A New Ex Vivo Model to Evaluate the Hair Protective Effect of a Biomimetic Exopolysaccharide against Water Pollution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Exopolysaccharide
2.1.1. Potential Zeta Measurement
2.1.2. Chelation Analysis
2.2. Polluted Water Model
2.3. Analysis of Heavy Metal Levels in Hair, Following Exposure to Polluted Water
2.4. Heavy Metal Impacts on Hair Structure, with and without EPS
2.4.1. Exposure of Hair to Polluted Water
2.4.2. Polarization Study of Hair Fibers
Theoretical Background on the Birefringence
Theoretical Background on Hair Birefringence Measurement
Hair Fiber Birefringence Measurement
2.5. Statistical Analysis
3. Results and Discussion
3.1. Heavy Metals Retention in Hair
3.2. Impact of Polluted Water and Protective Potential of the Biomimetic EPS
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beyak, R.; Mlyer, C.F.; Kass, G.S. Elasticity and tensile properties of human hair. I. Single fiber test method. Soc. Cosm. Chem. 1969, 20, 615–626. [Google Scholar]
- Kaliyadan, F.; Gosai, B.; Al Melhim, W.N.; Feroze, K.; Qureshi, H.A.; Ibrahim, S.; Kuruvilla, J. Scanning electron microscopy study of hair shaft damage secondary to cosmetic treatments of the hair. Int. J. Trichol. 2016, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Bharat, B. Structural, nanomechanical, and nanotribological characterization of human hair and conditioner using atomic force microscopy and nanoindentation. In Proceedings of the Advances in Cosmetic Formulation Design, Columbus, OH, USA, 24 July 2018. [Google Scholar]
- Robbins, C.R. Chemical and Physical Behavior of Human Hair, 3rd ed.; Springer: New York, NY, USA, 1994; 391p. [Google Scholar]
- Gillespie, J.M.; Marshall, R.C. The Proteins of Normal and Aberrant Hair Keratins. In Hair Research; Orfanos, C.E., Montagna, W., Stüttgen, G., Eds.; Springer: Berlin/Heidelberg, Gremany, 1981. [Google Scholar]
- Velasco, M.V.R.; Dias, T.C.D.S.; De Freitas, A.Z.; Junior, N.D.V.; Pinto, C.A.S.D.O.; Kaneko, T.M.; Baby, A.R. Hair fiber characteristics and methods to evaluate hair physical and mechanical properties. Braz. J. Pharm. Sci. 2009, 45, 153–162. [Google Scholar] [CrossRef]
- Ciferri, A. Translation of Molecular Order to the Macroscopic Level. Chem. Rev. 2015, 116, 1353–1374. [Google Scholar] [CrossRef] [Green Version]
- Fraser, R.D.B. Birefringence and Elasticity in Keratin Fibres. Nature 1953, 172, 675–676. [Google Scholar] [CrossRef]
- Feughelman, M. Mechanical Properties and Structure of Alpha-Keratin Fibres: Wool, Human Hair, and Related Fibres; UNSW Press: Sydney, Australia, 1997; pp. 41–42. [Google Scholar]
- Mercer, E. Some experiments on the orientation and hardening of keratin in the hair follicle. Biochim. Biophys. Acta (BBA) Bioenerg. 1949, 3, 161–169. [Google Scholar] [CrossRef]
- Galliano, A.; Ye, C.; Su, F.; Wang, C.; Wang, Y.; Liu, C.; Wagle, A.; Guerin, M.; Flament, F.; Steel, A. Particulate matter adheres to human hair exposed to severe aerial pollution: Consequences for certain hair surface properties. Int. J. Cosmet. Sci. 2017, 39, 610–616. [Google Scholar] [CrossRef]
- Evans, A.O.; Marsh, J.M.; Wickett, R.R. The structural implications of water hardness metal uptake by human hair. Int. J. Cosmet. Sci. 2011, 33, 477–482. [Google Scholar] [CrossRef]
- Unesco. World Water Development Report. Available online: http://www.unesco.org/water/wwapconsulted (accessed on 13 December 2019).
