Permanent Make-Up (PMU) Inks Decolorization Using Plant Origin Materials
Abstract
:1. Introduction
2. Experimental
2.1. PMU Inks Materials and Methods
2.2. Preparation of PE
Determination of Total Phenolic Content (TPC)
2.3. Antioxidant Activity
2.3.1. DPPH Method
2.3.2. Ferric Reducing Antioxidant Power (FRAP) Assay
2.4. Monitoring the Decolorization Potential by Spectrophotometry
3. Results and Discussion
3.1. PMU Composition
3.2. Total Phenolic Content and Antioxidant Capacity of the PE Extract
3.3. Decolorization Potential of PE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giulbudagian, M.; Schreiver, I.; Singh, A.V.; Laux, P.; Luch, A. Safety of tattoos and permanent make-up: A regulatory view. Arch. Toxicol. 2020, 94, 357–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreou, Ε.; Hatziantoniou, S.; Rallis, E.; Kefala, V. Legislation and Side Effects induced by Permanent Make Up Colors. Epitheorese Klinikes Farmakologias kai Farmakokinetikes 2020, 38, 195–201. [Google Scholar]
- Wenzel, S.M.; Welzel, J.; Hafner, C.; Landthaler, M.; Bäumler, W. Permanent make-up colorants may cause severe skin reactions. Contact Dermat. 2010, 63, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Andreou, E.; Hatziantoniou, S.; Rallis, E.; Kefala, V. Safety of Tattoos and Permanent Make up (PMU) Colorants. Cosmetics 2021, 8, 47. [Google Scholar] [CrossRef]
- Hauri, U. Inks for Tattoos and Permanent Make-Up Pigments, Preservatives, Aromatic Amines, Polyaromatic Hydrocarbons and Nitrosamines; Swiss National Investigation Campaign: Basel, Switzerland, 2014; pp. 1–14. [Google Scholar]
- Nho, S.W.; Kim, M.; Kweon, O.; Kim, S.J.; Moon, M.S.; Periz, G.; Huang, M.-C.J.; Dewan, K.; Sadrieh, N.K.; Cerniglia, N.K. Microbial contamination of tattoo and permanent makeup inks marketed in the US: A follow-up study. Lett. Appl. Microbiol. 2020, 71, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Desmedt, B.; Vanhamme, M.; Deconinck, E. The purity of tattoo inks, screening substances of high concern. Regul. Toxicol. Pharmacol. 2022, 129, 105123. [Google Scholar] [CrossRef] [PubMed]
- Biskanaki, F.; Kefala, V. New strategies in Cosmetic Tattoo (Permanent Makeup) and Tattoo removal. Rev. Clin. Pharmacol. Pharmacokinet. Int. Ed. 2018, 32, 17–21. [Google Scholar]
- De Cuyper, C. Complications of Cosmetic Tattoos. Curr. Probl. Dermatol. 2015, 48, 61–70. [Google Scholar]
- Guerra, E.; Llompart, M.; Garcia-Jares, C. Analysis of Dyes in Cosmetics: Challenges and Recent Developments. Cosmetics 2018, 5, 47. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.C.; DeJoseph, L.M. Latest innovations for tattoo and permanent makeup removal. Facial Plast. Surg. Clin. North Am. 2012, 20, 125–134. [Google Scholar] [CrossRef]
- Lee, C.N.; Bae, E.Y.; Park, J.G.; Lim, S.H. Permanent makeup removal using Q-switched Nd:YAG laser. Clin. Exp. Dermatol. 2009, 34, 125–134. [Google Scholar] [CrossRef] [PubMed]
- McIlwee, B.E.; Alster, T.S. Treatment of Cosmetic Tattoos: A Review and Case Analysis. Dermatol. Surg. 2018, 44, 1565–1570. [Google Scholar] [CrossRef] [PubMed]
- De Cuyper, C. Cosmetic and Medical Applications of Tattooing. In Dermatologic Complications with Body Art; Cuyper, C.D., Pérez-Cotapos, S.M.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 30–44. [Google Scholar]
- Bäumler, W. Chemical hazard of tattoo colorants. Presse Med. 2020, 49, 104046. [Google Scholar] [CrossRef] [PubMed]
- Andreou, E.; Biskanaki, F.; Tertipi, N.; Sfyri, E.; Rallis, Ε.; Hatziantoniou, S.; Kefala, V. Modern developments on the application and the removal of permanent make up. Epitheorese Klinikes Farmakologias kai Farmakokinetikes 2020, 38, 53–55. [Google Scholar]
- Andreou, E.; Kefala, V.; Rallis, E. Why do cosmetic tattoos change color. An update. Rev. Clin. Pharmacol. Pharmakokinet. Int. Ed. 2018, 32, 115–123. [Google Scholar]
- Burris, K.; Kim, K. Tattoo removal. Clin. Dermatol. 2007, 5, 388–392. [Google Scholar] [CrossRef]
- Andreou, E.; Hatziantoniou, S.; Rallis, E.; Kefala, V. Permanent Make up (PMU) and Tattoo Colorants. Epitheorese Klinikes Farmakologias kai Farmakokinitikes 2021, 39, 77–81. [Google Scholar]
- ECHA. Annex to Background Document to the Opinion on the Annex XV Dossier Proposing Restrictions on Substances in Tattoo Inks and Permanent Make Up. 2019. Available online: https://echa.europa.eu/it/registry-of-restriction-intentions/-/dislist/details/0b0236e180dff62a (accessed on 21 March 2022).
