Apiaceae as an Important Source of Antioxidants and Their Applications
Abstract
:1. Introduction
2. Importance of Apiaceae as Food and Nutraceuticals
3. Chemical Composition of Apiaceae Family and Their Antioxidant Activity
4. Methods of Extraction and Identification of Antioxidant
5. Total Phenolic Content (TPC) and the Total Flavonoid Content (TFC) of Apiaceae
6. Antioxidant Capacity of Apiaceae
7. Mechanisms of Antioxidant Activity
7.1. Free Radicals and Oxidative Stress
7.2. Mechanisms of Antioxidant Activity
8. Antioxidants in Skin Health
9. Cosmetic and Cosmeceutical Applications of Antioxidants from Apiaceae
9.1. Apiaceae in Cosmetic Formulation
9.2. Limitation to Be Considered
10. Safety
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lefahal, M.; Zaabat, N.; Ayad, R.; Makhloufi, E.H.; Djarri, L.; Benahmed, M.; Laouer, H.; Nieto, G.; Akkal, S. In Vitro Assessment of Total Phenolic and Flavonoid Contents, Antioxidant and Photoprotective Activities of Crude Methanolic Extract of Aerial Parts of Capnophyllum peregrinum (L.) Lange (Apiaceae) Growing in Algeria. Medicines 2018, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Plunkett, G.M.; Pimenov, M.G.; Reduron, J.-P.; Kljuykov, E.V.; van Wyk, B.-E.; Ostroumova, T.A.; Henwood, M.J.; Tilney, P.M.; Spalik, K.; Watson, M.F.; et al. Apiaceae. In Flowering Plants. Eudicots: Apiales, Gentianales (Except Rubiaceae); Kadereit, J.W., Bittrich, V., Eds.; The Families and Genera of Vascular Plants; Springer International Publishing: Cham, Switzerland, 2018; Volume 15, pp. 9–206. ISBN 978-3-319-93605-5. [Google Scholar]
- Geoffriau, E.; Simon, P.W. Carrots and Related Apiaceae Crops, 2nd ed.; CABI: London, UK, 2020; Volume 33, ISBN 978-1-78924-095-5. [Google Scholar]
- Simpson, M.G. 8-Diversity and Classification of Flowering Plants: Eudicots. In Plant Systematics, 2nd ed.; Simpson, M.G., Ed.; Academic Press: San Diego, CA, USA, 2010; pp. 275–448. ISBN 978-0-12-374380-0. [Google Scholar]
- Tamokou, J.D.D.; Mbaveng, A.T.; Kuete, V. Chapter 8-Antimicrobial Activities of African Medicinal Spices and Vegetables. In Medicinal Spices and Vegetables from Africa; Kuete, V., Ed.; Academic Press: San Diego, CA, USA, 2017; pp. 207–237. ISBN 978-0-12-809286-6. [Google Scholar]
- Dikpınar, T.; Süzgeç-Selçuk, S.; Çelik, B.Ö.; Uruşak, E.A. Antimicrobial activity of rhizomes of Ferulago trachycarpa Boiss. and bioguided isolation of active coumarin constituents. Ind. Crops Prod. 2018, 123, 762–767. [Google Scholar] [CrossRef]
- Pandey, M.M.; Vijayakumar, M.; Rastogi, S.; Rawat, A.K.S. Phenolic Content and Antioxidant Properties of Selected Indian Spices of Apiaceae. J. Herbs Spices Med. Plants 2012, 18, 246–256. [Google Scholar] [CrossRef]
- WFO World Flora Online. Available online: http://www.worldfloraonline.org/ (accessed on 6 September 2021).
- FAOSTAT Crops and Livestock Products. Available online: http://www.fao.org/faostat/en/#data/QCL (accessed on 7 September 2021).
- Ngahang Kamte, S.L.; Ranjbarian, F.; Cianfaglione, K.; Sut, S.; Dall’Acqua, S.; Bruno, M.; Afshar, F.H.; Iannarelli, R.; Benelli, G.; Cappellacci, L.; et al. Identification of highly effective antitrypanosomal compounds in essential oils from the Apiaceae family. Ecotoxicol. Environ. Saf. 2018, 156, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Önder, A.; Çinar, A.S.; Yilmaz Sarialtin, S.; İzgi, M.N.; Çoban, T. Evaluation of the Antioxidant Potency of Seseli L. Species (Apiaceae). Turk. J. Pharm. Sci. 2020, 17, 197–202. [Google Scholar] [CrossRef]
- Shelef, L.A. HERBS|Herbs of the Umbelliferae. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Oxford, UK, 2003; pp. 3090–3098. ISBN 978-0-12-227055-0. [Google Scholar]
- Shan, B.; Cai, Y.Z.; Sun, M.; Corke, H. Antioxidant Capacity of 26 Spice Extracts and Characterization of Their Phenolic Constituents. J. Agric. Food Chem. 2005, 53, 7749–7759. [Google Scholar] [CrossRef]
- Khare, C.P. Indian Medicinal Plants: An Illustrated Dictionary; Springer Science & Business Media: Berlin, Germany, 2008; ISBN 978-0-387-70637-5. [Google Scholar]
- Saleem, F.; Sarkar, D.; Ankolekar, C.; Shetty, K. Phenolic bioactives and associated antioxidant and anti-hyperglycemic functions of select species of Apiaceae family targeting for type 2 diabetes relevant nutraceuticals. Ind. Crops Prod. 2017, 107, 518–525. [Google Scholar] [CrossRef]
- Khalil, N.; Ashour, M.; Fikry, S.; Singab, A.N.; Salama, O. Chemical composition and antimicrobial activity of the essential oils of selected Apiaceous fruits. Future J. Pharm. Sci. 2018, 4, 88–92. [Google Scholar] [CrossRef]
- Rathore, S.S.; Saxena, S.N.; Singh, B. Potential health benefits of major seed spices. Int J Seed Spices 2013, 3, 1–12. [Google Scholar]
