Formulation and Physicochemical Evaluation of Green Cosmeceutical Herbal Face Cream Containing Standardized Mangosteen Peel Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipments
2.3. Physical Compatibility Test
2.4. Formulation of Cream Bases
2.5. Formulation of Mangosteen Creams
2.6. Organoleptic Characteristics
2.7. Determination of Type of Cream (Dilution Test)
2.8. Washability
2.9. Rheology
2.10. Spreadability
2.11. pH Determination
2.12. Accelerated Stability Study
2.13. Freeze–Thaw Stability
2.14. Centrifugation Test
2.15. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Assay
2.16. 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Assay
2.17. Tyrosinase Inhibitory Assay
2.18. Statistical Analysis
3. Results and Discussion
3.1. Physical Compatibility Test
3.2. Organoleptic Characteristics
3.3. Determination of Type of Cream (Dilution Test)
3.4. Washability
3.5. Rheology
3.6. Spreadability and pH at Room Temperature and Accelerated Stability Study
3.7. Freeze–Thaw Stability
3.8. Centrifugation Test
3.9. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Assay
3.10. 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Assay
3.11. Tyrosinase Inhibitory Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruddy, E.; Zhu, G.; Idowu, O.; Birch-Machin, M.A. Skin aging and mitochondria. In Mitochondrial Dysfunction and Nanotherapeutics; de Oliveira, M.R., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 237–259. ISBN 978-032-385-666-9. [Google Scholar]
- Giacomoni, P.U.; Declercq, L.; Hellemans, L.; Maes, D. Aging of human skin: Review of a mechanistic model and first experimental data. IUBMB Life 2000, 49, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Giacomoni, P.U.; Rein, G. Factors of skin ageing share common mechanisms. Biogerontology 2001, 2, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Giacomoni, P.U.; D’Alessio, P. Skin Ageing. In Molecular Gerontology; Rattan, S.I.S., Toussaint, O., Eds.; Springer: Boston, MA, USA, 1996; pp. 177–192. ISBN 978-1-4615-5889-7. [Google Scholar] [CrossRef] [Green Version]
- Poljšak, B.; Dahmane, R. Free radicals and extrinsic skin aging. Dermatol. Res. Pract. 2012, 2012, 135206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callender, V.D.; Baldwin, H.; Cook-Bolden, F.E.; Alexis, A.F.; Stein Gold, L.; Guenin, E. Effects of topical retinoids on acne and post-inflammatory hyperpigmentation in patients with skin of color: A clinical review and implications for practice. Am. J. Clin. Dermatol. 2022, 23, 69–81. [Google Scholar] [CrossRef]
- World Health Organization. Preventing Disease Through Healthy Environments: Mercury in Skin Lightening Products. Available online: https://apps.who.int/iris/rest/bitstreams/1262414/retrieve (accessed on 3 October 2020).
- Shamdasani, P.; Chon-Lin, G.O.; Richmond, D. Exploring green consumers in an oriental culture: Role of personal and marketing mix factors. In NA—Advances in Consumer Research; McAlister, L., Rothschild, M.L., Eds.; Association for Consumer Research: Provo, UT, USA, 1993; Volume 20, pp. 488–493. [Google Scholar]
- Chin, J.; Jiang, B.C.; Mufidah, I.; Persada, S.F.; Noer, B.A. The investigation of consumers’ behavior intention in using green skincare products: A pro-environmental behavior model approach. Sustainability 2018, 10, 3922. [Google Scholar] [CrossRef] [Green Version]
- Amberg, N.; Fogarassy, C. Green consumer behavior in the cosmetics market. Resources 2019, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Paul, J.; Modi, A.; Patel, J. Predicting green product consumption using theory of planned behavior and reasoned action. J. Retail. Consum. Serv. 2016, 29, 123–134. [Google Scholar] [CrossRef]