- Official Journal of the European Union. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020R2081&rid=7 (accessed on 8 March 2022).
- European Commission. Commission Regulation (EU) 2016/1198 of 22 July 2016 amending Annex V to Regulation (EC) No 1223/2009 of the European Parliament and of the Council on cosmetic products. Off. J. Eur. Union 2016, L 198, 10–12. [Google Scholar]
- Al-Sa’ady, A.J.R. Comparsion between PPO from plant sourses and different chemicals in tattoo dyes decolorization. Iraqi J. Agric. Sci. 2020, 51, 550–555. [Google Scholar] [CrossRef]
- Singh, R.L.; Singh, P.K.; Singh, R.P. Enzymatic decolorization and degradation of azo dyes—A review. Int. Biodeterior. Biodegrad. 2015, 104, 21–31. [Google Scholar] [CrossRef]
- Koheil, M.; Khalek, S.A.; El-Hefnawy, H.; El-Deen, A.S.; Haleem, M.A. Composition and Antimicrobial Activity of the Essential Oil of Pelargonium zonale L. from Egypt. J. Biol. Act. Prod. Nat. 2012, 2, 178–185. [Google Scholar] [CrossRef]
- Regensburger, J.; Lehner, K.; Maisch, T.; Vasold, R.; Santarelli, F.; Engel, E.; Gollmer, A.; König, B.; Landthaler, M.; Bäumler, W. Tattoo inks contain polycyclic aromatic hydrocarbons that additionally generate deleterious singlet oxygen. Exp. Dermatol. 2010, 19, e275–e281. [Google Scholar] [CrossRef] [PubMed]
- Høgsberg, T.; Jacobsen, N.R.; Clausen, P.A.; Serup, J. Black tattoo inks induce reactive oxygen species production correlating with aggregation of pigment nanoparticles and product brand but not with the polycyclic aromatic hydrocarbon content. Exp. Dermatol. 2013, 22, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Hutton Carlsen, K.; Serup, J. Photosensitivity and photodynamic events in black, red and blue tattoos are common: A ‘Beach Study’. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 231–237. [Google Scholar] [CrossRef]
- ECHA—European Chemicals Agency. Available online: https://echa.europa.eu/el/substance-information/-/substanceinfo/100.100.345 (accessed on 8 March 2022).
- ECHA—European Chemicals Agency. Available online: https://echa.europa.eu/el/substance-information/-/substanceinfo/100.061.826 (accessed on 8 March 2022).
- European Commission. Available online: https://ec.europa.eu/growth/tools-databases/cosing/index.cfm?fuseaction=search.simple (accessed on 8 March 2022).
- Investigation of the Composition and Use of Permanent Make-Up (PMU) Inks in Australia; National Industrial Chemicals Notification and Assessment Scheme (NICNAS): Sidney, Australia, 2017.
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetric of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Zeliou, K.; Papasotiropoulos, V.; Manoussopoulos, Y.; Lamari, F.N. Physical and chemical quality characteristics and antioxidant properties of strawberry cultivars (Fragaria × ananassa Duch.) in Greece: Assessment of their sensory impact. J. Sci. Food Agric. 2018, 98, 4065–4073. [Google Scholar]
- Ahn, S.M.; Rho, H.S.; Baek, H.S.; Joo, Y.H.; Hong, Y.D.; Shin, S.S.; Park, Y.-H.; Park, S.N. Inhibitory activity of novel kojic acid derivative containing trolox moiety on melanogenesis. Bioorganic Med. Chem. Lett. 2011, 21, 7466–7469. [Google Scholar] [CrossRef]
- Boulebd, H. Comparative study of the radical scavenging behavior of ascorbic acid, BHT, BHA and Trolox: Experimental and theoretical study. J. Mol. Struct. 2020, 1201, 127210. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.A.; Husain, Q. Potential of plant polyphenol oxidases in the decolorization and removal of textile and non-textile dyes. J. Environ. Sci. 2007, 19, 396–402. [Google Scholar]
- Chemical Constitutions in the Colour Index. Available online: https://colour-index.com/cicn-explained (accessed on 8 March 2022).
- American Association of Textile Chemists and Colorists. Available online: https://aatcc.org/ (accessed on 8 March 2022).
