The Potential of Tecoma stans (Linn.) Flower Extract as a Natural Antioxidant and Anti-Aging Agent for Skin Care Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation and Extraction of Tecoma stans (Linn.)
2.3. Preliminary Phytochemical Screening of T. stans Extracts
2.3.1. Determination of Flavonoid Compounds
2.3.2. Determination of Phenolic Compounds
2.3.3. Determination of Terpenoid Compounds
2.3.4. Determination of Steroid Compounds
2.3.5. Determination of Alkaloid Compounds
2.4. Total Phenolic Content of T. stans Extracts
2.5. Total Flavonoid Content of T. stans Extracts
2.6. Antioxidant Activities of T. stans Extracts
2.6.1. DPPH• Radical Scavenging Activity
2.6.2. ABTS•+ Radical Scavenging Activity
2.7. Inhibition of Skin Aging-Related Enzymes
2.7.1. Inhibition of Collagenase Activity
2.7.2. Inhibition of Elastase Activity
2.7.3. Inhibition of Hyaluronidase Activity
2.8. Cytotoxicity of T. stans Extracts
2.8.1. Cells and Cell Culture Environment
2.8.2. Determination of Cell Viability
2.9. Anti-Aging Skincare Formulation
2.10. Stability Test
2.11. Statistical Analysis
3. Results and Discussion
3.1. T. stans Extraction Yield and Phytochemical Screening of Different Solvent Extracts
3.2. Total Phenolic Contents, Total Flavonoid Contents, and Antioxidant Activities of Different Extraction Solvents of T. stans
3.3. Assessments of Anti-Aging Activities of Different Solvent Extracts from T. stans
3.4. Effect of Solvent Polarity on the Cytotoxicities of T. stans Extracts
3.5. Stability Test of an Anti-Aging Skincare Formulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lopez-Ojeda, W.; Pandey, A.; Alhajj, M.; Oakley, A.M. Anatomy, Skin (Integument). In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2024. [Google Scholar]
- Rittié, L.; Fisher, G.J. Natural and sun-induced aging of human skin. Cold Spring Harb. Perspect. Med. 2015, 5, a015370. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Yang, T.; Yu, D.; Xiong, H.; Zhang, S. Current insights and future perspectives of ultraviolet radiation (UV) exposure: Friends and foes to the skin and beyond the skin. Environ. Int. 2024, 185, 108535. [Google Scholar] [CrossRef] [PubMed]
- Fisher, G.J.; Kang, S.; Varani, J.; Bata-Csorgo, Z.; Wan, Y.; Datta, S.; Voorhees, J.J. Mechanisms of photoaging and chronological skin aging. Arch. Dermatol. 2002, 138, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Han, J.; Jiang, C.; Zhang, Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res. Rev. 2020, 59, 101036. [Google Scholar] [CrossRef] [PubMed]
- Monzon, M.E.; Fregien, N.; Schmid, N.; Falcon, N.S.; Campos, M.; Casalino-Matsuda, S.M.; Forteza, R.M. Reactive oxygen species and hyaluronidase 2 regulate airway epithelial hyaluronan fragmentation. J. Biol. Chem. 2010, 285, 26126–26134. [Google Scholar] [CrossRef]
- Ganceviciene, R.; Liakou, A.I.; Theodoridis, A.; Makrantonaki, E.; Zouboulis, C.C. Skin anti-aging strategies. Dermatoendocrinol 2012, 4, 308–319. [Google Scholar] [CrossRef]