- Derouich, M.; Bouhlali, E.D.T.; Bammou, M.; Hmidani, A.; Sellam, K.; Alem, C. Bioactive Compounds and Antioxidant, Antiperoxidative, and Antihemolytic Properties Investigation of Three Apiaceae Species Grown in the Southeast of Morocco. Scientifica 2020, 2020, e3971041. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Tosun, A.; Khan, S. Chapter 32—Antioxidant Actions of Spices and Their Phytochemicals on Age-Related Diseases. In Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease; Watson, R.R., Preedy, V.R., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 311–318. ISBN 978-0-12-411462-3. [Google Scholar]
- Yashin, A.; Yashin, Y.; Xia, X.; Nemzer, B. Antioxidant Activity of Spices and Their Impact on Human Health: A Review. Antioxidants 2017, 6, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oroian, M.; Escriche, I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res. Int. 2015, 74, 10–36. [Google Scholar] [CrossRef] [PubMed]
- Aćimović, M.G. Nutraceutical Potential of Apiaceae. In Reference Series in Phytochemistry; Milica, A., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1311–1341. ISBN 978-3-319-78030-6. [Google Scholar]
- Cervantes Gracia, K.; Llanas-Cornejo, D.; Husi, H. CVD and Oxidative Stress. J. Clin. Med. 2017, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Poljsak, B.; Šuput, D.; Milisav, I. Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants. Oxid. Med. Cell. Longev. 2013, 2013, e956792. [Google Scholar] [CrossRef]
- Salehi, B.; Azzini, E.; Zucca, P.; Maria Varoni, E.; V Anil Kumar, N.; Dini, L.; Panzarini, E.; Rajkovic, J.; Valere Tsouh Fokou, P.; Peluso, I.; et al. Plant-Derived Bioactives and Oxidative Stress-Related Disorders: A Key Trend towards Healthy Aging and Longevity Promotion. Appl. Sci. 2020, 10, 947. [Google Scholar] [CrossRef] [Green Version]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef]
- Kayama, Y.; Raaz, U.; Jagger, A.; Adam, M.; Schellinger, I.N.; Sakamoto, M.; Suzuki, H.; Toyama, K.; Spin, J.M.; Tsao, P.S. Diabetic Cardiovascular Disease Induced by Oxidative Stress. Int. J. Mol. Sci. 2015, 16, 25234–25263. [Google Scholar] [CrossRef]
- Koley, T.K.; Singh, S.; Khemariya, P.; Sarkar, A.; Kaur, C.; Chaurasia, S.N.S.; Naik, P.S. Evaluation of bioactive properties of Indian carrot (Daucus carota L.): A chemometric approach. Food Res. Int. 2014, 60, 76–85. [Google Scholar] [CrossRef]
- Mollazadeh, H.; Mahdian, D.; Hosseinzadeh, H. Medicinal plants in treatment of hypertriglyceridemia: A review based on their mechanisms and effectiveness. Phytomedicine 2019, 53, 43–52. [Google Scholar] [CrossRef]
- Johri, R.K. Cuminum cyminum and Carum carvi: An update. Pharmacogn. Rev. 2011, 5, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, A.; Anwar, R.; Ahmad, M. Methanolic Extract of Pimpinella anisum L. Prevents Dementia by Reducing Oxidative Stress in Neuronal Pathways of Hypermnesic Mice. Pak. J. Zool. 2020, 52, 1779–1786. [Google Scholar] [CrossRef]
- Karimzadeh, F.; Hosseini, M.; Mangeng, D.; Alavi, H.; Hassanzadeh, G.R.; Bayat, M.; Jafarian, M.; Kazemi, H.; Gorji, A. Anticonvulsant and neuroprotective effects of Pimpinella anisum in rat brain. BMC Complement. Altern. Med. 2012, 12, 76. [Google Scholar] [CrossRef] [Green Version]
- Farzaneh, V.; Gominho, J.; Pereira, H.; Carvalho, I.S. Screening of the Antioxidant and Enzyme Inhibition Potentials of Portuguese Pimpinella anisum L. Seeds by GC-MS. Food Anal. Methods 2018, 11, 2645–2656. [Google Scholar] [CrossRef]
- Shahamat, Z.; Abbasi-Maleki, S.; Mohammadi Motamed, S. Evaluation of antidepressant-like effects of aqueous and ethanolic extracts of Pimpinella anisum fruit in mice. Avicenna J. Phytomedicine 2016, 6, 322–328. [Google Scholar]
- Shobha, R.I.; Rajeshwari, C.U.; Andallu, B. Anti-Peroxidative and Anti-Diabetic Activities of Aniseeds (Pimpinella anisum L.) and Identification of Bioactive Compounds. SSN 2013, 1, 516–527. [Google Scholar]
- Erjaee, H.; Rajaian, H.; Nazifi, S.; Chahardahcherik, M. The effect of caraway (Carum carvi L.) on the blood antioxidant enzymes and lipid peroxidation in streptozotocin-induced diabetic rats. Comp. Clin. Pathol. 2015, 24, 1197–1203. [Google Scholar] [CrossRef]
- Dadkhah, A.; Fatemi, F. Heart and kidney oxidative stress status in septic rats treated with caraway extracts. Pharm. Biol. 2011, 49, 679–686. [Google Scholar] [CrossRef]
- Sachan, A.R.; Das, D.R.; Kumar, M. Carum carvi—An important medicinal plant. J. Chem. Pharm. Res. 2016, 8, 529–533. [Google Scholar]
- Kooti, W.; Ghasemiboroon, M.; Asadi-Samani, M.; Ahangarpoor, A.; Noori Ahmad Abadi, M.; Afrisham, R.; Dashti, N. The effects of hydro-alcoholic extract of celery on lipid profile of rats fed a high fat diet. Adv. Environ. Biol. 2014, 8, 325–330. [Google Scholar]
