Why Are Wet Wipes So Difficult to Preserve? Understanding the Intrinsic Causes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formulation
2.3. Challenge Test
2.4. Scanning Electron Microscopy (SEM)
2.5. Hydrophilic–Lipophilic Balance (HLB) Calculation
3. Results and Discussion
3.1. Origin of Contamination during Storage and Use
3.2. Biofilms Formation on Viscose and PET Nonwoven Fabrics
3.3. HLB Calculations to Evaluate Preservative/Fabric Compatibility
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaplan, S.; Pulan, S.; Ulusoy, S. Objective and subjective performance evaluations of wet wipes including herbal components. J. Ind. Text. 2018, 47, 1959–1978. [Google Scholar] [CrossRef]
- Dubrovski, P.D.; Brezocnik, M. Porosity and nonwoven fabric vertical wicking rate. Fibers Polym. 2016, 17, 801–808. [Google Scholar] [CrossRef]
- Jain, R.K.; Sinha, S.K.; Das, A. Structural investigation of spunlace nonwoven. Res. J. Text. Appar. 2018, 22, 158–179. [Google Scholar] [CrossRef]
- Kargar, M.; Wang, J.; Nain, A.S.; Behkam, B. Controlling bacterial adhesion to surfaces using topographical cues: A study of the interaction of Pseudomonas aeruginosa with nanofiber-textured surfaces. Soft Matter 2012, 8, 10254–10259. [Google Scholar] [CrossRef]
- Bajpai, V.; Dey, A.; Ghosh, S.; Bajpai, S.; Jha, M.K. Quantification of bacterial adherence on different textile fabrics. Int. Biodeterior. Biodegrad. 2011, 65, 1169–1174. [Google Scholar] [CrossRef]
- Hemmatian, T.; Lee, H.; Kim, J. Bacteria adhesion of textiles influenced by wettability and pore characteristics of fibrous substrates. Polymers 2021, 13, 223. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.D. Microbial water stress. Bacteriol. Rev. 1976, 40, 803–846. [Google Scholar] [CrossRef]
- Manzoni, S.; Schimel, J.P.; Porporato, A.; Ecology, S.; April, N.; Manzoni, S.; Schimel, J.P.; Porporato, A. Responses of soil microbial communities to water stress: Results from a meta-analysis. Ecology 2012, 93, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Moyano, F.E.; Manzoni, S.; Chenu, C. Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil Biol. Biochem. 2013, 59, 72–85. [Google Scholar] [CrossRef]
- Rodriguez, K.J.; Cunningham, C.; Foxenberg, R.; Hoffman, D.; Vongsa, R. The science behind wet wipes for infant skin: Ingredient review, safety, and efficacy. Pediatr. Dermatol. 2020, 37, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, C.; Mundschau, S.; Seidling, J.; Wenzel, S.; Maison, G.D.N. The Chemistry and Manufacture of Cosmetics; Schlossman, M.L., Ed.; The Chemistry and Manufacture of Cosmetics; Allured Books: Chicago, IL, USA, 2008; ISBN 9781932633481. [Google Scholar]