- Kaci, M.; Belhaffef, A.; Meziane, S.; Dostert, G.; Menu, P.; Velot, É.; Desobry, S.; Arab-Tehrany, E. Nanoemulsions and topical creams for the safe and effective delivery of lipophilic antioxidant coenzyme Q10. Colloids Surf. B Biointerfaces 2018, 167, 165–175. [Google Scholar] [CrossRef]
- Eren, B.; Tuncay Tanrıverdi, S.; Aydın Köse, F.; Özer, Ö. Antioxidant properties evaluation of topical astaxanthin formulations as anti-aging products. J. Cosmet. Dermatol. 2019, 18, 242–250. [Google Scholar] [CrossRef]
- Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Li, X. Anti-aging cosmetics and its efficacy assessment methods. IOP Conf. Ser. Mater. Sci. Eng. 2015, 87, 012043. [Google Scholar] [CrossRef]
- Cruz, A.M.; Gonçalves, M.C.; Marques, M.S.; Veiga, F.; Paiva-Santos, A.C.; Pires, P.C. In Vitro Models for Anti-Aging Efficacy Assessment: A Critical Update in Dermocosmetic Research. Cosmetics 2023, 10, 66. [Google Scholar] [CrossRef]
- Liu, J.K. Antiaging agents: Safe interventions to slow aging and healthy life span extension. Nat. Prod. Bioprospect. 2022, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Haseeb, A.; Ghulam, H.; Imtiaz, M. Antioxidants from Natural Sources. In Antioxidants in Foods and Its Applications; Emad, S., Ghada Mostafa, A., Eds.; IntechOpen: Rijeka, Croatia, 2018; Chapter 1. [Google Scholar]
- Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Miller, C.T.; Singh, P.; Sharma, R.; Rana, N.; Dhakad, A.K.; Dubey, R.K. A comprehensive review on ecology, life cycle and use of Tecoma stans (bignoneaceae). Bot. Stud. 2024, 65, 6. [Google Scholar] [CrossRef] [PubMed]
- Anand, M.; Basavaraju, R. A review on phytochemistry and pharmacological uses of Tecoma stans (L.) Juss. ex Kunth. J. Ethnopharmacol. 2021, 265, 113270. [Google Scholar] [CrossRef]
- Anburaj, G.; Marimuthu, M.; Rajasudha, V.; Manikandan, R. Phytochemical screening and GC-MS analysis of ethanolic extract of Tecoma stans (Family: Bignoniaceae) Yellow Bell Flowers. J. Pharmacogn. Phytochem. 2016, 5, 172–175. [Google Scholar]
- Gonçalves, T.P.R.; Parreira, A.G.; Zanuncio, V.S.d.S.; Farias, K.d.S.; Silva, D.B.d.; Lima, L.A.R.d.S. Antibacterial and antioxidant properties of flowers from Tecoma stans (L.) Juss. ex Kunth (Bignoniaceae). S. Afr. J. Bot. 2022, 144, 156–165. [Google Scholar] [CrossRef]
- Narayanan, M.; Gothandapani, A.; Venugopalan, R.; Rethinam, M.; Pitchai, S.; Alahmadi, T.A.; Almoallim, H.S.; Kandasamy, S.; Brindhadevi, K. Antioxidant and anticancer potential of ethyl acetate extract of bark and flower of Tecoma stans (Linn) and In Silico studies on phytoligands against Bcl 2 and VEGFR2 factors. Environ. Res. 2023, 231, 116112. [Google Scholar] [CrossRef]
- Costantino, L.; Raimondi, L.; Pirisino, R.; Brunetti, T.; Pessotto, P.; Giannessi, F.; Lins, A.P.; Barlocco, D.; Antolini, L.; El-Abady, S.A. Isolation and pharmacological activities of the Tecoma stans alkaloids. Farmaco 2003, 58, 781–785. [Google Scholar] [CrossRef]
