Skin Barrier-Improving and Skin-Soothing Effects of Autophagy-Activating Peptide on Sensitive Skin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. In Vitro Studies
2.3. Ex Vivo Studies
2.4. Clinical Efficacy Studies
- -
- Pregnant or lactating women, and women with potential for pregnancy;
- -
- Individuals using topical steroid-containing dermatological preparations for more than one month for skin condition treatment;
- -
- Participants who have participated in the same clinical trial within the past 6 months;
- -
- Subjects presenting with cutaneous abnormalities such as pigmentation spots, acne, erythema, and telangiectasia;
- -
- Individuals who have used identical or similar efficacy cosmetics or pharmaceutical products on the test site within 3 months prior to study initiation;
- -
- Subjects who have undergone procedures on the test site within 6 months prior to study initiation;
- -
- Other individuals deemed unsuitable for the trial at the principal investigator’s discretion.
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berardesca, E.; Farage, M.; Maibach, H. Sensitive skin: An overview. Int. J. Cosmet. Sci. 2013, 35, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Do, L.H.D.; Azizi, N.; Maibach, H. Sensitive Skin Syndrome: An Update. Am. J. Clin. Dermatol. 2020, 21, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Misery, L.; Weisshaar, E.; Brenaut, E.; Evers, A.W.M.; Huet, F.; Ständer, S.; Reich, A.; Berardesca, E.; Serra-Baldrich, E.; Wallengren, J.; et al. Pathophysiology and Management of Sensitive Skin: Position Paper from the Special Interest Group on Sensitive Skin of the International Forum for the Study of Itch (IFSI). J. Eur. Acad. Dermatol. Venereol. 2020, 34, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.R.; Cheon, H.I.; Misery, L.; Taieb, C.; Lee, Y.W. Sensitive Skin in Korean Population: An Epidemiological Approach. Skin. Res. Technol. 2018, 24, 229–234. [Google Scholar] [CrossRef]
- Misery, L.; Jourdan, E.; Huet, F.; Brenaut, E.; Cadars, B.; Virassamynaïk, S.; Sayag, M.; Taieb, C. Sensitive Skin in France: A Study on Prevalence, Relationship with Age and Skin Type and Impact on Quality of Life. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 791–795. [Google Scholar] [CrossRef]
- Pinto, P.; Rosado, C.; Parreirão, C.; Rodrigues, L.M. Is There Any Barrier Impairment in Sensitive Skin?: A Quantitative Analysis of Sensitive Skin by Mathematical Modeling of Transepidermal Water Loss Desorption Curves. Skin. Res. Technol. 2011, 17, 181–185. [Google Scholar] [CrossRef]
- Cho, H.J.; Chung, B.Y.; Lee, H.B.; Kim, H.O.; Park, C.W.; Lee, C.H. Quantitative Study of Stratum Corneum Ceramides Contents in Patients with Sensitive Skin. J. Dermatol. 2012, 39, 295–300. [Google Scholar] [CrossRef]
- Ma, Y.; Cui, L.; Tian, Y.; He, C. Lipidomics Analysis of Facial Lipid Biomarkers in Females with Self-Perceived Skin Sensitivity. Health Sci. Rep. 2022, 5, e632. [Google Scholar] [CrossRef]
- Reilly, D.M.; Parslew, R.; Sharpe, G.R.; Powell, S.; Green, M.R. Infammatory Mediators in Normal, Sensitive and Diseased Skin Types. Acta Derm. Venereol. 2000, 80, 171–174. [Google Scholar] [CrossRef]
- Hariya, T.; Hirao, T.; Yokoyama, T.; Ichikawa, H. A Study on IL-1 Receptor Antagonist/IL-Lα Ratio in the Stratum Corneum of the so-Called Sensitive Skin. Skin. Res. 2010, 43, 10–18. [Google Scholar] [CrossRef]