- Ahmad, R. Studies on the chemistry control of some selected drinking and industrial waters. Pakistan J. Sci. Ind. Res. 2005, 48, 174–179. [Google Scholar]
- Farid, S.; Kaleem-Baloch, M.; Amjad-Ahmad, S. Water pollution: Major issue in urban áreas. Int. J. Water Resour. Environ. Eng. 2012, 4, 55–65. [Google Scholar]
- Takada, K.; Nakamura, A.; Matsuo, N.; Inoue, A.; Someya, K.; Shimogaki, H. Influence of Oxidative and/or Reductive Treatment on Human Hair (I): Analysis of Hair-Damage after Oxidative and/or Reductive Treatment. J. Oleo Sci. 2003, 52, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Mistry, N. Guidelines for Formulating Anti-Pollution Products. Cosmetics 2017, 4, 57. [Google Scholar] [CrossRef] [Green Version]
- Musilova, J.; Árvay, J.; Vollmannová, A.; Toth, T.; Tomas, J. Environmental Contamination by Heavy Metals in Region with Previous Mining Activity. Bull. Environ. Contam. Toxicol. 2016, 97, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Wolfsperger, M.; Hauser, G.; Göβler, W.; Schlagenhaufen, C. Heavy metals in human hair samples from Austria and Italy: Influence of sex and smoking habits. Sci. Total Environ. 1994, 156, 235–242. [Google Scholar] [CrossRef]
- Srogi, K. Heavy metals in human hair samples from Silesia Province: The influence of sex, age and smoking habit. Probl. Forensic Sci. 2004, 11, 7–27. [Google Scholar]
- Choon Teck, L. Human Hair Keratin and Its Interaction with Metal Ions. Master’s Thesis, Nanyang Technology University, Singapore, 2020. [Google Scholar]
- Sikorski, J.; Simpson, W.S. D.—‘STUDIES OF THE REACTIVITY OF KERATIN WITH HEAVY METALS’. J. R. Microsc. Soc. 1958, 78, 35–39. [Google Scholar] [CrossRef]
- Stadtman, E.R. Metal ion-catalyzed oxidation of proteins: Biochemical mechanism and biological consequences. Free. Radic. Boil. Med. 1990, 9, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Verghese, P.S. Investigation of Toxic Heavy Metals in Drinking Water of Agra City, India. Orient. J. Chem. 2015, 31, 1835–1839. [Google Scholar] [CrossRef]
- Gupta, P.; Diwan, B. Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies. Biotechnol. Rep. 2016, 13, 58–71. [Google Scholar] [CrossRef]
- Goldstein, D.H. Polarized Light. Revised and Expanded; CRC Press: New York, NY, USA, 2003. [Google Scholar]
- Desroches, J.; Pagnoux, D.; Louradour, F.; Barthélémy, A. Fiber-optic device for endoscopic polarization imaging. Opt. Lett. 2009, 34, 3409–3411. [Google Scholar] [CrossRef]
- Lattouf, R.; Younes, R.; Lutomski, D.; Naaman, N.; Godeau, G.; Senni, K.; Changotade, S. Picrosirius Red Staining. J. Histochem. Cytochem. 2014, 62, 751–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peno-Mazzarino, L.; Desroches, J.; Percoco, G.; Faradova, U.; Laquerriere, K.; Scalvino, S.; Fays, C.; Judith, T.; Lati, E. The K-Probe® Imaging System as a New Tool to Analyze Human Skin Aging. Poster BIO-EC COMET 2019. Available online: http://www.kamax-innovative.com/download/Comet2019_BIOEC_KAMAX.pdf (accessed on 30 September 2020).
- Yu, J.; Da-wen, Y.; Checkla, D.M.; Freedberg, I.M.; Bertolino, A.P. Human Hair Keratins. J. Investig. Dermatol. 1993, 101, 56S–59S. [Google Scholar] [CrossRef]
Heavy Metal | Lead (Pb) | Zinc (Zn) | Copper (Cu) | Cadmium (Cd) | Chrome (Cr) | Mercury (Hg) | Silver (Ag) | Calcium Carbonate | Iron (Fe) |
---|---|---|---|---|---|---|---|---|---|
mg/L | 0.428 | 3.420 | 7.085 | 0.865 | 0.662 | <0.01 | 0.01 | 180 | <0.03 |
Metal | Exopolysaccharide (EPS) Material without Any Exposure | EPS Material after Exposure to Heavy Metals | Liquid Pre-Incubation | Liquid Post Incubation |
---|---|---|---|---|
Arsenic | 0.033 ppm | 44.0 ppm | 100 ppb | <10 ppb |