- Malik, K.; Ahmad, M.; Zafar, M.; Ullah, R.; Mahmood, H.M.; Parveen, B.; Rashid, N.; Sultana, S.; Shah, S.N.; Lubna. An ethnobotanical study of medicinal plants used to treat skin diseases in northern Pakistan. BMC Complement. Altern. Med. 2019, 19, 210. [Google Scholar] [CrossRef] [Green Version]
- Danciu, C.; Avram, Ş.; Gaje, P.; Pop, G.; Şoica, C.; Craina, M.; Dumitru, C.; Dehelean, C.; Peev, C. An evaluation of three nutraceutical species in the Apiaceae family from the Western part of Romania: Antiproliferative and antiangiogenic potential. J. Agroaliment. Process. Technol. 2013, 19, 173–179. [Google Scholar]
- Sathishkumar, P.; Preethi, J.; Vijayan, R.; Mohd Yusoff, A.R.; Ameen, F.; Suresh, S.; Balagurunathan, R.; Palvannan, T. Anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised silver nanoparticles using Coriandrum sativum leaf extract. J. Photochem. Photobiol. B 2016, 163, 69–76. [Google Scholar] [CrossRef]
- Tang, E.L.; Rajarajeswaran, J.; Fung, S.Y.; Kanthimathi, M. Antioxidant activity of Coriandrum sativum and protection against DNA damage and cancer cell migration. BMC Complement. Altern. Med. 2013, 13, 347. [Google Scholar] [CrossRef] [Green Version]
- Sahib, N.G.; Anwar, F.; Gilani, A.-H.; Hamid, A.A.; Saari, N.; Alkharfy, K.M. Coriander (Coriandrum sativum L.): A Potential Source of High-Value Components for Functional Foods and Nutraceuticals—A Review. Phytother. Res. 2013, 27, 1439–1456. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-B.; Kopalli, S.R.; Koppula, S. Cuminum cyminum Linn (Apiaceae) extract attenuates MPTP-induced oxidative stress and behavioral impairments in mouse model of Parkinson’s disease. Trop. J. Pharm. Res. 2016, 15, 765–772. [Google Scholar] [CrossRef] [Green Version]
- Masola, B.; Oguntibeju, O.O.; Oyenihi, A.B. Centella asiatica ameliorates diabetes-induced stress in rat tissues via influences on antioxidants and inflammatory cytokines. Biomed. Pharmacother. 2018, 101, 447–457. [Google Scholar] [CrossRef]
- Amjad, S.; Umesalma, S. Protective Effect of Centella asiatica against Aluminium-Induced Neurotoxicity in Cerebral Cortex, Striatum, Hypothalamus and Hippocampus of Rat Brain-Histopathological, and Biochemical Approach. J. Mol. Biomark. Diagn. 2015, 6, 1–7. [Google Scholar] [CrossRef]
- Zofia, N.-Ł.; Martyna, Z.-D.; Aleksandra, Z.; Tomasz, B. Comparison of the Antiaging and Protective Properties of Plants from the Apiaceae Family. Oxid. Med. Cell. Longev. 2020, 2020, e5307614. [Google Scholar] [CrossRef] [PubMed]
- Gooda Sahib, N.; Abdul Hamid, A.; Saari, N.; Abas, F.; Pak Dek, M.S.; Rahim, M. Anti-Pancreatic Lipase and Antioxidant Activity of Selected Tropical Herbs. Int. J. Food Prop. 2012, 15, 569–578. [Google Scholar] [CrossRef]
- Hashim, P.; Sidek, H.; Helan, M.H.M.; Sabery, A.; Palanisamy, U.D.; Ilham, M. Triterpene Composition and Bioactivities of Centella asiatica. Molecules 2011, 16, 1310–1322. [Google Scholar] [CrossRef] [PubMed]
- Barel, A.O.; Paye, M.; Maibach, H.I. Handbook of Cosmetic Science and Technology, 4th ed.; CRC Press: Boca Raton, FL, USA, 2014; ISBN 978-1-84214-564-7. [Google Scholar]
- de Lima Cherubim, D.J.; Buzanello Martins, C.V.; Oliveira Fariña, L.; da Silva de Lucca, R.A. de Polyphenols as natural antioxidants in cosmetics applications. J. Cosmet. Dermatol. 2020, 19, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Pop, A.; Cimpeanu, C.; Predoi, G. Antioxidant Capacity Determination in Plants and Plant-Derived Products: A Review. Oxid. Med. Cell. Longev. 2016, 2016, e9130976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahmawati, Y.D.; Aulanni’am, A.; Prasetyawan, S. Effects of Oral and Topical Application of Centella asiatica Extracts on The UVB-Induced Photoaging of Hairless Rats. J. Pure Appl. Chem. Res. 2019, 8, 7–14. [Google Scholar] [CrossRef]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef]
- Hamid, A.A.; Aiyelaagbe, O.O.; Usman, L.A.; Ameen, O.M.; Lawal, A. Antioxidants: Its medicinal and pharmacological applications. Afr. J. Pure Appl. Chem. 2010, 4, 142–151. [Google Scholar] [CrossRef]
- Hajlaoui, H.; Arraouadi, S.; Noumi, E.; Aouadi, K.; Adnan, M.; Khan, M.A.; Kadri, A.; Snoussi, M. Antimicrobial, Antioxidant, Anti-Acetylcholinesterase, Antidiabetic, and Pharmacokinetic Properties of Carum carvi L. and Coriandrum sativum L. Essential Oils Alone and in Combination. Molecules 2021, 26, 3625. [Google Scholar] [CrossRef]
- Abate, L.; Bachheti, A.; Bachheti, R.K.; Husen, A.; Getachew, M.; Pandey, D.P. Potential Role of Forest-Based Plants in Essential Oil Production: An Approach to Cosmetic and Personal Health Care Applications. In Non-Timber Forest Products: Food, Healthcare and Industrial Applications; Husen, A., Bachheti, R.K., Bachheti, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–18. ISBN 978-3-030-73077-2. [Google Scholar]
