z.; Lai, L.; et al. A direct link between Prss53, hair curvature, and skeletal dysplasia. bioRxiv 2019, 560847, preprint. [Google Scholar] [CrossRef]
- Botchkarev, V.A.; Fessing, M.Y. Edar signaling in the control of hair follicle development. J. Investig. Dermatol. Symp. Proc. 2005, 10, 247–251. [Google Scholar] [CrossRef]
- Singh, B.; Coffey, R.J. From wavy hair to naked proteins: The role of transforming growth factor alpha in health and disease. Semin. Cell Dev. Biol. 2014, 28, 12–21. [Google Scholar] [CrossRef]
- Kaufman, C.K.; Zhou, P.; Pasolli, H.A.; Rendl, M.; Bolotin, D.; Lim, K.C.; Dai, X.; Alegre, M.L.; Fuchs, E. GATA-3: An unexpected regulator of cell lineage determination in skin. Genes. Dev. 2003, 17, 2108–2122. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.; Ericson, M.; Tomlin-Harris, T.; Galloway, D.; Dawkins-Moultin, L.; Llanos, A.; Treviño, L.; Montgomery, S.B.; Teteh, D. Abstract P6-05-39: Black Breast Cancer Survivors’ Sociocultural Perspectives of Beauty, and Use of Personal Care Products Containing Endocrine Disrupting Chemicals. Cancer Res. 2023, 83 (Suppl. S5), P6-05. [Google Scholar] [CrossRef]
- Hawthorne, C. Making Italy: Afro-Italian entrepreneurs and the racial boundaries of citizenship. Soc. Cult. Geogr. 2021, 22, 704–724. [Google Scholar] [CrossRef]
- Brenner, B.; Evans, S.; Miller, K.; Weinberg, L.; Rothenberg, A.; Martinez, C.; Jandorf, L. Breast cancer and the environment: Reaching multicultural communities; Advocates mentoring advocates. Environ. Justice 2015, 8, 117–125. [Google Scholar] [CrossRef]
- Washington, G. Towards creation of a curl pattern recognition system. In Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV), Las Vegas, NV, USA, 30 July–2 August 2018; Available online: https://styluspub.presswarehouse.com/browse/book/9781601324856/Image-Processing-Computer-Vision-and-Pattern-Recognition (accessed on 3 May 2024).
- Gaines, M.; Page, I.; Miller, N.; Greenvall, B.; Medina, J.; Irschick, D.; Southard, A.; Ribbe, A.; Grason, G.; Crosby, A. Reimagining Hair Science: A New Approach to Classify Curly Hair Phenotypes via New Quantitative Geometrical & Structural Mechanical Parameters. Acc. Chem. Res. 2023, 56, 1330–1339. [Google Scholar] [CrossRef]
- Simeon, A. The Controversial History of the Hair Typing System, Byrdie. Byrdie. Available online: https://www.byrdie.com/hair-typing-system-history-5205750 (accessed on 29 March 2023).
- Gomes, J.R.; de Almeida, F.A.S.; Adão, J.M.; Porto, M.D.; da Silva, R.R. The Brazilian Beauty Industry and the cosmetics market for Frizzy/Curly hair. Int. J. Humanit. Soc. Sci. 2019, 9, 6. [Google Scholar] [CrossRef]
- Daniels, G.; Fraser, A.; Westgate, G.E. How different is human hair? A critical appraisal of the reported differences in global hair fiber characteristics and properties toward defining a more relevant framework for hair type classification. Int. J. Cosmet. Sci. 2023, 45, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Wise, L.A.; Palmer, J.R.; Reich, D.; Cozier, Y.C.; Rosenberg, L. Hair relaxer use and risk of uterine leiomyomata in African-American women. Am. J. Epidemiol. 2012, 175, 432–440. [Google Scholar] [CrossRef]
- Khumalo, N.P.; Stone, J.; Gumedze, F.; McGrath, E.; Ngwanya, M.R.; de Berker, D. ‘Relaxers’ damage hair: Evidence from amino acid analysis. J. Am. Acad. Dermatol. 2010, 62, 402–408. [Google Scholar] [CrossRef]
- Kyei, A.; Bergfeld, W.F.; Piliang, M.; Summers, P. Medical and environmental risk factors for the development of central centrifugal cicatricial alopecia: A population study. Arch. Dermatol. 2011, 147, 909–914. [Google Scholar] [CrossRef]
- Paula, J.N.H.D.; Basílio, F.M.A.; Mulinari-Brenner, F.A. Effects of chemical straighteners on the hair shaft and scalp. An. Bras. Dermatol. 2022, 97, 193–203. [Google Scholar] [CrossRef]