- Kameshwaran, S.; Senthilkumar, R.; Thenmozhi, S.; Dhanalakshmi, M. Wound healing potential of ethanolic extract of Tecoma stans flowers in rat. Pharmacologia 2014, 5, 215–221. [Google Scholar] [CrossRef]
- Rajamurugan, R.; Thirunavukkarasu, C.; Sakthivel, V.; Sivashanmugam, M.; Raghavan, C.M. Phytochemical screening, antioxidant and antimicrobial activities of ethanolic extract of Tecoma stans flowers. Int. J. Pharma Bio Sci. 2013, 4, 124–130. [Google Scholar]
- Wichayapreechar, P.; Charoenjittichai, R.; Prasansuklab, A.; Vinardell, M.P.; Rungseevijitprapa, W. Exploring the In Vitro Antioxidant, Anti-Aging, and Cytotoxic Properties of Kaempferia galanga Linn. Rhizome Extracts for Cosmeceutical Formulations. Cosmetics 2024, 11, 97. [Google Scholar] [CrossRef]
- Abioye, E.O.; Akinpelu, D.A.; Aiyegoro, O.A.; Adegboye, M.F.; Oni, M.O.; Okoh, A.I. Preliminary Phytochemical Screening and Antibacterial Properties of Crude Stem Bark Extracts and Fractions of Parkia biglobosa (Jacq.). Molecules 2013, 18, 8485–8499. [Google Scholar] [CrossRef]
- Harborne, J.B. Phytochemical Methods A Guide to Modern Techniques of Plant Analysis, 3rd ed.; Chapman & Hall: London, UK, 1998. [Google Scholar]
- Shaikh, J.; Patil, M. Qualitative tests for preliminary phytochemical screening: An overview. Int. J. Chem. Stud. 2020, 8, 603–608. [Google Scholar] [CrossRef]
- Lee, J.H.; Moon, S.H.; Hong, Y.; Ahn, D.U.; Paik, H.D. Anti-elastase and anti-hyaluronidase activity of phosvitin isolated from hen egg yolk. Br. Poult. Sci. 2020, 61, 17–21. [Google Scholar] [CrossRef]
- Gu, Y.; Xue, F.; Xiao, H.; Chen, L.; Zhang, Y. Bamboo Leaf Flavonoids Suppress Oxidative Stress-Induced Senescence of HaCaT Cells and UVB-Induced Photoaging of Mice Through P38 MAPK and Autophagy Signaling. Nutrients 2022, 14, 793. [Google Scholar] [CrossRef]
- Srisuksomwong, P.; Kaenhin, L.; Mungmai, L. Collagenase and Tyrosinase Inhibitory Activities and Stability of Facial Cream Formulation Containing Cashew Leaf Extract. Cosmetics 2023, 10, 17. [Google Scholar] [CrossRef]
- Nakajima, H. International Federation of Societies of Cosmetic Chemists IFSCC Monograph Number 2: The Fundamentals of Stability Testing; Micelle Press: Weymouth, UK, 1992. [Google Scholar]
- Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.-H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef]
- Brahmi, F.; Blando, F.; Sellami, R.; Mehdi, S.; De Bellis, L.; Negro, C.; Haddadi-Guemghar, H.; Madani, K.; Makhlouf-Boulekbache, L. Optimization of the conditions for ultrasound-assisted extraction of phenolic compounds from Opuntia ficus-indica [L.] Mill. flowers and comparison with conventional procedures. Ind. Crops Prod. 2022, 184, 114977. [Google Scholar] [CrossRef]
- Jeyaraj, E.J.; Lim, Y.Y.; Choo, W.S. Effect of Organic Solvents and Water Extraction on the Phytochemical Profile and Antioxidant Activity of Clitoria Ternatea Flowers. ACS Food Sci. Technol. 2021, 1, 1567–1577. [Google Scholar] [CrossRef]