- Brinkhaus, B.; Lindner, M.; Schuppan, D.; Hahn, E.G. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella aslatica. Phytomedicine 2000, 7, 427–448. [Google Scholar] [CrossRef]
- Christensen, L.P.; Brandt, K. Bioactive polyacetylenes in food plants of the Apiaceae family: Occurrence, bioactivity and analysis. J. Pharm. Biomed. Anal. 2006, 41, 683–693. [Google Scholar] [CrossRef]
- Badgujar, S.B.; Patel, V.V.; Bandivdekar, A.H. Foeniculum vulgare Mill: A Review of Its Botany, Phytochemistry, Pharmacology, Contemporary Application, and Toxicology. BioMed Res. Int. 2014, 2014, 842674. [Google Scholar] [CrossRef] [Green Version]
- Sayed-Ahmad, B.; Talou, T.; Saad, Z.; Hijazi, A.; Merah, O. The Apiaceae: Ethnomedicinal family as source for industrial uses. Ind. Crops Prod. 2017, 109, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Vasudevan, M.; Gunnam, K.K.; Parle, M. Antinociceptive and Anti-Inflammatory Properties of Daucus carota Seeds Extract. J. Health Sci. 2006, 52, 598–606. [Google Scholar] [CrossRef] [Green Version]
- Begnami, A.F.; Spindola, H.M.; Ruiz, A.L.T.G.; de Carvalho, J.E.; Groppo, F.C.; Rehder, V.L.G. Antinociceptive and anti-edema properties of the ethyl acetate fraction obtained from extracts of Coriandrum sativum Linn. leaves. Biomed. Pharmacother. 2018, 103, 1617–1622. [Google Scholar] [CrossRef] [PubMed]
- Chahal, K.K.; Singh, R.; Kumar, A.; Bhardwaj, U. Chemical composition and biological activity of Coriandrum sativum L.: A review. Indian J. Nat. Prod. Resour. IJNPR Former. Nat. Prod. Radiance NPR 2018, 8, 193–203. [Google Scholar]
- Majdoub, N.; el-Guendouz, S.; Rezgui, M.; Carlier, J.; Costa, C.; Kaab, L.B.B.; Miguel, M.G. Growth, photosynthetic pigments, phenolic content and biological activities of Foeniculum vulgare Mill., Anethum graveolens L. and Pimpinella anisum L. (Apiaceae) in response to zinc. Ind. Crops Prod. 2017, 109, 627–636. [Google Scholar] [CrossRef]
- Oyenihi, A.B.; Chegou, N.N.; Oguntibeju, O.O.; Masola, B. Centella asiatica enhances hepatic antioxidant status and regulates hepatic inflammatory cytokines in type 2 diabetic rats. Pharm. Biol. 2017, 55, 1671–1678. [Google Scholar] [CrossRef] [Green Version]
- Samojlik, I.; Lakić, N.; Mimica-Dukić, N.; Đaković-Švajcer, K.; Božin, B. Antioxidant and Hepatoprotective Potential of Essential Oils of Coriander (Coriandrum sativum L.) and Caraway (Carum carvi L.) (Apiaceae). J. Agric. Food Chem. 2010, 58, 8848–8853. [Google Scholar] [CrossRef]
- Kulkarni, S.A.; Nagarajan, S.K.; Ramesh, V.; Palaniyandi, V.; Selvam, S.P.; Madhavan, T. Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein. J. Mol. Struct. 2020, 1221, 128823. [Google Scholar] [CrossRef]
- Liu, M.; Hu, X.; Wang, X.; Zhang, J.; Peng, X.; Hu, Z.; Liu, Y. Constructing a Core Collection of the Medicinal Plant Angelica biserrata Using Genetic and Metabolic Data. Front. Plant Sci. 2020, 11, 2099. [Google Scholar] [CrossRef]
- Ma, J.; Huang, J.; Hua, S.; Zhang, Y.; Zhang, Y.; Li, T.; Dong, L.; Gao, Q.; Fu, X. The ethnopharmacology, phytochemistry and pharmacology of Angelica biserrata—A review. J. Ethnopharmacol. 2019, 231, 152–169. [Google Scholar] [CrossRef]
- Halliwell, B. How to characterize an antioxidant: An update. Biochem. Soc. Symp. 1995, 61, 73–101. [Google Scholar] [CrossRef] [PubMed]
- Przygodzka, M.; Zielińska, D.; Ciesarová, Z.; Kukurová, K.; Zieliński, H. Comparison of methods for evaluation of the antioxidant capacity and phenolic compounds in common spices. LWT Food Sci. Technol. 2014, 58, 321–326. [Google Scholar] [CrossRef]
- Alasalvar, C.; Grigor, J.M.; Zhang, D.; Quantick, P.C.; Shahidi, F. Comparison of Volatiles, Phenolics, Sugars, Antioxidant Vitamins, and Sensory Quality of Different Colored Carrot Varieties. J. Agric. Food Chem. 2001, 49, 1410–1416. [Google Scholar] [CrossRef]
- Liu, D.-K.; Xu, C.-C.; Zhang, L.; Ma, H.; Chen, X.-J.; Sui, Y.-C.; Zhang, H.-Z. Evaluation of bioactive components and antioxidant capacity of four celery (Apium graveolens L.) leaves and petioles. Int. J. Food Prop. 2020, 23, 1097–1109. [Google Scholar] [CrossRef]
- Yao, Y.; Sang, W.; Zhou, M.; Ren, G. Phenolic Composition and Antioxidant Activities of 11 Celery Cultivars. J. Food Sci. 2010, 75, C9–C13. [Google Scholar] [CrossRef] [PubMed]
- Embuscado, M.E. Spices and herbs: Natural sources of antioxidants—a mini review. J. Funct. Foods 2015, 18, 811–819. [Google Scholar] [CrossRef]
- Ghasemi, G.; Fattahi, M.; Alirezalu, A.; Ghosta, Y. Antioxidant and antifungal activities of a new chemovar of cumin (Cuminum cyminum L.). Food Sci. Biotechnol. 2018, 28, 669–677. [Google Scholar] [CrossRef]