- Donlan, M.R. Biofilms: Microbial Life on Surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Donlan, R.M. Biofilm formation: A clinically relevant microbiological process. Clin. Infect. Dis. 2001, 33, 1387–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, M.; Hernández-Coronado, M.J.; Ball, A.S.; Arias, M.E. Degradation of alkali-lignin residues from solid-state fermentation of wheat straw by streptomycetes. Biodegradation 2001, 12, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Buschle-Diller, G.; Zeronian, S.H.; Pan, N.; Yoon, M.Y. Enzymatic Hydrolysis of Cotton, Linen, Ramie, and Viscose Rayon Fabrics. Text. Res. J. 1994, 64, 270–279. [Google Scholar] [CrossRef]
- Wood, T.M. Fungal cellulases. Biochem. Soc. Trans. 1992, 20, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Wood, T.M.; Garcia-Campayo, V. Enzymology of cellulose degradation. Biodegradation 1990, 1, 147–161. [Google Scholar] [CrossRef]
- Dufour, D.; Leung, V.; Lévesque, C.M. Bacterial biofilm: Structure, function, and antimicrobial resistance. Endod. Top. 2010, 22, 2–16. [Google Scholar] [CrossRef]
- Itavaara, M.; Viikari, L. Enzymatic Degradation of Cellulose-Based Materials. J. Environ. Polym. Degrad. 1999, 7, 67–73. [Google Scholar] [CrossRef]
- Itivaara, M.; Vikman, M. A Simple Screening Test for Studying the Biodegradability of Insoluble Polymers. Chemosphere 1995, 31, 4359–4373. [Google Scholar] [CrossRef]
- Vikman, M.; Itävaara, M.; Poutanen, K. Measurement of the biodegradation of starch-based materials by enzymatic methods and composting. J. Environ. Polym. Degrad. 1995, 3, 23–29. [Google Scholar] [CrossRef]
- Lewandowski, Z. Biofilms: Recent Advances in Their Study and Control; Evans, L.V., Ed.; Harwood Academic Publishers: Amsterdam, The Netherlands, 2000; P 1:2000; ISBN 9780203304723. [Google Scholar]
- Ziklo, N.; Tzafrir, I.; Shulkin, R.; Salama, P. Salicylate UV-filters in sunscreen formulations compromise the preservative system efficacy against Pseudomonas aeruginosa and Burkholderia cepacia. Cosmetics 2020, 7, 63. [Google Scholar] [CrossRef]
- Russell, A.D. Challenge testing: Principles and practice. Int. J. Cosmet. Sci. 2003, 25, 147–153. [Google Scholar] [CrossRef]
- Joung, D.K.; Choi, S.H.; Kang, O.H.; Kim, S.B.; Mun, S.H.; Seo, Y.S.; Kang, D.H.; Gong, R.; Shin, D.W.; Kim, Y.C.; et al. Synergistic effects of oxyresveratrol in conjunction with antibiotics against methicillin-resistant Staphylococcus aureus. Mol. Med. Rep. 2015, 12, 663–667. [Google Scholar] [CrossRef]
- Buffet-Bataillon, S.; Tattevin, P.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Emergence of resistance to antibacterial agents: The role of quaternary ammonium compounds-A critical review. Int. J. Antimicrob. Agents 2012, 39, 381–389. [Google Scholar] [CrossRef]
- Davidson, P.M.; Critzer, F.J.; Matthew Taylor, T. Naturally occurring antimicrobials for minimally processed foods. Annu. Rev. Food Sci. Technol. 2013, 4, 163–190. [Google Scholar] [CrossRef]
- Griffin, W.C. Calculation of HLB values of non-ionic surfactants. J. Soc. Cosmet. Chem. 1954, 5, 249–256. [Google Scholar] [CrossRef]
- Griffin, W.C. Classification of Surface-Active Agents by “HLB”. J. Soc. Cosmet. Chem. 1949, 1, 311–326. [Google Scholar]
Trade Name | INCI | Function | % Weight |
---|---|---|---|
Water | Aqua | Solvent | 98.05% |