- Lopez-Hortas, L.; Florez-Fernandez, N.; Torres, M.D.; Ferreira-Anta, T.; Casas, M.P.; Balboa, E.M.; Falque, E.; Domínguez, H. Applying seaweed compounds in cosmetics, cosmeceuticals and nutricosmetics. Mar. Drugs 2021, 19, 552. [Google Scholar] [CrossRef]
- Dubey, S.K.; Dey, A.; Singhvi, G.; Pandey, M.M.; Singh, V.; Kesharwani, P. Emerging trends of nanotechnology in advanced cosmetics. Colloids Surf. B Biointerfaces 2022, 112440. [Google Scholar] [CrossRef]
- Salleh, M.M.; Yusof, M.R. Tropical fruits and vegetables in Malaysia: Production and impact on health. In Proceedings of the Fruits and Vegetables for Health Workshop, Seoul, Korea, 15–16 August 2006; pp. 1–5. [Google Scholar]
- Ibrahim, U.K.; Kamarrudin, N.; Suzihaque, M.U.H.; Abd Hashib, S. Local fruit wastes as a potential source of natural antioxidant: An overview. In IOP Conference Series: Materials Science and Engineering, 29th Symposium of Malaysian Chemical Engineers (SOMChE), Miri, Sarawak, Malaysia, 1–3 December 2016; IOP Publishing: Bristol, UK, 2017; Volume 206, p. 012040. [Google Scholar] [CrossRef]
- Ansori, A.N.M.; Fadholly, A.; Hayaza, S.; Susilo, R.K.; Inayatillah, B.; Winarni, D.; Husen, S.A. A review on medicinal properties of mangosteen (Garcinia mangostana L.). Res. J. Pharm. Technol. 2020, 13, 974–982. [Google Scholar] [CrossRef]
- Ching, M.O.Y.; Sasikala, C.; Mogana, R. In vitro anti-motility and antispasmodic effects of Garcinia mangostana extracts in isolated chicken ileum preparation. Int. J. Res. Pharm. Sci. 2019, 10, 1444–1447. [Google Scholar] [CrossRef]
- Aizat, W.M.; Jamil, I.N.; Ahmad-Hashim, F.H.; Noor, N.M. Recent updates on metabolite composition and medicinal benefits of mangosteen plant. PeerJ 2019, 7, e6324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Im, A.R.; Kim, Y.M.; Chin, Y.W.; Chae, S. Protective effects of compounds from Garcinia mangostana L. (mangosteen) against UVB damage in HaCaT cells and hairless mice. Int. J. Mol. Med. 2017, 40, 1941–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohno, R.I.; Moroishi, N.; Sugawa, H.; Maejima, K.; Saigusa, M.; Yamanaka, M.; Nagai, M.; Yoshimura, M.; Amakura, Y.; Nagai, R. Mangosteen pericarp extract inhibits the formation of pentosidine and ameliorates skin elasticity. J. Clin. Biochem. Nutr. 2015, 57, 27–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, H.A.; Su, B.N.; Keller, W.J.; Mehta, R.G.; Kinghorn, A.D. Antioxidant xanthones from the pericarp of Garcinia mangostana (mangosteen). J. Agric. Food Chem. 2006, 54, 2077–2082. [Google Scholar] [CrossRef]
- Jamadar, M.J.; Husen Shaikh, R. Preparation and evaluation of herbal gel formulation. J. Pharm. Res. Educ. 2017, 1, 201–224. [Google Scholar]
- Bynum, K.C. Preformulation and early phase method development. In Separation Science and Technology; Ahuja, S., Scypinski, S., Eds.; Academic Press: Cambridge, MA, USA, 2011; Volume 10, pp. 361–396. ISBN 978-012-375-680-0. [Google Scholar] [CrossRef]
- Narang, A.S.; Rao, V.M.; Raghavan, K.S. Excipient compatibility. In Developing Solid Oral Dosage Forms; Qiu, Y., Chen, Y., Zhang, G.G.Z., Liu, L., Porter, W.R., Eds.; Academic Press: Cambridge, MA, USA, 2009; pp. 125–145. ISBN 978-044-453-242-8. [Google Scholar] [CrossRef]