- Rebey, I.B.; Aidi Wannes, W.; Kaab, S.B.; Bourgou, S.; Tounsi, M.S.; Ksouri, R.; Fauconnier, M.L. Bioactive compounds and antioxidant activity of Pimpinella anisum L. accessions at different ripening stages. Sci. Hortic. 2019, 246, 453–461. [Google Scholar] [CrossRef]
- Thippeswamy, N.B.; Naidu, K.A. Antioxidant potency of cumin varieties—cumin, black cumin and bitter cumin—on antioxidant systems. Eur. Food Res. Technol. 2005, 220, 472–476. [Google Scholar] [CrossRef]
- Hayat, K.; Abbas, S.; Hussain, S.; Shahzad, S.A.; Tahir, M.U. Effect of microwave and conventional oven heating on phenolic constituents, fatty acids, minerals and antioxidant potential of fennel seed. Ind. Crops Prod. 2019, 140, 111610. [Google Scholar] [CrossRef]
- Gülçın, İ.; Oktay, M.; Kıreçcı, E.; Küfrevıoǧlu, Ö.İ. Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem. 2003, 83, 371–382. [Google Scholar] [CrossRef]
- Roslon, W.; Wajs-Bonikowska, A.; Geszprych, A.; Osinska, E. Characteristics of Essential Oil from Young Shoots of Garden Angelica (Angelica Archangelica L.). J. Essent. Oil Bear Plants 2016, 19, 1462–1470. [Google Scholar] [CrossRef]
- Haytowitz, D.B.; Wu, X.; Bhagwat, S. USDA Database for the Flavonoid Content of Selected Foods Release 3.3; U.S. Department of Agriculture, Agricultural Research Service. Nutrient Data Laboratory: Beltsville, MD, USA, 2018; p. 176. [Google Scholar]
- Zainol, M.K.; Abd-Hamid, A.; Yusof, S.; Muse, R. Antioxidative activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L.) Urban. Food Chem. 2003, 81, 575–581. [Google Scholar] [CrossRef]
- Xu, D.-P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.-J.; Li, H.-B. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Ksouda, G.; Hajji, M.; Sellimi, S.; Merlier, F.; Falcimaigne-Cordin, A.; Nasri, M.; Thomasset, B. A systematic comparison of 25 Tunisian plant species based on oil and phenolic contents, fatty acid composition and antioxidant activity. Ind. Crops Prod. 2018, 123, 768–778. [Google Scholar] [CrossRef]
- Daga, P.; Vaishnav, S.R.; Dalmia, A.; Tumaney, A.W. Extraction, fatty acid profile, phytochemical composition and antioxidant activities of fixed oils from spices belonging to Apiaceae and Lamiaceae family. J. Food Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Carocho, M.; Ferreira, I.C.F.R. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 2013, 51, 15–25. [Google Scholar] [CrossRef]
- Christova-Bagdassarian, V.L.; Bagdassarian, K.S.; Stefanova, M. Phenolic Profile, Antioxidant and Antibacterial Activities from the Apiaceae Family (Dry Seeds). Mintage J. Pharm. Med. Sci. 2013, 2, 26–31. [Google Scholar]
- Derouich, M.; Bouhlali, E.D.T.; Hmidani, A.; Bammou, M.; Bourkhis, B.; Sellam, K.; Alem, C. Assessment of total polyphenols, flavonoids and anti-inflammatory potential of three Apiaceae species grown in the Southeast of Morocco. Sci. Afr. 2020, 9, e00507. [Google Scholar] [CrossRef]
- Singh, J.P.; Kaur, A.; Shevkani, K.; Singh, N. Composition, bioactive compounds and antioxidant activity of common Indian fruits and vegetables. J. Food Sci. Technol. 2016, 53, 4056–4066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pittella, F.; Dutra, R.C.; Junior, D.D.; Lopes, M.T.P.; Barbosa, N.R. Antioxidant and cytotoxic activities of Centella asiatica (L.) Urb. Int. J. Mol. Sci. 2009, 10, 3713–3721. [Google Scholar] [CrossRef] [Green Version]
- Dragland, S.; Senoo, H.; Wake, K.; Holte, K.; Blomhoff, R. Several Culinary and Medicinal Herbs Are Important Sources of Dietary Antioxidants. J. Nutr. 2003, 133, 1286–1290. [Google Scholar] [CrossRef]
- Ereifej, K.I.; Feng, H.; Rababah, T.M.; Tashtoush, S.H.; Al-U’datt, M.H.; Gammoh, S.; Al-Rabadi, G.J. Effect of Extractant and Temperature on Phenolic Compounds and Antioxidant Activity of Selected Spices. Food Nutr. Sci. 2016, 7, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Karabacak, A.Ö.; Suna, S.; Tamer, C.E.; Çopur, Ö.U. Effects of oven, microwave and vacuum drying on drying characteristics, colour, total phenolic content and antioxidant capacity of celery slices. Qual. Assur. Saf. Crops Foods 2018, 10, 193–205. [Google Scholar] [CrossRef]
- Naeem, A.; Abbas, T.; Ali, T.M.; Hasnain, A. Inactivation of Food Borne Pathogens by Lipid Fractions of Culinary Condiments and Their Nutraceutical Properties. Microbiol. Res. 2018, 9, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Wangensteen, H.; Samuelsen, A.B.; Malterud, K.E. Antioxidant activity in extracts from coriander. Food Chem. 2004, 88, 293–297. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Özyurt, D. Comparative Evaluation of Various Total Antioxidant Capacity Assays Applied to Phenolic Compounds with the CUPRAC Assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Shahidi, F. 12-Methods for the assessment of antioxidant activity in foods. In Handbook of Antioxidants for Food Preservation; Shahidi, F., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Southston, UK, 2015; pp. 287–333. ISBN 978-1-78242-089-7. [Google Scholar]
