Complete Genome Sequence and Cosmetic Potential of Viridibacillus sp. JNUCC6 Isolated from Baengnokdam, the Summit Crater of Mt. Halla
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Bacterial Isolation
2.3. Genome Sequence Analysis
2.4. Extraction of Viridibacillus sp. JNUCC6 Culture Broths
2.5. Cell Culture
2.6. Measurement of Cell Viability
2.7. Measurement of Intracellular Melanin Content
2.8. Measurement of Tyrosinase Activity
2.9. Measurement of Nitric Oxide (NO) Production
2.10. Statistical Analysis
3. Results and Discussion
3.1. Data Description of Draft Genome Sequence
3.2. JNUCC6 Extract Inhibits Melanin Production and Tyrosinase Activity in B16F10 Cells
3.3. JNUCC6 Extract Inhibits NO Production in LPS-Stimulated RAW 264.7 Macrophages Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Le Bot, M.; Thibault, J.; Pottier, Q.; Boisard, S.; Guilet, D. An accurate, cost-effective and simple colorimetric method for the quantification of total triterpenoid and steroidal saponins from plant materials. Food Chem. 2022, 383, 132597. [Google Scholar] [CrossRef] [PubMed]
- Nadeeshani Dilhara Gamage, D.G.; Dharmadasa, R.M.; Chandana Abeysinghe, D.; Saman Wijesekara, R.G.; Prathapasinghe, G.A.; Someya, T. Global Perspective of Plant-Based Cosmetic Industry and Possible Contribution of Sri Lanka to the Development of Herbal Cosmetics. Evid. Based Complement. Alternat. Med. 2022, 2022, 9940548. [Google Scholar] [CrossRef] [PubMed]
- Chauton, M.S.; Forbord, S.; Mäkinen, S.; Sarno, A.; Slizyte, R.; Mozuraityte, R.; Standal, I.B.; Skjermo, J. Sustainable resource production for manufacturing bioactives from micro- and macroalgae: Examples from harvesting and cultivation in the Nordic region. Physiol. Plant 2021, 173, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Almeida, T.; Silvestre, A.J.D.; Vilela, C.; Freire, C.S.R. Bacterial nanocellulose toward green cosmetics: Recent Progresses and challenges. Int. J. Mol. Sci. 2021, 22, 2836. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Seo, H.; Mahmud, H.A.; Islam, M.I.; Sultana, O.F.; Lee, Y.; Kim, M.; Song, H.Y. Melanin bleaching and melanogenesis inhibition effects of Pediococcus acidilactici PMC48 isolated from Korean Perilla Leaf Kimchi. J. Microbiol. Biotechnol. 2020, 30, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kumar, R.; Diksha Kumari, A.; Panwar, A. Astaxanthin: A super antioxidant from microalgae and its therapeutic potential. J. Basic Microbiol. 2021, 2021, 1. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Yang, T.; Shen, L.; Zhang, J.; Liu, L. Study on the properties of Dendrobium officinale fermentation broth as functional raw material of cosmetics. J. Cosmet. Dermatol. 2022, 21, 1216–1223. [Google Scholar] [CrossRef] [PubMed]
- Favas, R.; Morone, J.; Martins, R.; Vasconcelos, V.; Lopes, G. Cyanobacteria secondary metabolites as biotechnological ingredients in natural anti-aging cosmetics: Potential to overcome hyperpigmentation, loss of skin density and UV radiation-deleterious effects. Mar. Drugs 2022, 20, 183. [Google Scholar] [CrossRef] [PubMed]
- Desmedt, B.; Courselle, P.; De Beer, J.O.; Rogiers, V.; Grosber, M.; Deconinck, E.; De Paepe, K. Overview of skin whitening agents with an insight into the illegal cosmetic market in Europe. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 943–950. [Google Scholar] [CrossRef]
- Zhu, W.; Gao, J. The use of botanical extracts as topical skin-lightening agents for the improvement of skin pigmentation disorders. J. Investig. Dermatol. Symp. Proc. 2008, 13, 20–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orhan, I.E.; Deniz, F.S.S. Inhibition of melanogenesis by some well-known polyphenolics: A review. Curr. Pharm. Biotechnol. 2021, 22, 1412–1423. [Google Scholar] [CrossRef] [PubMed]
- Goelzer Neto, C.F.; do Nascimento, P.; da Silveira, V.C.; de Mattos, A.B.N.; Bertol, C.D. Natural sources of melanogenic inhibitors: A systematic review. Int. J. Cosmet. Sci. 2022, 44, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Shao, S.; Xiao, F.; Zhang, H.; Zhang, R.; Wang, M.; Li, G.; Yan, M. Platycodon grandiflorum extract: Chemical composition and whitening, antioxidant, and anti-inflammatory effects. RSC Adv. 2021, 11, 10814–10826. [Google Scholar] [CrossRef] [PubMed]
- Ha, A.T.; Rahmawati, L.; You, L.; Hossain, M.A.; Kim, J.H.; Cho, J.Y. Anti-inflammatory, antioxidant, moisturizing, and antimelanogenesis effects of quercetin 3-O-β-D-glucuronide in human keratinocytes and melanoma cells via activation of NF-κB and AP-1 pathways. Int. J. Mol. Sci. 2021, 23, 433. [Google Scholar] [CrossRef]