- De Barros Lima, Í.P.; Lima, N.G.P.B.; Barros, D.M.C.; Oliveira, T.S.; Mendonҫa, C.M.S.; Barbosa, E.G.; Raffin, F.N.; De Lima, E. Moura, T.F.A.; Gomes, A.P.B.; Ferrari, M.; et al. Compatibility study between hydroquinone and the excipients used in semi-solid pharmaceutical forms by thermal and non-thermal techniques. J. Therm. Anal. Calorim. 2015, 120, 719–732. [Google Scholar] [CrossRef]
- Soumya, A.; Rasheed, S.; Manjunath, S. Formulation and evaluation of herbal cream containing extracts of Murraya koenigii and Cajanus cajan. Int. J. Res. Phytochem. Pharmacol. Sci. 2020, 1, 58–63. [Google Scholar] [CrossRef]
- Navindgikar, N.N.; Kamalapurkar, K.A.; Chavan, P.S. Formulation and evaluation of multipurpose herbal cream. Int. J. Curr. Pharm. Res. 2020, 12, 25–30. [Google Scholar] [CrossRef]
- Chen, M.X.; Alexander, K.S.; Baki, G. Formulation and evaluation of antibacterial creams and gels containing metal ions for topical application. J. Pharm. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.A.; Nath, B. Formulation and in vitro evaluation of poly-herbal anti-ageing face cream of Coriandrum sativum and rose hip oil. Int. J. Curr. Pharm. Res. 2017, 9, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Mahawar, V.; Patidar, K.; Joshi, N. Development and evaluation of herbal antiaging cream formulation containing Annona squamosa leaf extract. Asian J. Pharm. Clin. Res. 2019, 12, 210–214. [Google Scholar] [CrossRef]
- Glusac, J.; Davidesko-Vardi, I.; Isaschar-Ovdat, S.; Kukavica, B.; Fishman, A. Gel-like emulsions stabilized by tyrosinase-crosslinked potato and zein proteins. Food Hydrocoll. 2018, 82, 53–63. [Google Scholar] [CrossRef]
- Berenguer, D.; Sosa, L.; Alcover, M.; Sessa, M.; Halbaut, L.; Guillén, C.; Fisa, R.; Calpena-Campmany, A.C.; Riera, C. Development and characterization of a semi-solid dosage form of meglumine antimoniate for topical treatment of cutaneous leishmaniasis. Pharmaceutics 2019, 11, 613. [Google Scholar] [CrossRef] [Green Version]
- Maru, A.D.; Lahoti, S.R. Formulation and evaluation of moisturizing cream containing Sunflower wax. Int. J. Pharm. Pharm. Sci. 2018, 10, 54–59. [Google Scholar] [CrossRef]
- Razi, M.; Khan, U.; Raza, S.M.; Hussain, M. Formulation and in vitro evaluation of cream containing diclofenac sodium and Curcuma longa for the management of rheumatoid arthritis. Int. J. Pharma Sci. 2014, 4, 654–660. [Google Scholar]
- Ambala, R.; Vemula, S.K. Formulation and characterization of ketoprofen emulgels. J. Appl. Pharm. Sci. 2015, 5, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Netto MPharm, G.; Jose, J. Development, characterization, and evaluation of sunscreen cream containing solid lipid nanoparticles of silymarin. J. Cosmet. Dermatol. 2018, 17, 1073–1083. [Google Scholar] [CrossRef]
- Sungpud, C.; Panpipat, W.; Chaijan, M.; Yoon, A.S. Techno-biofunctionality of mangostin extract-loaded virgin coconut oil nanoemulsion and nanoemulgel. PLoS ONE 2020, 15, e0227979. [Google Scholar] [CrossRef] [Green Version]
- Mohsin, S.; Akhtar, N.; Mahmood, T.; Khan, H.; Mustafa, R. Formulation and stability of topical water in oil emulsion containing corn silk extract. Trop. J. Pharm. Res. 2016, 15, 1115–1121. [Google Scholar] [CrossRef] [Green Version]
- Santhanam, R.K.; Akhtar, M.T.; Ahmad, S.; Abas, F.; Ismail, I.S.; Rukayadi, Y.; Shaari, K. Utilization of the ethyl acetate fraction of Zanthoxylum rhetsa bark extract as an active ingredient in natural sunscreen formulations. Ind. Crops Prod. 2017, 96, 165–172. [Google Scholar] [CrossRef]