- Ayeni, E.A.; Abubakar, A.; Ibrahim, G.; Atinga, V.; Muhammad, Z. Phytochemical, nutraceutical and antioxidant studies of the aerial parts of Daucus carota L. (Apiaceae). J. Herbmed Pharmacol. 2018, 7, 68–73. [Google Scholar] [CrossRef]
- Shebaby, W.N.; El-Sibai, M.; Smith, K.B.; Karam, M.C.; Mroueh, M.; Daher, C.F. The antioxidant and anticancer effects of wild carrot oil extract. Phytother. Res. PTR 2013, 27, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. CB 2014, 24, R453–R462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos-Sánchez, N.F.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidant compounds and their antioxidant mechanism. In Antioxidant Compounds and Their Antioxidant Mechanism; IntechOpen: London, UK, 2019; Volume 5, pp. 1–28. ISBN 978-1-78923-919-5. [Google Scholar]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Kiokias, S.; Varzakas, T.; Oreopoulou, V. In Vitro Activity of Vitamins, Flavonoids, and Natural Phenolic Antioxidants Against the Oxidative Deterioration of Oil-Based Systems. Crit. Rev. Food Sci. Nutr. 2008, 48, 78–93. [Google Scholar] [CrossRef]
- Rawel, H.M.; Czajka, D.; Rohn, S.; Kroll, J. Interactions of different phenolic acids and flavonoids with soy proteins. Int. J. Biol. Macromol. 2002, 30, 137–150. [Google Scholar] [CrossRef]
- Škrovánková, S.; Mišurcová, L.; Machů, L. Chapter Three—Antioxidant Activity and Protecting Health Effects of Common Medicinal Plants. In Advances in Food and Nutrition Research; Henry, J., Ed.; Academic Press: San Diego, CA, USA, 2012; Volume 67, pp. 75–139. [Google Scholar]
- Dayan, N.; Kromidas, L. Formulating, Packaging, and Marketing of Natural Cosmetic Products; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 978-1-118-05679-0. [Google Scholar]
- Sarkar, R.; Arora, P.; Garg, K.V. Cosmeceuticals for Hyperpigmentation: What is Available? J. Cutan. Aesthetic Surg. 2013, 6, 4–11. [Google Scholar] [CrossRef]
- Tapiero, H.; Townsend, D.M.; Tew, K.D. The role of carotenoids in the prevention of human pathologies. Biomed. Pharmacother. 2004, 58, 100–110. [Google Scholar] [CrossRef]
- Stahl, W.; Sies, H. β-Carotene and other carotenoids in protection from sunlight. Am. J. Clin. Nutr. 2012, 96, 1179S–1184S. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Ademiluyi, A.O.; et al. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.A.; Abourashed, E.A. Leung’s Encyclopedia of Common Natural Ingredients: Used in Food, Drugs and Cosmetics, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 978-1-118-21306-3. [Google Scholar]
- Elmassry, M.M.; Kormod, L.; Labib, R.M.; Farag, M.A. Metabolome based volatiles mapping of roasted umbelliferous fruits aroma via HS-SPME GC/MS and peroxide levels analyses. J. Chromatogr. B 2018, 1099, 117–126. [Google Scholar] [CrossRef]
- Lagouri, V.; Boskou, D. Screening for antioxidant activity of essential oils obtained from spices. In Food Flavors: Generation, Analysis and Process Influence; Charalambous, G., Ed.; Elsevier: Amsterdam, The Netherlands, 1995; Volume 37, pp. 869–879. [Google Scholar]
- Singh, R.P.; Gangadharappa, H.V.; Mruthunjaya, K. Cuminum cyminum—A Popular Spice: An Updated Review. Pharmacogn. J. 2017, 9, 292–301. [Google Scholar] [CrossRef] [Green Version]
- Herman, A.; Tambor, K.; Herman, A. Linalool Affects the Antimicrobial Efficacy of Essential Oils. Curr. Microbiol. 2016, 72, 165–172. [Google Scholar] [CrossRef] [PubMed]
- de Groot, A. Linalool Hydroperoxides. Dermatitis 2019, 30, 243–246. [Google Scholar] [CrossRef]
- Morcia, C.; Tumino, G.; Ghizzoni, R.; Terzi, V. Chapter 35—Carvone (Mentha spicata L.) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 309–316. ISBN 978-0-12-416641-7. [Google Scholar]
- Nehdia, I.A.; Abutaha, N.; Sbihi, H.M.; Tan, C.P.; Al-Resayes, S.I. Chemical composition, oxidative stability and antiproliferative activity of Anethum graveolens (dill) seed hexane extract. Grasas y Aceites 2020, 71, e374. [Google Scholar] [CrossRef]
- Sayed Ahmad, B.; Talou, T.; Saad, Z.; Hijazi, A.; Cerny, M.; Kanaan, H.; Chokr, A.; Merah, O. Fennel oil and by-products seed characterization and their potential applications. Ind. Crops Prod. 2018, 111, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Merah, O.; Sayed-Ahmad, B.; Talou, T.; Saad, Z.; Cerny, M.; Grivot, S.; Evon, P.; Hijazi, A. Biochemical Composition of Cumin Seeds, and Biorefining Study. Biomolecules 2020, 10, 1054. [Google Scholar] [CrossRef] [PubMed]