Cadmium | 0.082 ppm | 45.9 ppm | 100 ppb | <1.0 ppb |
Lead | 0.150 ppm | 53.1 ppm | 100 ppb | <10 ppb |
Mercury | 0.015 ppm | 342 ppm | 100 ppb | <5.0 ppb |
Control Birefringence | Unprotected Birefringence | Protected Birefringence | |
---|---|---|---|
Hair 1 | 4.77 × 10−3 | 5.18 × 10−3 | 7.25 × 10−3 |
Hair 2 | 7.65 × 10−3 | 7.62 × 10−3 | 6.57 × 10−3 |
Hair 3 | 5.93 × 10−3 | 6.17 × 10−3 | 5.72 × 10−3 |
Hair 4 | 5.41 × 10−3 | 8.15 × 10−3 | 6.01 × 10−3 |
Hair 5 | 7.72 × 10−3 | 7.33 × 10−3 | 5.45 × 10−3 |
Hair 6 | 1.01 × 10−2 | 5.93 × 10−3 | 1.15 × 10−2 |
Hair 7 | 6.87 × 10−3 | 7.82 × 10−3 | 6.62 × 10−3 |
Hair 8 | 8.07 × 10−3 | 6.52 × 10−3 | 8.26 × 10−3 |
Hair 9 | 7.26 × 10−3 | 7.07 × 10−3 | 9.17 × 10−3 |
Hair 10 | 7.41 × 10−3 | 5.34 × 10−3 | 7.44 × 10−3 |
Hair 11 | 4.97 × 10−3 | 5.86 × 10−3 | 6.16 × 10−3 |
Hair 12 | 7.85 × 10−3 | 4.89 × 10−3 | 5.38 × 10−3 |
Hair 13 | 6.52 × 10−3 | 6.20 × 10−3 | 4.06 × 10−3 |
Hair 14 | 9.39 × 10−3 | 7.88 × 10−3 | 7.30 × 10−3 |
Hair 15 | 7.20 × 10−3 | 5.69 × 10−3 | 4.35 × 10−3 |
Hair 16 | 6.59 × 10−3 | 7.22 × 10−3 | 7.36 × 10−3 |
Hair 17 | 5.59 × 10−3 | 5.25 × 10−3 | 7.66 × 10−3 |
Hair 18 | 5.60 × 10−3 | 6.51 × 10−3 | 8.47 × 10−3 |
Hair 19 | 4.86 × 10−3 | 5.49 × 10−3 | 8.01 × 10−3 |
Hair 20 | 9.80 × 10−3 | 4.92 × 10−3 | 5.33 × 10−3 |
Hair 21 | 5.72 × 10−3 | 4.11 × 10−3 | 8.07 × 10−3 |
Hair 22 | 5.97 × 10−3 | 7.41 × 10−3 | 6.33 × 10−3 |
Hair 23 | 7.77 × 10−3 | 6.02 × 10−3 | 5.89 × 10−3 |
Hair 24 | 7.71 × 10−3 | 3.84 × 10−3 | 6.00 × 10−3 |
Hair 25 | 5.16 × 10−3 | 6.32 × 10−3 | 5.54 × 10−3 |
Hair 26 | 6.40 × 10−3 | 6.04 × 10−3 | 6.57 × 10−3 |
Hair 27 | 7.10 × 10−3 | 5.91 × 10−3 | 5.34 × 10−3 |
Hair 28 | 6.62 × 10−3 | 6.21 × 10−3 | 4.82 × 10−3 |
Hair 29 | 7.09 × 10−3 | 5.54 × 10−3 | 5.61 × 10−3 |
Hair 30 | 6.49 × 10−3 | 5.04 × 10−3 | 5.42 × 10−3 |
Hair 31 | 6.13 × 10−3 | 5.44 × 10−3 | 5.74 × 10−3 |
Hair 32 | 5.96 × 10−3 | 6.43 × 10−3 | 5.87 × 10−3 |
Hair 33 | 5.73 × 10−3 | 4.95 × 10−3 | 9.60 × 10−3 |
Hair 34 | 5.19 × 10−3 | 4.99 × 10−3 | 6.79 × 10−3 |
Hair 35 | 8.38 × 10−3 | 7.35 × 10−3 | 6.20 × 10−3 |
Hair 36 | 5.15 × 10−3 | 5.71 × 10−3 | 7.18 × 10−3 |
Hair 37 | 7.57 × 10−3 | 5.76 × 10−3 | 8.81 × 10−3 |
Hair 38 | 6.51 × 10−3 | 8.02 × 10−3 | 6.65 × 10−3 |
Hair 39 | 7.78 × 10−3 | 7.02 × 10−3 | 1.25 × 10−2 |
Hair 40 | 9.61 × 10−3 | 7.68 × 10−3 | 1.27 × 10−2 |
Hair 41 | 6.78 × 10−3 | 7.89 × 10−3 | 5.65 × 10−3 |
Average birefringence by condition | 6.84 × 10−3 | 6.21 × 10−3 | 6.96 × 10−3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tubia, C.; Fernández-Botello, A.; Dupont, J.; Gómez, E.; Desroches, J.; Attia, J.; Loing, E. A New Ex Vivo Model to Evaluate the Hair Protective Effect of a Biomimetic Exopolysaccharide against Water Pollution. Cosmetics 2020, 7, 78. https://doi.org/10.3390/cosmetics7040078
Tubia C, Fernández-Botello A, Dupont J, Gómez E, Desroches J, Attia J, Loing E. A New Ex Vivo Model to Evaluate the Hair Protective Effect of a Biomimetic Exopolysaccharide against Water Pollution. Cosmetics. 2020; 7(4):78. https://doi.org/10.3390/cosmetics7040078
Chicago/Turabian StyleTubia, Claire, Alfonso Fernández-Botello, Jan Dupont, Eni Gómez, Jérôme Desroches, Joan Attia, and Estelle Loing. 2020. "A New Ex Vivo Model to Evaluate the Hair Protective Effect of a Biomimetic Exopolysaccharide against Water Pollution" Cosmetics 7, no. 4: 78. https://doi.org/10.3390/cosmetics7040078
APA StyleTubia, C., Fernández-Botello, A., Dupont, J., Gómez, E., Desroches, J., Attia, J., & Loing, E. (2020). A New Ex Vivo Model to Evaluate the Hair Protective Effect of a Biomimetic Exopolysaccharide against Water Pollution. Cosmetics, 7(4), 78. https://doi.org/10.3390/cosmetics7040078