- Restu, W.K.; Sampora, Y.; Meliana, Y.; Haryono, A. Effect of accelerated stability test on characteristics of emulsion systems with chitosan as a stabilizer. Procedia Chem. 2015, 16, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Mogana, R.; Teng-Jin, K.; Wiart, C. Anti-inflammatory, anticholinesterase, and antioxidant potential of scopoletin isolated from Canarium patentinervium Miq. (Burseraceae Kunth). Evid.-Based Complementary Altern. Med. 2013, 2013, 734824. [Google Scholar] [CrossRef] [Green Version]
- Simões, A.; Veiga, F.; Vitorino, C.; Figueiras, A. A tutorial for developing a topical cream formulation based on the quality by design approach. J. Pharm. Sci. 2018, 107, 2653–2662. [Google Scholar] [CrossRef]
- Mishra, A.P.; Saklani, S.; Milella, L.; Tiwari, P. Formulation and evaluation of herbal antioxidant face cream of Nardostachys jatamansi collected from Indian Himalayan region. Asian Pac. J. Trop. Biomed. 2014, 4, S679–S682. [Google Scholar] [CrossRef] [Green Version]
- Rapp, B.E. Fluids. In Microfluidics: Modelling, Mechanics and Mathematics; Rapp, B.E., Ed.; Elsevier: Oxford, UK, 2017; pp. 243–263. ISBN 978-145-573-141-1. [Google Scholar] [CrossRef]
- Kwak, M.S.; Ahn, H.J.; Song, K.W. Rheological investigation of body cream and body lotion in actual application conditions. Korea Aust. Rheol. J. 2015, 27, 241–251. [Google Scholar] [CrossRef]
- Aremu, O.; Olayemi, O.; Ajala, T.; Isimi, Y.; Oladosu, P.; Ekere, K.; John, J.; Emeje, M. Antibacterial evaluation of Acacia nilotica lam (Mimosaceae) seed extract in dermatological preparations. J. Res. Pharm. 2020, 24, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Estanqueiro, M.; Amaral, M.H.; Sousa Lobo, J.M. Comparison between sensory and instrumental characterization of topical formulations: Impact of thickening agents. Int. J. Cosmet. Sci. 2016, 38, 389–398. [Google Scholar] [CrossRef]
- Yadav, N.P.; Rai, V.K.; Mishra, N.; Sinha, P.; Bawankule, D.U.; Pal, A.; Tripathi, A.K.; Chanotiya, C.S. A novel approach for development and characterization of effective mosquito repellent cream formulation containing Citronella oil. Biomed Res. Int. 2014, 2014, 786084. [Google Scholar] [CrossRef]
- Miner, P.E. Emulsion rheology: Creams and lotions. In Rheological Properties of Cosmetics and Toiletries; Laba, D., Ed.; Marcel Dekker: New York, NY, USA, 2017; pp. 313–370. ISBN 978-0-8247-9090-5. [Google Scholar] [CrossRef]
- Al-Busaid, M.M.; Akhtar, M.S.; Alam, T.; Aly Shehata, W. Development and evaluation of herbal cream containing curcumin from Curcuma longa. Pharm. Pharmacol. Int. J. 2020, 8, 285–289. [Google Scholar] [CrossRef]
- Deuschle, V.C.K.N.; Norbert Deuschle, R.A.; Bortoluzzi, M.R.; Athayde, M.L. Physical chemistry evaluation of stability, spreadability, in vitro antioxidant, and photo-protective capacities of topical formulations containing Calendula officinalis L. leaf extract. Braz. J. Pharm. Sci. 2015, 51, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Barry, B.W.; Grace, A.J. Sensory testing of spreadability: Investigation of rheological conditions operative during application of topical preparations. J. Pharm. Sci. 1972, 61, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Jumaa, M.; Müller, B.W. Parenteral emulsions stabilized with a mixture of phospholipids and PEG-660-12-hydroxy-stearate: Evaluation of accelerated and long-term stability. Eur. J. Pharm. Biopharm. 2002, 54, 207–212. [Google Scholar] [CrossRef] [PubMed]
- National Health Surveilance Agency. Cosmetic Products Stability Guide. Available online: http://portal.anvisa.gov.br/documents/106351/107922/guidestabilityseries.pdf/5f90ee5b-c77b-4c1e-91f9-5fa680b05022 (accessed on 20 May 2021).
