A Novel Quality Control Method for the Determination of the Refractive Index of Oil-in-Water Creams and Its Correlation with Skin Hydration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of the Oil-in-Water Creams
2.2.2. Measurement of Refractive Index Using an SPF Analyser
- n is the refractive index (RI),
- λ is the wavelength of the test sample Determined by a SPF meter.
- B1 = 0.696166300; C1 = 4.67914826 × 10−3 µm2;
- B2 = 0.407942600; C2 = 1.35120631 × 10−2 µm2;
- B3 = 0.897479400; C3 = 97.9340025 µm2.
2.2.3. Skin Hydration
2.2.4. Statistical Analysis
3. Results and Discussion
Correlation between RI Measurements and Skin Hydration Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lawless, H.T. Quantitative Sensory Analysis: Psychophysics, Models and Intelligent Design; John Wiley & Sons: Hoboken, NJ, USA, 2013; p. 12. [Google Scholar]
- ISO—ISO 13299:2016—Sensory Analysis—Methodology—General Guidance For Establishing A Sensory Profile. Available online: https://www.iso.org/standard/58042.html (accessed on 20 February 2020).
- Murray, J.M.; Delahunty, C.M.; Baxter, I.A. Descriptive sensory analysis: Past, present and future. Food Res. Int. 2001, 34, 461–471. [Google Scholar] [CrossRef]
- Pensé-Lhéritier, A.M. Recent developments in the sensorial assessment of cosmetic products: A review. Int. J. Cosmet. Sci. 2015, 37, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, L.; Rapisarda, L.; Ministeri, C.; Puglisi, G. Effects of lipids and emulsifiers on the physicochemical and sensory properties of cosmetic emulsions containing vitamin E. Cosmetics 2015, 2, 35–47. [Google Scholar] [CrossRef]
- Varela, P.; Ares, G. Sensory profiling, the blurred line between sensory and consumer science. A review of novel methods for product characterization. Food Res. Int. 2012, 48, 893–908. [Google Scholar]
- Adejokun, D.A.; Dodou, K. Quantitative Sensory Interpretation of Rheological Parameters of a Cream Formulation. Cosmetics 2020, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Singh, S. Refractive index measurement and its applications. Phys. Scr. 2002, 65, 167. [Google Scholar] [CrossRef]
- Sand, M.; Gambichler, T.; Moussa, G.; Bechara, F.G.; Sand, D.; Altmeyer, P.; Hoffmann, K. Evaluation of the epidermal refractive index measured by optical coherence tomography. Skin Res. Technol. 2006, 12, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, A.C.; Kentridge, R.W. The perception of gloss: A review. Vis. Res. 2015, 109, 221–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezerskaia, A.; Ras, A.; Bloemen, P.; Pereira, S.F.; Urbach, H.P.; Varghese, B. High sensitivity optical measurement of skin gloss. Biomed. Opt. Express 2017, 8, 3981–3992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calhoun, W.R.; Maeta, H.; Roy, S.; Bali, L.M.; Bali, S. Sensitive real-time measurement of the refractive index and attenuation coefficient of milk and milk-cream mixtures. J. Dairy Sci. 2010, 93, 3497–3504. [Google Scholar] [CrossRef] [PubMed]
- Walstra, P. Dairy Technology: Principles of Milk Properties and Processes; CRC Press: Boca Raton, FL, USA, 1999; p. 23. [Google Scholar]
- Sellmeier Equation—Wikipedia. Available online: https://en.wikipedia.org/wiki/Sellmeier_equation (accessed on 20 February 2020).