- Kusumawati, I.; Indrayanto, G. Chapter 15—Natural Antioxidants in Cosmetics. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 40, pp. 485–505. ISBN 978-0-444-59603-1. [Google Scholar]
- Pouillot, A.; Polla, L.L.; Tacchini, P.; Neequaye, A.; Polla, A.; Polla, B. Natural Antioxidants and their Effects on the Skin. In Formulating, Packaging, and Marketing of Natural Cosmetic Products; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2011; pp. 239–257. ISBN 978-1-118-05680-6. [Google Scholar]
- Apiaceae. In Meyler’s Side Effects of Drugs, 16th ed.; Aronson, J.K. (Ed.) Elsevier: Oxford, UK, 2016; pp. 651–653. ISBN 978-0-444-53716-4. [Google Scholar]
Apiaceae Family | Disease Condition |
---|---|
Anise (Pimpinella anisum) | Dementia [32], neurological disorder [33], Alzheimer’s disease [34], depression [35], diabetes mellitus [36], |
Caraway (Carum carvi) | Hypertriglyceridemia [30], reducing oxidative stress in diabetes mellitus [37], sepsis-induced organ failure [38], hypertension, eczema, and antiradical profile are the underlying mechanism for pharmacological properties such as antimicrobial, antidiabetic, anticarcinogenic/antimutagenic, antistress, antiulcerogenic agents [31,39] |
Celery (Apium graveolens) | Hypertriglyceridemia [30], hyperlipidemia [40], pimples [41], antiproliferative and antiangiogenic effect on cancer [42] |
Coriander (Coriandrum sativum) | Pimples/acne [41,43], breast cancer [43,44], hepatoprotective effect, gastric ulcers [45], |
Cumin (Cuminum cyminum) | Antiradical profile are the underlying mechanism for pharmacological properties such as antimicrobial, antidiabetic, anticarcinogenic/antimutagenic, antistress, antiulcerogenic agents [31], neurodegeneration seen in Parkinson’s disease [46] |
Dill (Anethum graveolens) | Diabetes mellitus [15], hypertriglyceridemia [30], |
Indian pennywort (Centella asiatica L. Urb) | Diabetes mellitus and its related complication [47], neuroprotective effect [48], skin aging, skin diseases, and damage [49], obesity [50], wound healing [51] |
Apiaceae | Plant Part Used | Uses 1 | Important Chemical Constituents | Reference |
---|---|---|---|---|
Anise (Pimpinella anisum) | S 2 | C 2 | Phenolic acids including anisic acid, chlorogenic acid isomers, caffeoylquinic acid, flavonoids including rutin, luteolin-7-glucoside, apigenin-7-glucoside, disorienting, other components trans-anethole, estragole, anise ketone caryophyllene, anisaldehyde, linalool, limonene, pinene, acetaldehyde, p-cresol, creosol, hydroquinine, farnasene, camphene, eugenol, acetanisole, | [21,74] |
Caraway (Carum carvi) | R, L, S | C | Phenolic acids including chlorogenic, p-coumaric, caffeic, and ferulic acid, flavonoids including kaempferol, quercetin, 3-glucuronide, isoquercitrin, volatile compound including limonene, carvone, sesquiterpene, aromatic aldehydes, terpene esters, terpenol, terpenal, terpenon, safranal, tannins | [21,23] |
Carrot (Daucus carota) | R, L | V | α- and β-Carotenes, ascorbic acid, tannin, phenolic acids including caffeic, chlorogenic, ferulic, 5-caffeolquinic acid, volatile terpinolene, β-caryophyllene, γ-terpinene, γ-bisabolene, myrcene, limonene, and α-pinene | [23,29,75] |
Celery (Apium graveolens) | L, S | C, V | Phenolic acids including, p-coumaric, caffeic, ferulic, chlorogenic, and gallic acid, flavonoids included apigenin, luteolin, quercetin, rutin, and kaempferol, volatile compounds (limonene, myrcene, α-pinene, β-selinene) and other tannin, saponin, carotenoids, anthocyanins | [18,76,77] |
Coriander (Coriandrum sativum) | L, S | C, V | Phenolic acids including p-coumaric, ferulic, vanillic, chlorogenic, caffeic, and gallic acid, flavonoids including quercetin, kaempferol, acacetin, rutin other linalool, borneol, geraniol, terpineol, cumene, pinene, γ-terpinene, limonene, myrcene, camphene, tocopherols, pyrogallol, p-cymol, n-decylaldehyde, acetic acid esters | [18,21,23] |
Cumin (Cuminum cyminum) | S 3 | C, V 3 | Phenolic acids including quercetin, p- p-coumaric, rosmarinic, vanillic and cinnamic acids, and trans-2-dihydrocinnamic acid others cuminal, cuminaldehyde, linalool, cymene and γ-terpenoids, thymoquinone, 3-caren-10-al, γ-terpinene, p-cymene and β-pinene, pinocarveol, carotol, resorcinol, tannin | [23,78,79,80,81] |
Dill (Anethum graveolens) | L, S | C, V | Phenolic acids: chlorogenic and benzoic acids, flavonoids: quercetin, kaempferol, myricetin, catechins, isorhamnetin, others carvone, limonene, geraniol, α-phellandrene, p-cymene | [21,23] |
Fennel (Foeniculum vulgare) | L, S | C, V | Phenolic acids: p-coumaric acid, ferulic, quercetin, rosmarinic, tannic, caffeic, gallic, cinnamic, vanillic, ellagic, chlorogenic, and acid, flavonoids: rutin, quercetin, kaempferol, others vitamin C and E, oleoresins, β-carotene, β-sitosterol, campesterol, eugenol, carnosil, limonene, camphene, β-pinene, fenchyl alcohol, anisaldehyde, myristicin, dillapiole | [23,62,74,82] |