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Kalin, P.; Gülçin, İ.; Gören, A.C. Antioxidant activity and polyphenol content of cranberries (Vaccinium macrocarpon). Rec. Nat. Prod. 2015, 9, 496–502. [Google Scholar]
- Yao, X.; Zhang, T.; Tang, H.; Wang, H.; Chen, W. Free radical-scavenging, nitrite-scavenging, and N-nitrosamine formation inhibitory activities of extracts from Kunlun compositae tea (Coreopsis tinctoria Nutt.). J. Food Nutr. Res. 2015, 3, 587–592. [Google Scholar] [CrossRef]
- Lanigan, R.S.; Yamarik, T.A. Final report on the safety assessment of BHT (1). Int. J. Toxicol. 2002, 21, 19–94. [Google Scholar] [CrossRef]
- Ngawhirunpat, T.; Opanasopi, P.; Sukma, M.; Sittisombut, C.; Kat, A.; Adachi, I. Antioxidant, free radical-scavenging activity and cytotoxicity of different solvent extracts and their phenolic constituents from the fruit hull of mangosteen (Garcinia mangostana). Pharm. Biol. 2010, 48, 55–62. [Google Scholar] [CrossRef]
- Tjahjani, S.; Widowati, W.; Khiong, K.; Suhendra, A.; Tjokropranoto, R. Antioxidant properties of Garcinia mangostana L (mangosteen) rind. Procedia Chem. 2014, 13, 198–203. [Google Scholar] [CrossRef] [Green Version]
- Weecharangsan, W.; Opanasopit, P.; Sukma, M.; Ngawhirunpat, T.; Sotanaphun, U.; Siripong, P. Antioxidative and neuroprotective activities of extracts from the fruit hull of mangosteen (Garcinia mangostana Linn.). Med. Princ. Pract. 2006, 15, 281–287. [Google Scholar] [CrossRef]
- Arif, N.; Yahya, A.; Hamid, M.; Yaakob, H.; Zulkifli, R. Development of lightening cream from mangosteen pericarp extract with olivoil emulsifier. Int. Proc. Econ. Dev. Res. 2014, 81, 58. [Google Scholar] [CrossRef]
- Shafy, G.M.; Jassim, A.M.N.; Mohammed, M.T. Study of phytochemical, antioxidant and anti-inflammatory of mangosteen (G. mangostana) and its ability to wound healing. Plant Arch. 2019, 19, 665–673. [Google Scholar]
- Li, W.Q.; Xu, J.G. Profile of DNA damage protective effect and antioxidant activity of different solvent extracts from the pericarp of Garcinia mangostana. J. Food Nutr. Sci. 2015, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Pothitirat, W.; Chomnawang, M.T.; Supabphol, R.; Gritsanapan, W. Free radical scavenging and anti-acne activities of mangosteen fruit rind extracts prepared by different extraction methods. Pharm. Biol. 2010, 48, 182–186. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Goal 12: Ensure Sustainable Consumption and Production Patterns. Available online: https://www.un.org/sustainabledevelopment/sustainable-consumption-production/ (accessed on 23 June 2021).
- Ke, C.; Sun, L.; Qiao, D.; Wang, D.; Zeng, X. Antioxidant acitivity of low molecular weight hyaluronic acid. Food Chem. Toxicol. 2011, 49, 2670–2675. [Google Scholar] [CrossRef]
- Camargo, F.B., Jr.; Gaspar, L.R.; Maia Campos, P.M.B.G. Skin moisturizing effects of panthenol-based formulations. J. Cosmet. Sci. 2011, 62, 361–369. [Google Scholar]
- Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; Heldreth, B. Safety Assessment of Panthenol, Pantothenic Acid, and Derivatives as Used in Cosmetics. Available online: http://www.cir-safety.org/sites/default/files/PANTS012017.pdf (accessed on 20 May 2021).