- Iancu, C.; Cionca, O.; Gaiddon, C.; Mircea, C.; Munteanu, A.; Filip, N.; Hanganu, B.; Manoilescu, I.; Hancianu, M. Cytoprotective and antiinflamatory activity evaluation of some pelargonium extracts. Off. J. Rom. Soc. Pharm. Sci. 2017, 65, 891–895. [Google Scholar]
CI | Annex IV # | Ingredient Name | CAS | Chemical Structure | Oxidation Number | Ink | ||||
---|---|---|---|---|---|---|---|---|---|---|
T.D. Lash Pink | T. D. Sunset | 820 N.C. | Dark Brown | 810 | ||||||
I | II | III | IV | V | ||||||
CI 77891 | 143 | Titanium dioxide | 13463-67-7 | TiO2 | Ti(IV) | ✓ | ✓ | ✓ | ✓ | ✓ |
CI 56110 | N/A | Pigment Red 254 | 84632-65-5 | N/A | ✓ | ✓ | ||||
CI 12466 | N/A | Pigment red 269 | 67990-05-0 | N/A | ✓ | |||||
CI 77491 | IV/135 | Red Iron Oxide | 1309-37-1/1317-61-9/1345-27-3/52357-70-7/1345-25-1 | Fe2O3 | Fe (III) | ✓ | ✓ | ✓ | ||
CI 77288 | IV/129 | Chromium Oxide Green | 1308-38-9 | Cr2O3 | Cr (III) | ✓ | ✓ | |||
CI 77499 | IV/137 | Black Iron Oxide (Triiron tetraoxide) | 12227-89-3 1309-37-1 1317-61-9 1345-25-1 1345-27-3 52357-70-7 | Fe3O4 | Fe (II,III) (8/3) | ✓ | ✓ | ✓ | ||
CI 77492 | IV/136 | Pigment Yellow 43 (Iron Oxide Yellow) | 51274-00-1 1345-27-3 20344-49-4 52357-70-7 | Fe2O3·H2O | Fe (III) | ✓ | ||||
CI 77266 | IV/126 | Carbon black | 1333-86-4 | C | - | ✓ | ||||
CI 56300 | N/A | Pigment Yellow 138 (Quinophthalone Yellow-Organic) | 30125-47-4 | - | ✓ |
Type of Colorants | CI Numbers | Chemical Structure |
---|---|---|
Organic molecules | 11000–19999 | Azo dyes |
20000–39999 | Diazo, Triazo, Polyazo and Azoic dyes | |
40000–74999 | stilbenes, diarylmethanes, triarylmethanes, xanthenes, acridine, quinolones, methines, thiazoles, indamines, indophenols, azines, oxazines, thiazines, aminoketones, anthraquinones, indigoids and phthalocyanines | |
Naturally occurring dyes | 75000–75999 | Animal, Curcuminoid and Plant dyes |
Oxidation bases | 76000–76999 | Not applicable for tattoo and PMU |
Inorganic pigments | 77000–77999 | e.g., iron oxide pigments, chromium(III) oxide, Titanium dioxide, Zinc oxide |
Total Phenolic Content (μg/mL) | DPPH Scavenging (μg Trolox Equivalent/mL) | FRAP Assay (mg FeSO4×7H2O/mL) |
---|---|---|
201.34 ± 4.57 | 20.87 ± 0.36 | 3.56 ± 0.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreou, E.; Triantafyllou, A.K.; Mountsaki, S.; Rallis, E.; Lamari, F.N.; Hatziantoniou, S.; Kefala, V. Permanent Make-Up (PMU) Inks Decolorization Using Plant Origin Materials. Cosmetics 2022, 9, 48. https://doi.org/10.3390/cosmetics9030048
Andreou E, Triantafyllou AK, Mountsaki S, Rallis E, Lamari FN, Hatziantoniou S, Kefala V. Permanent Make-Up (PMU) Inks Decolorization Using Plant Origin Materials. Cosmetics. 2022; 9(3):48. https://doi.org/10.3390/cosmetics9030048
Chicago/Turabian StyleAndreou, Eleni, Agapi K. Triantafyllou, Soultana Mountsaki, Efstathios Rallis, Fotini N. Lamari, Sophia Hatziantoniou, and Vasiliki Kefala. 2022. "Permanent Make-Up (PMU) Inks Decolorization Using Plant Origin Materials" Cosmetics 9, no. 3: 48. https://doi.org/10.3390/cosmetics9030048
APA StyleAndreou, E., Triantafyllou, A. K., Mountsaki, S., Rallis, E., Lamari, F. N., Hatziantoniou, S., & Kefala, V. (2022). Permanent Make-Up (PMU) Inks Decolorization Using Plant Origin Materials. Cosmetics, 9(3), 48. https://doi.org/10.3390/cosmetics9030048