- Sun, R.C.; Tompkinson, J. Comparative study of organic solvent and water-soluble lipophilic extractives from wheat straw I: Yield and chemical composition. J. Wood Sci. 2003, 49, 0047–0052. [Google Scholar] [CrossRef]
- Nagarajan, J.; Wah Heng, W.; Galanakis, C.M.; Nagasundara Ramanan, R.; Raghunandan, M.E.; Sun, J.; Ismail, A.; Beng-Ti, T.; Prasad, K.N. Extraction of phytochemicals using hydrotropic solvents. Sep. Sci. Technol. 2016, 51, 1151–1165. [Google Scholar] [CrossRef]
- Raju, S.; Kavimani, S.; Sreeramulu Reddy, K.; Vasanth Kumar, G. Floral extract of Tecoma stans: A potent inhibitor of gentamicin-induced nephrotoxicity in vivo. Asian Pac. J. Trop. Med. 2011, 4, 680–685. [Google Scholar] [CrossRef]
- Pulipati, S.; Babu, P.S. Investigation on Phytochemical Constituents and Antimicrobial Properties of Crude Flower Extract of Tecoma stans (L.) Juss. ex Kunth. Current Aspects in Pharmaceutical Research and Development 2021, 2, 143–151. [Google Scholar] [CrossRef]
- Alonso-Castro, A.J.; Zapata-Bustos, R.; Romo-Yañez, J.; Camarillo-Ledesma, P.; Gómez-Sánchez, M.; Salazar-Olivo, L.A. The antidiabetic plants Tecoma stans (L.) Juss. ex Kunth (Bignoniaceae) and Teucrium cubense Jacq (Lamiaceae) induce the incorporation of glucose in insulin-sensitive and insulin-resistant murine and human adipocytes. J. Ethnopharmacol. 2010, 127, 1–6. [Google Scholar] [CrossRef]
- Altıok, E.; Bayçın, D.; Bayraktar, O.; Semra, Ü. Isolation of polyphenols from the extracts of olive leaves (Olea europaea L.) by adsorption on silk fibroin. Sep. Purif. Technol. 2008, 62, 342–348. [Google Scholar] [CrossRef]
- Durling, N.E.; Catchpole, O.J.; Grey, J.B.; Webby, R.F.; Mitchell, K.A.; Foo, L.Y.; Perry, N.B. Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol–water mixtures. Food Chem. 2007, 101, 1417–1424. [Google Scholar] [CrossRef]
- Horozić, E.; Kolarević, L.; Bajić, M.; Alić, L.; Babić, S.; Ahmetašević, E. Comparative Study of Antioxidant Capacity, Polyphenol and Flavonoid Content of Water, Ethanol and Water-Ethanol Hibiscus Extracts. Eur. J. Adv. Chem. Res. 2023, 4, 13–16. [Google Scholar] [CrossRef]
- Ng, Z.X.; Samsuri, S.N.; Yong, P.H. The antioxidant index and chemometric analysis of tannin, flavonoid, and total phenolic extracted from medicinal plant foods with the solvents of different polarities. J. Food Process. Preserv. 2020, 44, e14680. [Google Scholar] [CrossRef]
- Mohammed, E.A.; Abdalla, I.G.; Alfawaz, M.A.; Mohammed, M.A.; Al Maiman, S.A.; Osman, M.A.; Yagoub, A.E.A.; Hassan, A.B. Effects of Extraction Solvents on the Total Phenolic Content, Total Flavonoid Content, and Antioxidant Activity in the Aerial Part of Root Vegetables. Agriculture 2022, 12, 1820. [Google Scholar] [CrossRef]
- Parcheta, M.; Świsłocka, R.; Orzechowska, S.; Akimowicz, M.; Choińska, R.; Lewandowski, W. Recent Developments in Effective Antioxidants: The Structure and Antioxidant Properties. Materials 2021, 14, 1984. [Google Scholar] [CrossRef]