- Ijaz, N.; Durrani, A.I.; Rubab, S.; Bahadur, S. Formulation and characterization of Aloe vera gel and tomato powder containing cream. Acta Ecol. Sin. 2022, 42, 34–42. [Google Scholar] [CrossRef]
- Widowati, W.; Darsono, L.; Suherman, J.; Yelliantty, Y.; Maesaroh, M. High Performance Liquid Chromatography (HPLC) analysis, antioxidant, antiaggregation of mangosteen peel extract (Garcinia mangostana L.). Int. J. Biosci. Biochem. Bioinf. 2014, 4, 458–466. [Google Scholar] [CrossRef]
- Haddouchi, F.; Chaouche, T.M.; Ksouri, R.; Medini, F.; Sekkal, F.Z.; Benmansour, A. Antioxidant activity profiling by spectrophotometric methods of aqueous methanolic extracts of Helichrysum stoechas subsp. rupestre and Phagnalon saxatile subsp. saxatile. Chin. J. Nat. Med. 2014, 12, 415–422. [Google Scholar] [CrossRef]
- Deveci, E.; Çayan, F.; Tel-Çayan, G.; Duru, M.E. Structural characterization and determination of biological activities for different polysaccharides extracted from tree mushroom species. J. Food Biochem. 2019, 43, e12965. [Google Scholar] [CrossRef]
- Atolani, O.; Oguntoye, H.; Areh, E.T.; Adeyemi, O.S.; Kambizi, L. Chemical composition, anti-toxoplasma, cytotoxicity, antioxidant, and anti-inflammatory potentials of Cola gigantea seed oil. Pharm. Biol. 2019, 57, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.V.; Sasikala, C.; Mogana, R. Antioxidant activity of Garcinia mangostana L and alpha mangostin: A review. Res. J. Pharm. Technol. 2021, 14, 4466–4470. [Google Scholar] [CrossRef]
- Kunle, O.F.; Egharevba, H.O.; Ahmadu, P.O. Standardization of herbal medicines—A review. Int. J. Biodivers. Conserv. 2012, 4, 101–112. [Google Scholar] [CrossRef]
- Kanchana, S.; Arumugam, M.; Giji, S.; Balasubramanian, T. Isolation, characterization and antioxidant activity of hyaluronic acid from marine bivalve mollusc Amussium pleuronectus (Linnaeus, 1758). Bioact. Carbohydr. Diet. Fibre 2013, 2, 1–7. [Google Scholar] [CrossRef]
- Braga, P.C.; Dal Sasso, M.; Lattuada, N.; Greco, V.; Sibilia, V.; Zucca, E.; Stucchi, L.; Ferro, E.; Ferrucci, F. Antioxidant activity of hyaluronic acid investigated by means of chemiluminescence of equine neutrophil bursts and electron paramagnetic resonance spectroscopy. J. Vet. Pharmacol. Ther. 2015, 38, 48–54. [Google Scholar] [CrossRef]
- McEachern, M.G.; McClean, P. Organic purchasing motivations and attitudes: Are they ethical? Int. J. Consum. Stud. 2002, 26, 85–92. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Suvarnakuta, P.; Chaweerungrat, C.; Devahastin, S. Effects of drying methods on assay and antioxidant activity of xanthones in mangosteen rind. Food Chem. 2011, 125, 240–247. [Google Scholar] [CrossRef]