- Passeron, T.; Zouboulis, C.C.; Tan, J.; Andersen, M.L.; Katta, R.; Lyu, X.; Aguilar, L.; Kerob, D.; Morita, A.; Krutmann, J.; et al. Adult Skin Acute Stress Responses to Short-term Environmental and Internal Aggression from Exposome Factors. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 1963–1975. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, X.; Wu, T.; Hu, X.; Su, J.; Chen, X. Autophagy in Skin Diseases. Dermatology 2019, 235, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.S.; Chae, Y.-J.; Choi, J.W.; Chang, J.-E. Potential Therapeutic Approaches through Modulating the Autophagy Process for Skin Barrier Dysfunction. Int. J. Mol. Sci. 2021, 22, 7869. [Google Scholar] [CrossRef]
- Eckhart, L.; Tschachler, E.; Gruber, F. Autophagic Control of Skin Aging. Front. Cell Dev. Biol. 2019, 7, 143. [Google Scholar] [CrossRef]
- Lim, C.J.; Lee, Y.-M.; Kang, S.G.; Lim, H.W.; Shin, K.-O.; Jeong, S.K.; Huh, Y.H.; Choi, S.; Kor, M.; Seo, H.S.; et al. Aquatide Activation of SIRT1 Reduces Cellular Senescence through a SIRT1-FOXO1-Autophagy Axis. Biomol. Ther. 2017, 25, 511–518. [Google Scholar] [CrossRef]
- Das, S.; Joshi, M.B.; Parashiva, G.K.; Rao, S.B.S. Stimulation of Cytoprotective Autophagy and Components of Mitochondrial Biogenesis / Proteostasis in Response to Ionizing Radiation as a Credible pro-Survival Strategy. Free Radic. Biol. Med. 2020, 152, 715–727. [Google Scholar] [CrossRef]
- Shin, K.-O.; Lim, C.-J.; Park, H.Y.; Kim, S.; Kim, B.; Lee, Y.; Chung, H.; Jeong, S.-K.; Park, K.K. Park Activation of SIRT1 Enhances Epidermal Permeability Barrier Formation through Ceramide Synthases 2 and 3-Dependent Mechanisms. J. Investig. Dermatol. 2020, 140, 1435–1438. [Google Scholar] [CrossRef]
- Kwon, S.H.; Lim, C.J.; Jung, J.; Kim, H.J.; Park, K.; Shin, J.W.; Huh, C.H.; Park, K.C.; Na, J.I. The Effect of Autophagy-Enhancing Peptide in Moisturizer on Atopic Dermatitis: A Randomized Controlled Trial. J. Dermatol. Treat. 2019, 30, 558–564. [Google Scholar] [CrossRef]
- Lee, J.O.; Kim, Y.; Jang, Y.N.; Lee, J.M.; Shin, K.; Jeong, S.; Chung, H.-J.; Kim, B.J. ICP5249 Promotes Hair Growth by Activating the AMPK-Autophagy Signaling Pathway. J. Microbiol. Biotechnol. 2024, 34, 1810–1818. [Google Scholar] [CrossRef]
- Kataoka, S.; Takaishi, M.; Nakajima, K.; Sano, S. Phosphodiesterase-4 Inhibitors Reduce the Expression of Proinflammatory Mediators by Human Epidermal Keratinocytes Independent of Intracellular cAMP Elevation. J. Dermatol. Sci. 2020, 100, 230–233. [Google Scholar] [CrossRef]
- Sil, P.; Wong, S.-W.; Martinez, J. More Than Skin Deep: Autophagy Is Vital for Skin Barrier Function. Front. Immunol. 2018, 9, 1376. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kim, J.; Ahn, Y.; Lee, E.J.; Hwang, S.; Almurayshid, A.; Park, K.; Chung, H.; Kim, H.J.; Lee, S.; et al. Autophagy Induction Can Regulate Skin Pigmentation by Causing Melanosome Degradation in Keratinocytes and Melanocytes. Pigment. Cell Melanoma Res. 2020, 33, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, H.; Wang, S.; Xu, M.; Liu, M.; Liao, M.; Frank, J.A.; Adhikari, S.; Bower, K.A.; Shi, X.; et al. GSK3β Signaling Is Involved in Ultraviolet B-Induced Activation of Autophagy in Epidermal Cells. Int. J. Oncol. 2012, 41, 1782–1788. [Google Scholar] [CrossRef]
- Lamore, S.D.; Wondrak, G.T. Autophagic-Lysosomal Dysregulation Downstream of Cathepsin B Inactivation in Human Skin Fibroblasts Exposed to UVA. Photochem. Photobiol. Sci. 2012, 11, 163–172. [Google Scholar] [CrossRef]
- Ma, J.; Teng, Y.; Huang, Y.; Tao, X.; Fan, Y. Autophagy Plays an Essential Role in Ultraviolet Radiation-Driven Skin Photoaging. Front. Pharmacol. 2022, 13, 864331. [Google Scholar] [CrossRef]
- Hao, D.; Wen, X.; Liu, L.; Wang, L.; Zhou, X.; Li, Y.; Zeng, X.; He, G.; Jiang, X. Sanshool Improves UVB-Induced Skin Photodamage by Targeting JAK2/STAT3-Dependent Autophagy. Cell Death Dis. 2019, 10, 19. [Google Scholar] [CrossRef]