- Apaza Ticona, L.; Slowing, K.; Serban, A.M.; Humanes Bastante, M.; Hernáiz, M.J. Wound healing, anti-inflammatory and anti-melanogenic activities of ursane-type triterpenes from Semialarium mexicanum (Miers) Mennega. J. Ethnopharmacol. 2022, 289, 115009. [Google Scholar] [CrossRef]
- Glover, J.S.; Ticer, T.D.; Engevik, M.A. Characterizing the mucin-degrading capacity of the human gut microbiota. Sci. Rep. 2022, 12, 8456. [Google Scholar] [CrossRef]
- Singh, P.; Mijakovic, I. Strong Antimicrobial Activity of Silver Nanoparticles Obtained by the Green Synthesis in Viridibacillus sp. Extracts. Front. Microbiol. 2022, 13, 820048. [Google Scholar] [CrossRef]
- Kim, K.; Huh, Y.; Lim, K.M. Anti-Pigmentary Natural Compounds and Their Mode of Action. Int. J. Mol. Sci. 2021, 22, 6206. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Kloosterman, A.M.; Charlop-Powers, Z.; van Wezel, G.P.; Medema, M.H.; Weber, T. AntiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021, 49, W29–W35. [Google Scholar] [CrossRef]
- Chung, Y.C.; Hyun, C.G. Inhibitory effects of pinostilbene hydrate on melanogenesis in B16F10 melanoma cells via ERK and p38 signaling pathways. Int. J. Mol. Sci. 2020, 21, 4732. [Google Scholar] [CrossRef]
- Zhou, S.; Sakamoto, K. Pyruvic acid/ethyl pyruvate inhibits melanogenesis in B16F10 melanoma cells through PI3K/AKT, GSK3β, and ROS-ERK signaling pathways. Genes Cells 2019, 24, 60–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayarri, M.A.; Milara, J.; Estornut, C.; Cortijo, J. Nitric oxide system and bronchial epithelium: More than a barrier. Front. Physiol. 2021, 12, 687381. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.K.; Chung, Y.C.; Hyun, C.G. Anti-inflammatory effects of 6-Methylcoumarin in LPS-stimulated RAW 264.7 macrophages via regulation of MAPK and NF-κB signaling pathways. Molecules 2021, 26, 5351. [Google Scholar] [PubMed]
- Kang, J.K.; Hyun, C.G. 4-Hydroxy-7-Methoxycoumarin inhibits inflammation in LPS-activated RAW264.7 macrophages by suppressing NF-κB and MAPK activation. Molecules 2020, 25, 4424. [Google Scholar]
Class | Number | Percentage | Description |
---|---|---|---|
J | 180 | 4.32 | Translation, ribosomal structure, and biogenesis |
A | 0 | 0 | RNA processing and modification |
K | 316 | 7.59 | Transcription |
L | 164 | 3.94 | Replication, recombination, and repair |
B | 1 | 0.02 | Chromatin structure and dynamics |
D | 34 | 0.82 | Cell cycle control, cell division, chromosome partitioning |
Y | 0 | 0 | Nuclear structure |
V | 92 | 2.21 | Defense mechanisms |
T | 169 | 4.06 | Signal transduction mechanisms |
M | 148 | 3.55 | Cell wall/membrane/envelope biogenesis |
N | 43 | 1.03 | Cell motility |
Z | 0 | 0 | Cytoskeleton |
W | 0 | 0 | Extracellular structures |
U | 32 | 0.77 | Intracellular trafficking, secretion, and vesicular transport |
O | 100 | 2.40 | Posttranslational modification, protein turnover, chaperones |
C | 147 | 3.53 | Energy production and conversion |
G | 200 | 4.80 | Carbohydrate transport and metabolism |
E | 371 | 8.91 | Amino acid transport and metabolism |
F | 97 | 2.33 | Nucleotide transport and metabolism |
H | 96 | 2.30 | Coenzyme transport and metabolism |
I | 112 | 2.69 | Lipid transport and metabolism |
P | 248 | 5.95 | Inorganic ion transport and metabolism |
Q | 52 | 1.25 | Secondary metabolites biosynthesis, transport, and catabolism |
R | 332 | 7.97 | General function prediction only |
S | 1231 | 29.56 | Function unknown |
Total | 4165 | 100 |
Type | From | To | Most Similar Known Cluster | Similarity (%) |
---|---|---|---|---|
NRPS | 291,753 | 338,928 | Bacillibactin | 46% |
NRP-PKS | 2,036,725 | 2,077,792 | Iturin | 22% |
Terpene | 4,399,568 | 4,420,389 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, M.N.; Hyun, C.-G. Complete Genome Sequence and Cosmetic Potential of Viridibacillus sp. JNUCC6 Isolated from Baengnokdam, the Summit Crater of Mt. Halla. Cosmetics 2022, 9, 73. https://doi.org/10.3390/cosmetics9040073
Ko MN, Hyun C-G. Complete Genome Sequence and Cosmetic Potential of Viridibacillus sp. JNUCC6 Isolated from Baengnokdam, the Summit Crater of Mt. Halla. Cosmetics. 2022; 9(4):73. https://doi.org/10.3390/cosmetics9040073
Chicago/Turabian StyleKo, Min Nyeong, and Chang-Gu Hyun. 2022. "Complete Genome Sequence and Cosmetic Potential of Viridibacillus sp. JNUCC6 Isolated from Baengnokdam, the Summit Crater of Mt. Halla" Cosmetics 9, no. 4: 73. https://doi.org/10.3390/cosmetics9040073
APA StyleKo, M. N., & Hyun, C. -G. (2022). Complete Genome Sequence and Cosmetic Potential of Viridibacillus sp. JNUCC6 Isolated from Baengnokdam, the Summit Crater of Mt. Halla. Cosmetics, 9(4), 73. https://doi.org/10.3390/cosmetics9040073