Chamomile extract | Chamomile ext. | Humectant | 0.05% |
Panthenol | Panthenol | Skin conditioning | 0.05% |
Glycerin | Glycerin | Humectant | 0.50% |
Sodium citrate | Sodium citrate | 0.05% | |
Tween 20 | Polysorbate 20 | Surfactant (nonionic) | 0.60% |
Preservative | Preservative | 0.45 | |
Vitamin E | Tocopherol | Antioxidant | 0.05% |
Miranol C2M | Disodium cocoamphodiacetate | Surfactant (anionic) | 0.20% |
100.00% |
Treatment | Time of Reading (Days) | E. coli (cfu/mL) | S. aureus (cfu/mL) | P. aeruginosa (cfu/mL) | C. albicans (cfu/mL) | A. brasiliensis (cfu/mL) |
---|---|---|---|---|---|---|
Saline containing 0.2% methylparaben without fabric | Inoculum | 1 × 106 | 1.1 × 106 | 1 × 106 | 1 × 105 | 1.1 × 105 |
2 | <10 | <10 | <10 | <10 | <10 | |
7 | <10 | <10 | <10 | <10 | <10 | |
14 | <10 | <10 | <10 | <10 | <10 | |
21 | <10 | <10 | <10 | <10 | <10 | |
28 | <10 | <10 | <10 | <10 | <10 | |
Saline containing 0.2% methylparaben with 100% PET fabric | Inoculum | 1 × 106 | 1.1 × 106 | 1 × 106 | 1 × 105 | 1.1 × 105 |
2 | 3 × 103 | 1 × 105 | 4.1 × 105 | 1 × 104 | 1 × 103 | |
7 | 2 × 102 | 3 × 105 | 3 × 105 | 1 × 102 | 5 × 101 | |
14 | 3 × 103 | 5 × 103 | TNTC * | 6 × 101 | 3 × 103 | |
21 | 1 × 104 | 5 × 104 | TNTC * | <10 | 5 × 104 | |
28 | 1 × 103 | 6 × 105 | TNTC * | <10 | 9 × 105 |
Treatment | Time of Reading (Days) | E. coli (cfu/mL) | S. aureus (cfu/mL) | P. aeruginosa (cfu/mL) | C. albicans (cfu/mL) | A. brasiliensis (cfu/mL) |
---|---|---|---|---|---|---|
Saline containing 0.275% DMDMH without fabric | Inoculum | 1 × 106 | 1.1 × 106 | 1 × 106 | 1 × 105 | 1.1 × 105 |
2 | 6 × 101 | <10 | <10 | 2.9 × 102 | 3 × 101 | |
7 | <10 | <10 | <10 | <10 | <10 | |
14 | <10 | <10 | <10 | <10 | <10 | |
21 | <10 | <10 | <10 | <10 | <10 | |
28 | <10 | <10 | <10 | <10 | <10 | |
Saline containing 0.275% DMDMH with 100% PET fabric | Inoculum | 1 × 106 | 1.1 × 106 | 1 × 106 | 1 × 105 | 1.1 × 105 |
2 | 2 × 102 | <10 | <10 | 1 × 103 | <10 | |
7 | <10 | <10 | <10 | <10 | <10 | |
14 | <10 | <10 | <10 | <10 | <10 | |
21 | <10 | <10 | <10 | <10 | <10 | |
28 | <10 | <10 | <10 | <10 | <10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salama, P.; Gliksberg, A.; Cohen, M.; Tzafrir, I.; Ziklo, N. Why Are Wet Wipes So Difficult to Preserve? Understanding the Intrinsic Causes. Cosmetics 2021, 8, 73. https://doi.org/10.3390/cosmetics8030073
Salama P, Gliksberg A, Cohen M, Tzafrir I, Ziklo N. Why Are Wet Wipes So Difficult to Preserve? Understanding the Intrinsic Causes. Cosmetics. 2021; 8(3):73. https://doi.org/10.3390/cosmetics8030073
Chicago/Turabian StyleSalama, Paul, Ariel Gliksberg, Matan Cohen, Inbal Tzafrir, and Noa Ziklo. 2021. "Why Are Wet Wipes So Difficult to Preserve? Understanding the Intrinsic Causes" Cosmetics 8, no. 3: 73. https://doi.org/10.3390/cosmetics8030073
APA StyleSalama, P., Gliksberg, A., Cohen, M., Tzafrir, I., & Ziklo, N. (2021). Why Are Wet Wipes So Difficult to Preserve? Understanding the Intrinsic Causes. Cosmetics, 8(3), 73. https://doi.org/10.3390/cosmetics8030073