- Sishi, V.N.; Van Wyk, J.C.; Khumalo, N.P. The pH of lye and no-lye hair relaxers, including those advertised for children, is at levels that are corrosive to the skin. S. Afr. Med. J. 2019, 109, 941–946. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Michailidou, F.; Gahlon, H.L.; Zeng, W. Hair dye ingredients and potential health risks from exposure to hair dyeing. Chem. Res. Toxicol. 2022, 35, 901–915. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.S.; Lee, C.M.; Jeong, W.J.; Kim, S.J.; Lee, K.Y. Significant damage of the skin and hair following hair bleaching. J. Dermatol. 2010, 37, 882–887. [Google Scholar] [CrossRef] [PubMed]
- Bolt, H.M.; Golka, K. The debate on carcinogenicity of permanent hair dyes: New insights. Crit. RevToxicol. 2007, 37, 521–536. [Google Scholar] [CrossRef] [PubMed]
- Yazar, K.; Boman, A.; Lidén, C. p-Phenylenediamine and other hair dye sensitizers in Spain. Contact Dermat. 2012, 66, 27–32. [Google Scholar] [CrossRef]
- Venkatesan, G.; Dancik, Y.; Sinha, A.; Kyaw, H.M.; Srinivas, R.; Dawson, T.L., Jr.; Bigliardi, M.; Bigliardi, P.; Pastorin, G. Development of novel alternative hair dyes to hazardous para-phenylenediamine. J. Hazard. Mater. 2021, 402, 123712. [Google Scholar] [CrossRef]
- Søsted, H.; Hesse, U.; Menné, T.; Andersen, K.E.; Johansen, J.D. Contact dermatitis to hair dyes in a Danish adult population: An interview-based study. Br. J. Dermatol. 2005, 153, 132–135. [Google Scholar] [CrossRef]
- Eberle, C.E.; Sandler, D.P.; Taylor, K.W.; White, A.J. Hair dye and chemical straightener use and breast cancer risk in a large US population of black and white women. Int. J. Cancer 2020, 147, 383–391. [Google Scholar] [CrossRef]
- White, A.J.; Gregoire, A.M.; Taylor, K.W.; Eberle, C.; Gaston, S.; O’Brien, K.M.; Jackson, C.L.; Sandler, D.P. Adolescent use of hair dyes, straighteners, and perms in relation to breast cancer risk. Int. J. Cancer 2021, 148, 2255–2263. [Google Scholar] [CrossRef]
- Shastry, B.S. SNPs: Impact on gene function and phenotype. Methods Mol. Biol. 2009, 578, 3–22. [Google Scholar] [CrossRef] [PubMed]
Ethnicity | Mean ± S.D. |
---|---|
African | 280 ± 50 |
Asian | 411 ± 43 |
European | 367 ± 56 1 |
Ethnicity | African | Asian | European |
---|---|---|---|
Extracted lipid levels 1 | 6.75 ± 0.29 | 2.09 ± 0.72 | 2.73 ± 0.11 |
Lipid content 2 | Highest | Lowest | Relatively low |
Lipid composition 3 | Mostly sebaceous and internal lipids | Highest internal lipids | Mostly internal higher unsaturated lipids |
Humidity level before lipid extraction 1 | 10.68 ± 0.44 | 10.65 ± 0.26 | 11.24 ± 0.03 |
Humidity level after lipid extraction 1 | 10.51 ± 0.21 | 10.23 ± 0.25 | 9.94 ± 0.13 |
Hydration levels 4 | Lowest due to high apolar lipids | Higher than Afro-textured hair | Highest hydration level |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oladele, D.B.; Markiewicz, E.; Idowu, O.C. The Genomic Variation in Textured Hair: Implications in Developing a Holistic Hair Care Routine. Cosmetics 2024, 11, 183. https://doi.org/10.3390/cosmetics11060183
Oladele DB, Markiewicz E, Idowu OC. The Genomic Variation in Textured Hair: Implications in Developing a Holistic Hair Care Routine. Cosmetics. 2024; 11(6):183. https://doi.org/10.3390/cosmetics11060183
Chicago/Turabian StyleOladele, Deborah B., Ewa Markiewicz, and Olusola C. Idowu. 2024. "The Genomic Variation in Textured Hair: Implications in Developing a Holistic Hair Care Routine" Cosmetics 11, no. 6: 183. https://doi.org/10.3390/cosmetics11060183
APA StyleOladele, D. B., Markiewicz, E., & Idowu, O. C. (2024). The Genomic Variation in Textured Hair: Implications in Developing a Holistic Hair Care Routine. Cosmetics, 11(6), 183. https://doi.org/10.3390/cosmetics11060183