- Widowati, W.; Ginting, C.N.; Lister, I.N.E.; Girsang, E.; Amalia, A.; Wibowo, S.H.B.; Kusuma, H.S.W.; Rizal. Anti-aging effects of mangosteen peel extract and its phytochemical compounds: Antioxidant activity, enzyme inhibition and molecular docking simulation. Trop. Life Sci. Res. 2020, 31, 127–144. [Google Scholar] [CrossRef]
- Briganti, S.; Camera, E.; Picardo, M. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res. 2003, 16, 101–110. [Google Scholar] [CrossRef]
Composition | Quantity for 100 g (%) | |
---|---|---|
Male Cream (M1) | Female Cream (F1) | |
Actives | ||
Mangosteen peel extract (10% α-mangostin) | 0.5 | 0.5 |
D-panthenol (USP Grade) | 3 | 3 |
Hyaluronic acid solution | 2 | 2 |
Excipients | ||
Optiphen BD | 0.3 | 0.3 |
Baby powder fragrance oil | 0.1 | - |
Rose geranium essential oil | - | 0.1 |
Oil phase | ||
Refined shea butter | 10 | 10 |
Refined avocado oil | 8 | 8 |
Olivem 1000 | 3 | 3 |
Water phase | ||
Organic aloe vera gel | 24 | 24 |
Vegetable glycerine solution | 5 | 5 |
Distilled water | q.s. to 100 g | q.s. to 100 g |
No. | Combination of Ingredients | Duration (Weeks) | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
1 | MG | NCC | NCC | NCC | NCC |
2 | MG:AO | NCC | NCC | NCC | NCC |
3 | MG:AO:SB | NCC | NCC | NCC | NCC |
4 | MG:AO:SB:O | NCC | NCC | NCC | NCC |
5 | MG:AO:SB:O:H2O:G | NCC | NCC | NCC | NCC |
6 | MG:AO:SB:O:H2O:G:AV | NCC | NCC | NCC | NCC |
7 | MG:AO:SB:O:H2O:G:AV:HA | NCC | NCC | NCC | NCC |
8 | MG:AO:SB:O:H2O:G:AV:HA:P | NCC | NCC | NCC | NCC |
9 | MG:AO:SB:O:H2O:G:AV:HA:P: Opt. | NCC | NCC | NCC | NCC |
Male Cream (M1) | Female Cream (F1) | |
---|---|---|
Odor | Baby powder scent | Rose scent |
Color | Light yellowish-brown with visible debris | |
Flow property | No flow when inverted 180° | |
Texture | Smooth, creamy, thick | |
Homogeneity | Homogenous | |
Consistency | Good | |
Phase separation | Absent | |
Coarse particles | Absent | |
Stiffness | Absent | |
Grittiness | Absent | |
Greasiness | Absent | |
Absorption | Within 1–2 min |
Room Temperature | Accelerated Stability Study | ||||||
---|---|---|---|---|---|---|---|
Formulation | Duration (months) | Spreadability a (cm) ± SD | pHa ± SD | Spreadability a (cm) ± SD | pH a ± SD | ||
100 g | 200 g | 100 g | 200 g | ||||
Male Cream (M1) | 0 | 5.05 ± 0.05 c,d,e | 6.30 ± 0.26 c,d,e | 5.16 ± 0.01 d,e | 5.05 ± 0.05 d,e | 6.30 ± 0.26 d,e | 5.16 ± 0.01 c,d,e |
1 | 4.50 ± 0.05 b,d,e | 5.70 ± 0.20 b,e | 5.17 ± 0.01 d,e | 4.70 ± 0.20 d,e | 5.90 ± 0.20 e | 5.26 ± 0.01 b,d,e,f | |
2 | 4.20 ± 0.10 b,c | 5.30 ± 0.10 b | 5.31 ± 0.01 b,c,e | 4.20 ± 0.10 b,c | 5.50 ± 0.10 b | 5.41 ± 0.01 b,c,e,f | |
3 | 4.10 ± 0.10 b,c | 5.20 ± 0.15 b,c | 5.36 ± 0.01 b,c,d | 4.10 ± 0.15 b,c | 5.10 ± 0.15 b,c | 5.45 ± 0.01 b,c,d,f | |
Female Cream (F1) | 0 | 5.40 ± 0.10 c,d,e | 6.65 ± 0.05 c,d,e | 5.19 ± 0.01 d,e | 5.40 ± 0.10 | 6.65 ± 0.05 c,d,e | 5.19 ± 0.01 c,d,e |