- Sagiv, A.E.; Dikstein, S.; Ingber, A. The efficiency of humectants as skin moisturizers in the presence of oil. Skin Res. Technol. 2001, 7, 32–35. [Google Scholar] [CrossRef] [PubMed]
Cream Phases | Ingredients | Composition of Each Cream Formulation (% w/w) | |||||||
---|---|---|---|---|---|---|---|---|---|
IA | IB | IIA | IIB | IIIA | IIIB | IVA | IVB | ||
Oil phase | Stearyl alcohol | 1 | 1 | 1 | 1 | ||||
Jojoba oil | 4 | 4 | 5 | 5 | 5 | 5 | |||
Baobab oil | 4 | 4 | 5 | 5 | 5 | 5 | |||
Coconut oil | 5 | 5 | 5 | 5 | |||||
Water phase | Glycerine | 5 | 5 | 5 | 5 | 5 | 5 | ||
Propylene glycol | 5 | 5 | |||||||
Water | 73.7 | 78.7 | 71.7 | 76.7 | 71.7 | 76.7 | 71.7 | 76.7 | |
Active | Entrapped active ingredient | 5 | 5 | 5 | 5 |
Model | Wavelength 1 | Wavelength 2 | Wavelength 3 | Mean Wavelength (nm) | ±SD | Wavelength (µm) | RI Value |
---|---|---|---|---|---|---|---|
IA | 387.7 | 387.8 | 387.8 | 387.8 | 0.06 | 0.3878 | 2.12377 |
IB | 387.7 | 387.7 | 387.8 | 387.7 | 0.06 | 0.3877 | 2.12378 |
IIA | 385.0 | 384.9 | 385.0 | 385.0 | 0.06 | 0.3850 | 2.12397 |
IIB | 385.1 | 385.0 | 385.0 | 385.0 | 0.06 | 0.3850 | 2.12397 |
IIIA | 385.4 | 385.4 | 385.4 | 385.4 | 0 | 0.3854 | 2.12393 |
IIIB | 385.5 | 385.6 | 385.5 | 385.5 | 0.06 | 0.3855 | 2.12393 |
IVA | 385.9 | 385.5 | 385.9 | 385.8 | 0.23 | 0.3858 | 2.12391 |
IVB | 385.9 | 385.9 | 385.9 | 385.9 | 0 | 0.3859 | 2.12392 |
Cream Model/Number | 1 | 2 | 3 | Mean | % Increase in Hydration | |||||
---|---|---|---|---|---|---|---|---|---|---|
Before (T0) | After (T5) | Before (T0) | After (T5) | Before (T0) | After (T5) | Before (T0/±SD) | After (T5/±SD) | p-Value | ||
IA/1 | 51.2 | 59.4 | 29.6 | 55.9 | 55.5 | 59.8 | 45.4/±13.9 | 58.4/±2.1 | 0.09 | 28.63 |
IB/2 | 36.4 | 52.3 | 59.8 | 67.2 | 51.7 | 65.3 | 49.3/±11.9 | 61.6/±8.1 | 0.02 | 24.94 |
IIA/3 | 58.7 | 62.4 | 58.0 | 67.4 | 51.5 | 55.6 | 56.1/±4.0 | 61.8/±5.9 | 0.04 | 10.16 |
IIB/4 | 44.5 | 57.1 | 66.8 | 67.2 | 48.0 | 58.7 | 53.1/±11.9 | 61.0/±5.4 | 0.08 | 14.87 |
IIIA/5 | 67.4 | 72.0 | 60.3 | 68.6 | 54.9 | 63.8 | 60.9/±6.3 | 68.1/±4.1 | 0.01 | 11.82 |
IIIB/6 | 65.2 | 65.7 | 70.5 | 77.1 | 62.1 | 73.0 | 65.9/±4.2 | 71.9/±5.7 | 0.09 | 9.10 |
IVA/7 | 58.2 | 64.7 | 55.6 | 60.8 | 65.9 | 70.5 | 59.9/±5.4 | 65.3/±4.9 | 0.005 | 9.01 |
IVB/8 | 61.0 | 74.1 | 66.4 | 73.9 | 59.4 | 66.5 | 62.3/±3.7 | 71.5/±4.3 | 0.02 | 14.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adejokun, D.A.; Dodou, K. A Novel Quality Control Method for the Determination of the Refractive Index of Oil-in-Water Creams and Its Correlation with Skin Hydration. Cosmetics 2021, 8, 74. https://doi.org/10.3390/cosmetics8030074
Adejokun DA, Dodou K. A Novel Quality Control Method for the Determination of the Refractive Index of Oil-in-Water Creams and Its Correlation with Skin Hydration. Cosmetics. 2021; 8(3):74. https://doi.org/10.3390/cosmetics8030074
Chicago/Turabian StyleAdejokun, Deborah Adefunke, and Kalliopi Dodou. 2021. "A Novel Quality Control Method for the Determination of the Refractive Index of Oil-in-Water Creams and Its Correlation with Skin Hydration" Cosmetics 8, no. 3: 74. https://doi.org/10.3390/cosmetics8030074
APA StyleAdejokun, D. A., & Dodou, K. (2021). A Novel Quality Control Method for the Determination of the Refractive Index of Oil-in-Water Creams and Its Correlation with Skin Hydration. Cosmetics, 8(3), 74. https://doi.org/10.3390/cosmetics8030074