- Lang, Y.; Gao, N.; Zang, Z.; Meng, X.; Lin, Y.; Yang, S.; Yang, Y.; Jin, Z.; Li, B. Classification and antioxidant assays of polyphenols: A review. J. Future Foods 2024, 4, 193–204. [Google Scholar] [CrossRef]
- Barbouchi, M.; Benzidia, B.; Elamrani, K.; Sabiri, M.; El Idrissi, M.; Choukrad, M.b. Phytochemical screening, quantitative analysis and antioxidant properties of crude extracts from stems, leaves, and flowers of three Ruta species. Kuwait J. Sci. 2024, 51, 100287. [Google Scholar] [CrossRef]
- Fathi Hafshejani, S.; Lotfi, S.; Rezvannejad, E.; Mortazavi, M.; Riahi-Madvar, A. Correlation between total phenolic and flavonoid contents and biological activities of 12 ethanolic extracts of Iranian propolis. Food Sci. Nutr. 2023, 11, 4308–4325. [Google Scholar] [CrossRef]
- El Kamari, F.; El Omari, H.; El-Mouhdi, K.; Chlouchi, A.; Harmouzi, A.; Lhilali, I.; El Amrani, J.; Zahouani, C.; Hajji, Z.; Ousaaid, D. Effects of Different Solvents on the Total Phenol Content, Total Flavonoid Content, Antioxidant, and Antifungal Activities of Micromeria graeca L. from Middle Atlas of Morocco. Biochem. Res. Int. 2024, 2024, 9027997. [Google Scholar] [CrossRef]
- Żbik, K.; Onopiuk, A.; Szpicer, A.; Kurek, M. Comparison of the effects of extraction method and solvents on biological activities of phytochemicals from selected violet and blue pigmented flowers. J. Food Meas. Charact. 2023, 17, 6600–6608. [Google Scholar] [CrossRef]
- Srichaikul, B. Ultrasonication extraction, bioactivity, antioxidant activity, total flavonoid, total phenolic and antioxidant of Clitoria Ternatea linn flower extract for anti-aging drinks. Pharmacogn. Mag. 2018, 14, 322–327. [Google Scholar] [CrossRef]
- Salem, M.; Gohar, Y.; Diaz, L.M.; El-Shanhorey, N.; Salem, A.Z.M. Antioxidant and antibacterial activities of leaves and branches extracts of Tacoma Stans (L.) Juss. ex Kunth against nine aspecies of pathogenic bacteria. Afr. J. Microbiol. Res. 2013, 7, 418–426. [Google Scholar] [CrossRef]
- Ghanimi, R.; Ouhammou, A.; El Atki, Y.; El Hassan Bouchari, M.; Cherkaoui, M. The Antioxidant Activities of Ethanolic, Methanolic, Ethyl Acetate, and Aqueous Extracts of the Endemic Species, Lavandula mairei Humbert (A Comparative Study between Cold and Hot Extraction). Ethiop. J. Health Sci. 2022, 32, 1231–1236. [Google Scholar] [CrossRef]
- Saeed, N.; Khan, M.R.; Shabbir, M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement. Altern. Med. 2012, 12, 221. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of Extraction Solvent/Technique on the Antioxidant Activity of Selected Medicinal Plant Extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef]
- Gębalski, J.; Małkowska, M.; Wnorowska, S.; Gawenda-Kempczyńska, D.; Strzemski, M.; Wójciak, M.; Słomka, A.; Styczyński, J.; Załuski, D. Ethyl Acetate Fraction from Eleutherococcus divaricatus Root Extract as a Promising Source of Compounds with Anti-Hyaluronidase, Anti-Tyrosinase, and Antioxidant Activity but Not Anti-Melanoma Activity. Molecules 2024, 29, 3640. [Google Scholar] [CrossRef]