- Tsuji, G.; Hashimoto-Hachiya, A.; Yumine, A.; Takemura, M.; Kido-Nakahara, M.; Ito, T.; Yamamura, K.; Nakahara, T. PDE4 Inhibition by Difamilast Regulates Filaggrin and Loricrin Expression via Keratinocyte Proline-Rich Protein in Human Keratinocytes. J. Dermatol. Sci. 2023, 110, 61–68. [Google Scholar] [CrossRef]
- Stefanovic, N.; Irvine, A.D. Filaggrin and Beyond. Ann. Allergy. Asthma. Immunol. 2023, 132, 187–195. [Google Scholar] [CrossRef]
- Ishitsuka, Y.; Roop, D.R. Loricrin: Past, Present, and Future. Int. J. Mol. Sci. 2020, 21, 2271. [Google Scholar] [CrossRef]
- Legeas, C.; Misery, L.; Fluhr, J.; Roudot, A.; Ficheux, A.; Brenaut, E. Proposal for Cut-off Scores for Sensitive Skin on Sensitive Scale-10 in a Group of Adult Women. Acta Derm. Venereol. 2021, 101, adv00373. [Google Scholar] [CrossRef]
- Polena, H.; Chavagnac-Bonneville, M.; Misery, L.; Sayag, M. Burden of Sensitive Skin (BoSS) Questionnaire and Current Perception Threshold: Use as Diagnostic Tools for Sensitive Skin Syndrome. Acta Derm. Venereol. 2021, 101, adv00606. [Google Scholar] [CrossRef] [PubMed]
- Anqi, S.; Xiukun, S.; Ai’e, X. Quantitative Evaluation of Sensitive Skin by ANTERA 3D® Combined with GPSkin Barrier®. Skin. Res. Technol. 2022, 28, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Honari, G.; Andersen, R.M.; Maibach, H.I. Sensitive Skin Syndrome, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-4987-3734-0. [Google Scholar]
- Yu, L.-L.; Wang, X.-M.; Zou, Y.; Fan, G.-B.; Wu, P.-L.; Zhang, Y.-H.; Yang, L.-J.; Zhu, X.; Cao, Y.-N.; Shi, H.-Y.; et al. Correlation between the Capsaicin Test and Objective Skin Measurements in Evaluating Sensitive Skin in Chinese Females. J. Dermatol. Sci. 2012, 68, 108–109. [Google Scholar] [CrossRef] [PubMed]
Aqua |
Glycerin |
Methylpropanediol |
Caprylic/capric triglyceride |
Shea butter |
Polyglyceryl-3 methylglycose distearate |
Methyl Trimethicone |
Behenyl alcohol |
1,2-hexanediol |
Glyceryl stearate |
Neopentyl glycol diheptanoate |
Patmitic acid |
Stearic acid |
Carbomer |
Hydroxyacetophenone |
Tromethamine |
Sodium stearoyl glutamate |
Ethylhexylglycerin |
Microcrystalline cellulose |
Disodium EDTA |
Cellulose gum |
Tocopherol |
Pentasodium tetracarboxymethyl palmitoyl dipeptide-12 (PTPD-12) (100 ppm) |
Test Item | Average (+/−S.D.) | % Improvement | p Value | |
---|---|---|---|---|
Baseline | 4 Weeks | |||
Trans-epidermal water loss (TEWL) | 11.71 (+/−2.56) | 10.6 (+/−2.49) | 9.73% | <0.001 |
Skin redness | 13.67 (+/−1.97) | 13.11 (+/−2.06) | 4.23% | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eun, S.; Lim, M.; Jung, J.; Shin, K.; Kim, S.; Kim, Y.; Nam, G.; Jeong, S.; Kim, H. Skin Barrier-Improving and Skin-Soothing Effects of Autophagy-Activating Peptide on Sensitive Skin. Cosmetics 2024, 11, 223. https://doi.org/10.3390/cosmetics11060223
Eun S, Lim M, Jung J, Shin K, Kim S, Kim Y, Nam G, Jeong S, Kim H. Skin Barrier-Improving and Skin-Soothing Effects of Autophagy-Activating Peptide on Sensitive Skin. Cosmetics. 2024; 11(6):223. https://doi.org/10.3390/cosmetics11060223
Chicago/Turabian StyleEun, Sohee, Minhye Lim, Juyeon Jung, Kayoung Shin, Sungwoo Kim, Yeonjae Kim, Gaewon Nam, Sekyoo Jeong, and Hyunjung Kim. 2024. "Skin Barrier-Improving and Skin-Soothing Effects of Autophagy-Activating Peptide on Sensitive Skin" Cosmetics 11, no. 6: 223. https://doi.org/10.3390/cosmetics11060223
APA StyleEun, S., Lim, M., Jung, J., Shin, K., Kim, S., Kim, Y., Nam, G., Jeong, S., & Kim, H. (2024). Skin Barrier-Improving and Skin-Soothing Effects of Autophagy-Activating Peptide on Sensitive Skin. Cosmetics, 11(6), 223. https://doi.org/10.3390/cosmetics11060223