1 | 4.30 ± 0.10 b,d,e | 5.10 ± 0.20 b,d,e | 5.18 ± 0.01 d,e | 5.10 ± 0.10 f | 6.20 ± 0.20 b,f | 5.27 ± 0.01 b,d,e,f | |
2 | 3.60 ± 0.10 b,c | 4.40 ± 0.20 b,c | 5.41 ± 0.01 b,c | 5.10 ± 0.10 f | 6.10 ± 0.10 b,f | 5.41 ± 0.00 b,c,e | |
3 | 3.50 ± 0.06 b,c | 4.25 ± 0.15 b,c | 5.42 ± 0.01 b,c | 5.30 ± 0.15 f | 6.30 ± 0.10 b,f | 5.45 ± 0.01 b,c,d,f |
Formulation | Cycles | Spreadability a (cm) ± SD | pH a ± SD | Phase Separation | |
---|---|---|---|---|---|
100 g | 200 g | ||||
Male Cream (M1) | 0 | 5.05 ± 0.05 c,d,e | 6.30 ± 0.26 c,d,e | 5.16 ± 0.01 c,e | Absent |
1 | 4.15 ± 0.05 b | 5.15 ± 0.05 b | 5.25 ± 0.00 b,d,e | Absent | |
2 | 4.05 ± 0.05 b | 5.10 ± 0.00 b | 5.17 ± 0.01 c,e | Absent | |
3 | 4.10 ± 0.10 b | 4.90 ± 0.00 b | 5.21 ± 0.01 b,c,d | Absent | |
Female Cream (F1) | 0 | 5.40 ± 0.10 c,d,e | 6.65 ± 0.05 c,d,e | 5.19 ± 0.01 e | Absent |
1 | 4.20 ± 0.20 b,e | 4.80 ± 0.10 b | 5.20 ± 0.00 e | Absent | |
2 | 4.15 ± 0.15 b,e | 4.95 ± 0.05 b,e | 5.19 ± 0.00 e | Absent | |
3 | 3.70 ± 0.10 b,c,d | 4.65 ± 0.15 b,d | 5.17 ± 0.01 b,c,d | Absent |
Test Samples | EC50 a ± SD | p-Value * | |
---|---|---|---|
DPPH Assay | ABTS Assay | ||
Mangosteen peel extract (10% α-mangostin) | 37.31 ± 4.73 µg/mL | 21.02 ± 2.92 µg/mL | 0.007 |
Mangosteen cream (0.5% mangosteen peel extract) | 9.05 ± 4.14 mg/mL | 5.96 ± 2.77 mg/mL | 0.343 |
Hyaluronic acid | >100 mg/mL | >100 mg/mL | - |
Panthenol | >100 mg/mL | >100 mg/mL | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, P.L.; Rajagopal, M.; Chinnappan, S.; Selvaraja, M.; Leong, M.Y.; Tan, L.F.; Yap, V.L. Formulation and Physicochemical Evaluation of Green Cosmeceutical Herbal Face Cream Containing Standardized Mangosteen Peel Extract. Cosmetics 2022, 9, 46. https://doi.org/10.3390/cosmetics9030046
Tan PL, Rajagopal M, Chinnappan S, Selvaraja M, Leong MY, Tan LF, Yap VL. Formulation and Physicochemical Evaluation of Green Cosmeceutical Herbal Face Cream Containing Standardized Mangosteen Peel Extract. Cosmetics. 2022; 9(3):46. https://doi.org/10.3390/cosmetics9030046
Chicago/Turabian StyleTan, Puay Luan, Mogana Rajagopal, Sasikala Chinnappan, Malarvili Selvaraja, Mun Yee Leong, Lee Fang Tan, and Vi Lien Yap. 2022. "Formulation and Physicochemical Evaluation of Green Cosmeceutical Herbal Face Cream Containing Standardized Mangosteen Peel Extract" Cosmetics 9, no. 3: 46. https://doi.org/10.3390/cosmetics9030046
APA StyleTan, P. L., Rajagopal, M., Chinnappan, S., Selvaraja, M., Leong, M. Y., Tan, L. F., & Yap, V. L. (2022). Formulation and Physicochemical Evaluation of Green Cosmeceutical Herbal Face Cream Containing Standardized Mangosteen Peel Extract. Cosmetics, 9(3), 46. https://doi.org/10.3390/cosmetics9030046