- Sahreen, S.; Khan, M.; Khan, R.A. Phenolic compounds and antioxidant activities of Rumex hastatus D. Don. Leaves. J. Med. Plants Res. 2011, 5, 2755–2765. [Google Scholar]
- Thring, T.S.A.; Hili, P.; Naughton, D.P. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement. Altern. Med. 2009, 9, 27. [Google Scholar] [CrossRef]
- Bahadır Acıkara, Ö.; Ilhan, M.; Kurtul, E.; Šmejkal, K.; Küpeli Akkol, E. Inhibitory activity of Podospermum canum and its active components on collagenase, elastase and hyaluronidase enzymes. Bioorganic Chem. 2019, 93, 103330. [Google Scholar] [CrossRef]
- Sugihartini, N.; Nur, M.U.; Yuliani, S. The Effect of Methanol Concentration on the Extraction of Moringa Leaf (Moringa oleifera) and Papaya Fruit (Carica papaya) on Elastase and Hyaluronidase Installing Activities. Open Access Maced. J. Med. Sci. 2022, 10, 1463–1470. [Google Scholar] [CrossRef]
- Ghimeray, A.; Jung, U.; Lee, H.; Kim, Y.; Ryu, E.; Chang, M. In vitro antioxidant, collagenase inhibition, and in vivo anti-wrinkle effects of combined formulation containing Punica granatum, Ginkgo biloba, Ficus carica, and Morus alba fruits extract. Clin. Cosmet. Investig. Dermatol. 2015, 8, 389–396. [Google Scholar] [CrossRef]
- Ho, C.Y.; Dreesen, O. Faces of cellular senescence in skin aging. Mech. Ageing Dev. 2021, 198, 111525. [Google Scholar] [CrossRef]
- Bravo, B.; Correia, P.; Gonçalves Junior, J.E.; Sant’Anna, B.; Kerob, D. Benefits of topical hyaluronic acid for skin quality and signs of skin aging: From literature review to clinical evidence. Dermatol. Ther. 2022, 35, e15903. [Google Scholar] [CrossRef]
- Camargo, F.B., Jr.; Gaspar, L.R.; Maia Campos, P.M. Skin moisturizing effects of panthenol-based formulations. J. Cosmet. Sci. 2011, 62, 361–370. [Google Scholar] [PubMed]
- Roussel, L.; Atrux-Tallau, N.; Pirot, F. Glycerol as a Skin Barrier Influencing Humectant. In Treatment of Dry Skin Syndrome: The Art and Science of Moisturizers; Lodén, M., Maibach, H.I., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 473–480. [Google Scholar]
- Purnamawati, S.; Indrastuti, N.; Danarti, R.; Saefudin, T. The Role of Moisturizers in Addressing Various Kinds of Dermatitis: A Review. Clin. Med. Res. 2017, 15, 75–87. [Google Scholar] [CrossRef] [PubMed]
Ingredients (INCI Name) | Trade Name | %w/w | Function in Formula |
---|---|---|---|
Aqua | Aqua | qs. to 100 | Solvent |
Glycerin | Glycerin | 3.0 | Humectant |
Glyceryl Glucoside | Glyceryl Glucoside | 2.0 | Emollient |
Panthenol | Panthenol | 1.0 | Humectant |
Sodium hyaluronate | Sodium hyaluronate | 0.2 | Humectant |
PEG-7 glyceryl cocoate | CETIOL HE | 1 | Emollient |
Pentaerythrityl Tetra-di-t-butyl Hydroxyhydrocinnamate | Tinogard ® TT | 0.05 | Antioxidant |
Coco Caprylate/caprate | CETIOL C5C | 2 | Emollient |
Hydroxyethyl Acrylate/Sodium Acryloyldimethyl Taurate Copolymer | SEPINOV™ EMT 10 | 2.7 | Gelling agent |
Water, Glycerin, Biosaccharide Gum-1, Hydroxypropyl Guar, Hydroxyethylcellulose, 1,2-Hexanediol, Ethylhexylglycerin | Calipro moist | 1 | Emollient/thickener |