Indian pennywort (Centella asiatica L. Urb) | L | V | Flavonoids including quercetin, kaempferol, volatile pinene, terpene acetate, p-cyrnol, caryophyllene | [60] |
Parsley (Petroselinum crispum) | L | C, V | Phenolic acids: chlorogenic acid, p-coumaric acid, caffeic acid, gallic acid, vanillic acid flavonoids: apigenin, luteolin, kaempferol, myricetin, rutin, quercetin | [18,21] |
Wild celery (Angelica archangelica) | L, R, S 4 | C, V 4 | Phenolic acids: coumarin, other: terpenoids including α-pinene, δ-3-carene, β-phellandrene and limonene | [23] |
Apiaceae Family | Mean Flavonoid Content (mg per 100 g) |
---|---|
Carrot (Daucus carota) | Kaempferol (0.24), Quercetin (0.21), Luteolin (0.11), Myricetin (0.04) (raw) |
Celery (Apium graveolens) | Luteolin (762.4), apigenin (78.65) (seeds) Apigenin (19.10), Luteolin (3.50) (celery hearts, green) Apigenin (2.85), Luteolin (1.05), Quercetin (0.39), Kaempferol (0.22) (raw) |
Coriander (Coriandrum sativum) | Quercetin (52.90) (leaves, raw) |
Dill (Anethum graveolens) | Quercetin (55.15), isorhamnetin (43.50), kaempferol (13.33), myricetin (0.70) (fresh) |
Fennel (Foeniculum vulgare) | Eriodictyo (1.08), Quercetin (0.23) (bulb) Quercetin (48.80), myricetin (19.80), isorhamnetin (9.30), kaempferol (6.50), luteolin (0.10) (leaves, raw) |
Parsley (Petroselinum crispum) | Apigenin (4503.50), Isorhamnetin (331.24), Luteolin (19.75) (dried) Apigenin (215.46), Myricetin (14.84), Kaempferol (1.49), Luteolin (1.09), Quercetin (0.28) (fresh) |
Parsnip (Pastinaca sativa) | Quercetin (0.99) (raw) |
Plant | TPC (F–C Assay) | TFC | |||||||
---|---|---|---|---|---|---|---|---|---|
[91] mg GAE/100 g DW (Seeds) 1 | [92] mg GAE/100 g (Essential oil) | [13] g of GAE/100 g of DW (edible parts) 2 | [94] mg GAE/100 g DW (Seeds) 2 | [95] mg GAE/g DW (Aerial Parts) 2 | [7] mg GAE/g DW (Fruit) 3 | [94] mg CE/100 g DW (Seeds) 2 | [95] mg RE/g DW (Aerial Parts) 2 | [7] mg RE/g DW (Fruit) 3 | |
Coriander (Coriandrum sativum L.) | 160 | 28.48 | 0.88 | 17.04 | 13.72 | 38.83 | 11.10 | 10.24 | 45.26 |
Anise (Pimpinella anisum L.) | 310 | 10.89 | 46.17 | 17.43 | |||||
Caraway (Carum carvi L.) | 28.58 | 0.61 | 25.96 | 35.45 | 11.77 | 12.81 | |||
Dill (Anethum graveolens) | 340 | 0.98 | 69.87 | 14.64 | 49.10 | 18.16 | |||
Parsley (Petroselinum crispum) | 40.81 | 0.97 | 21.63 | 15.73 | |||||
Celery (Apium graveolens); Fresh | 490 | 7.32 | 17.39 | 19.44 | 8.14 | 13.24 | |||
Fennel (Foeniculum vulgare) | 320 | 115.96 | 21.71 | 68.10 | 15.85 | ||||
Cumin (Cuminum cyminum) | 0.23 | 25.29 | 38.36 |
Plant of the Apiaceae Family | Total Antioxidant Capacity | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
[91] (Seeds) 1 | [92] (Essential Oil) | [13] (Edible Parts) 2 | [94] (Seeds) 2 | [95] (Aerial Parts) 2 | [7] (Fruit) 3 | ||||||
DPPH a | ABTS a | DPPH b | ABTS c | FRAP c | DPPH d | DPPH, IC50 e | DPPH IC50 f | ABTS g | FRAP h | DPPH, IC50 i | |
Anise (Pimpinella anisum L.) | 260 | 187 | 5.21 | 798.8 | 654.8 | - | 39.4 | - | - | - | - |
Caraway (Carum carvi L.) | - | - | 7.72 | 455.9 | 899.8 | 5.50 | 13.9 | - | - | - | 0.046 |
Celery (Apium graveolens); Fresh | 480 | 1000 | 10.46 | 85.0 | 472.3 | - | - | - | - | 252.1 | 0.318 |
Coriander (Coriandrum sativum L.) | 160 | 52 | 8.15 | 599.2 | 956.5 | 7.02 | 9.6 | 77.6 | 103.0 | 185.0 | 0.021 |
Cumin (Cuminum cyminum) | - | - | - | - | - | 6.61 | - | - | - | - | 0.112 |
Dill (Anethum graveolens) | 500 | 684 | - | - | - | 6.36 | 81.5 | - | - | - | 0.572 |
Fennel (Foeniculum vulgare) | 170 | 180 | - | - | - | - | 113.2 | - | - | - | 0.146 |
Parsley (Petroselinum crispum) | - | - | 13.3 | 788.4 | 2104.4 | - | - | 22.8 | 231.5 | 331.8 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thiviya, P.; Gamage, A.; Piumali, D.; Merah, O.; Madhujith, T. Apiaceae as an Important Source of Antioxidants and Their Applications. Cosmetics 2021, 8, 111. https://doi.org/10.3390/cosmetics8040111
Thiviya P, Gamage A, Piumali D, Merah O, Madhujith T. Apiaceae as an Important Source of Antioxidants and Their Applications. Cosmetics. 2021; 8(4):111. https://doi.org/10.3390/cosmetics8040111
Chicago/Turabian StyleThiviya, Punniamoorthy, Ashoka Gamage, Dinushika Piumali, Othmane Merah, and Terrence Madhujith. 2021. "Apiaceae as an Important Source of Antioxidants and Their Applications" Cosmetics 8, no. 4: 111. https://doi.org/10.3390/cosmetics8040111
APA StyleThiviya, P., Gamage, A., Piumali, D., Merah, O., & Madhujith, T. (2021). Apiaceae as an Important Source of Antioxidants and Their Applications. Cosmetics, 8(4), 111. https://doi.org/10.3390/cosmetics8040111