Ethylhexylglycerin (and) Phenoxyethanol | Ethylhexylglycerin (and) Phenoxyethanol | 0.8 | Preservative |
Teccoma stan (Linn.) extract | Teccoma stan (Linn.) extract | 0.05 | Active ingredient |
Solvents | Extraction Yield (%) | Phytochemical Screening | ||||
---|---|---|---|---|---|---|
Flavonoid Compounds | Phenolic Compounds | Terpenoid Compounds | Steroids Compounds | Alkaloid Compounds | ||
Hexane | 3.29 | + | + | ++ | + | ++ |
Ethyl acetate | 6.83 | ++ | ++ | ++ | + | ++ |
Absolute ethanol | 28.30 | +++ | +++ | ++ | + | ++ |
Deionized water | 40.73 | ++ | ++ | + | + | + |
Solvents | Total Phenolic Contents (mg GAE/g Extract) | Total Flavonoid Contents (mg CE/g Extract) | Antioxidant Activity | |
---|---|---|---|---|
DPPH• Assay (IC50 Value, mg/mL) | ABTS•+ Assay (IC50 Value, mg/mL) | |||
Hexane | 6.90 ± 0.47 d | 131.22 ± 3.74 c | 1.378 ± 0.057 d* | 0.871 ± 0.063 c* |
Ethyl acetate | 12.66 ± 0.11 c | 205.11 ± 7.83 a | 0.847 ± 0.011 b* | 0.219 ± 0.027 a* |
Absolute ethanol | 24.10 ± 2.07 a | 140.67 ± 1.92 b | 0.935 ± 0.003 c* | 0.465 ± 0.027 b* |
Deionized water | 20.83 ± 1.28 b | 112.05 ± 1.90 d | 0.600 ± 0.004 a* | 0.207 ± 0.001 a* |
Trolox | - | - | 0.003 ± 0.001 | 0.009 ± 0.001 |
Parameter | Initiation | Ambient Temperature | 4 °C in a Refrigerator | 45 °C in a Hot-Air Oven | Heating/Cooling Cycling (6 Cycles) |
---|---|---|---|---|---|
Color | Light yellow | Light yellow | Light yellow | Light yellow | Light yellow |
pH | 5.53 ± 0.01 | 5.24 ± 0.01 | 5.37 ± 0.03 | 5.22 ± 0.01 | 5.34 ± 0.02 |
Homogeneity | Excellent | Excellent | Excellent | Excellent | Excellent |
Phase separation | No | No | No | No | No |
Viscosity (Pa.s) | 17.20 ± 0.65 | 17.09 ± 0.57 | 16.27 ± 0.14 | 16.36 ± 0.22 | 16.39 ± 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wichayapreechar, P.; Prasansuklab, A.; Charoongchit, P.; Charoenjittichai, R. The Potential of Tecoma stans (Linn.) Flower Extract as a Natural Antioxidant and Anti-Aging Agent for Skin Care Products. Cosmetics 2024, 11, 214. https://doi.org/10.3390/cosmetics11060214
Wichayapreechar P, Prasansuklab A, Charoongchit P, Charoenjittichai R. The Potential of Tecoma stans (Linn.) Flower Extract as a Natural Antioxidant and Anti-Aging Agent for Skin Care Products. Cosmetics. 2024; 11(6):214. https://doi.org/10.3390/cosmetics11060214
Chicago/Turabian StyleWichayapreechar, Panikchar, Anchalee Prasansuklab, Pimchanok Charoongchit, and Ranit Charoenjittichai. 2024. "The Potential of Tecoma stans (Linn.) Flower Extract as a Natural Antioxidant and Anti-Aging Agent for Skin Care Products" Cosmetics 11, no. 6: 214. https://doi.org/10.3390/cosmetics11060214
APA StyleWichayapreechar, P., Prasansuklab, A., Charoongchit, P., & Charoenjittichai, R. (2024). The Potential of Tecoma stans (Linn.) Flower Extract as a Natural Antioxidant and Anti-Aging Agent for Skin Care Products. Cosmetics, 11(6), 214. https://doi.org/10.3390/cosmetics11060214