Alternative Utilization of Vegetable Crop: Pumpkin Polysaccharide Extract and Their Efficacy on Skin Hydration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Chemical Materials
2.3. Extraction of Crude Pumpkins Polysaccharide
2.4. Deproteinization by CaCl2 Method
2.5. Analysis of Pumpkin Polysaccharide
2.5.1. FT-IR Characterization of Pumpkin Polysaccharide
2.5.2. 13C NMR Spectrum Analysis of Pumpkin Polysaccharide
2.5.3. Total Polysaccharide Content
2.5.4. Solubility Test
2.5.5. Viscosity Test
2.5.6. Swelling Index and Swelling Capacity
2.5.7. In Vitro Water Absorption and Oil Absorption Capacity
2.5.8. Determination of Antioxidant Activity by DPPH Assay
2.6. Skin Hydration Efficacy
2.6.1. Skin Irritation Test
2.6.2. In Vivo Skin Hydration Efficacy
2.7. Statistical Analysis
3. Results and Discussion
3.1. Preparation of Pumpkin Polysaccharides
3.2. Physicochemical Properties of Pumpkin Polysaccharide
3.3. Antioxidant Properties of Pumpkin Polysaccharide Using DPPH Assay
3.4. FT-IR Characterization of Polysaccharide
3.5. 1H and 13C NMR Spectra Analysis of Pumpkin Polysaccharide
3.6. Skin Hydration Efficacy
3.6.1. Skin Irritation Test
3.6.2. In Vivo Skin Hydration Efficacy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Chen, L.; Huang, G. Extraction, characterization and antioxidant activities of pumpkin polysaccharide. Int. J. Biol. Macromol. 2018, 118, 770–774. [Google Scholar] [CrossRef]
- Khoushab, F.; Yamabhai, M. Chitin research revisited. Mar. Drugs 2010, 8, 1988–2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhavani, A.L.; Nisha, J. Dextran—The polysaccharide with versatile uses. Int. J. Pharm. Biol. Sci. 2010, 1, 569–573. [Google Scholar]
- Voragen, A.G.J.; Coenen, G.J.; Verhoef, R.P.; Schols, H.A. Pectin, a versatile polysaccharide present in plant cell walls. Struct. Chem. 2009, 20, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Prajapati, V.D.; Maheriya, P.M.; Jani, G.K.; Solanki, H.K. Carrageenan: A natural seaweed polysaccharide and its applications. Carbohydr. Polym. 2014, 105, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.S.A.; Naveed, M.; Jost, N. Polysaccharides; Classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (A review of current applications and upcoming potentialities). J. Polym. Environ. 2021, 29, 2359–2371. [Google Scholar] [CrossRef] [PubMed]
- Kassakul, W.; Praznik, W.; Viernstein, H.; Hongwiset, D.; Phrutivorapongkul, A.; Leelapornpisid, P.; Mai, C. Characterization of the mucilages extracted from hibiscus rosa-sinensis linn and hibiscus mutabilis linn and their skin moisturizing effect. Int. J. Pharm. Pharm. Sci. 2014, 6, 453–457. [Google Scholar]
- Lourith, N.; Kanlayavattanakul, M. Ceylon spinach: A promising crop for skin hydrating products. Ind. Crops Prod. 2017, 105, 24–28. [Google Scholar] [CrossRef]
- Chen, L.; Huang, G.; Hu, J. Preparation, deproteinization, characterisation, and antioxidant activity of polysaccharide from cucumber (Cucumis saticus L.). Int. J. Biol. Macromol. 2018, 108, 408–411. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Q.; Sun, J.; Jiang, B.; Yan, J. Extraction of water-soluble polysaccharide and the antioxidant activity from Semen cassiae. J. Food Drug Anal. 2014, 22, 492–499. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Sun, Y.; Huang, G. Preparation and antioxidant activities of important traditional plant polysaccharides. Int. J. Biol. Macromol. 2018, 111, 780–786. [Google Scholar] [CrossRef]
- Jiao, G.; Yu, G.; Zhang, J.; Ewart, H.S. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar. Drugs 2011, 9, 196–233. [Google Scholar] [CrossRef] [Green Version]
- Arad, S.; Levy-Ontman, O. Red microalgal cell-wall polysaccharides: Biotechnological aspects. Curr. Opin. Biotechnol. 2010, 21, 358–364. [Google Scholar] [CrossRef]
- Jin, H.; Zhang, Y.-J.; Jiang, J.-X.; Zhu, L.-Y.; Chen, P.; Li, J.; Yao, H.-Y. Studies on the extraction of pumpkin components and their biological effects on blood glucose of diabetic mice. J. Food Drug Anal. 2013, 21, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Huang, G. Preparation and antioxidant activities of cuaurbit polysaccharide. Int. J. Biol. Macromol. 2018, 117, 362–365. [Google Scholar] [CrossRef]
- Dal’Belo, S.E.; Gaspar, L.R.; Compos, P.M.B.G.M. Moisturizing effect of cosmetic formulations containing Aloe vera extract in different concentrations assessed by skin bioengineering techniques. Skin Res. Technol. 2006, 12, 241. [Google Scholar] [CrossRef]
- Barclay, T.G.; Day, C.M.; Petrovsky, N.; Garga, S. Review of polysaccharide particle-based functional drug delivery. Carbohydr. Polym. 2019, 221, 94–112. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, J.; Wang, W.; Li, Q.; Chen, Y.; Feng, W.; Zheng, D.; Zhao, T.; Mao, G.; Yang, L. Extraction, purification, characterization and antioxidant activities of polysaccharides from Cistanche tubulosa. Int. J. Biol. Macromol. 2016, 93, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Thetsrimuang, C.; Khammuang, S.; Sarnthima, R. Antioxidant Activity of Crude Polysaccharides from Edible Fresh and Dry Mushroom Fruiting Bodies of Lentinus sp. Strain RJ-2. Int. J. Pharmacol. 2011, 7, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Masuko, T.; Minami, A.; Iwasaki, N.; Majima, T.; Nishimura, S.-I.; Lee, Y.C. Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal. Biochem. 2005, 339, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Emeje, M.; Nwabunike, P.; Isimi, C.; Fortunak, J.; Mitchell, J.; Byrn, S.; Kunle, O.; Ofoefule, S. Isolation, characterization and formulation properties of a new plant gum obtained from Cissus refescence. Int. J. Green Pharm. 2009, 3, 16. [Google Scholar] [CrossRef]
- Zhou, H.-l.; Li, B.; Wu, M.-f.; Liu, Y. Evaluation of antioxidant capacity of polysaccharide in Jerusalem artichoke (Helianthus tuberosus L.) during overwintering. E3S Web Conf. 2019, 78, 02008. [Google Scholar] [CrossRef] [Green Version]
- Awolu, O.; Oyebanji, O.V.; Sodipo, O. Optimization of proximate composition and functional properties of composite flours consisting wheat, cocoyam (Colocasia esculenta) and bambara groundnut (Vigna subterranea). Int. Food Res. J. 2017, 24, 268–274. [Google Scholar]
- Carvalho, W.; Soares Júnior, M.; Caliari, M.; Silva, F.; Ribeiro, K. Physicochemical and functional characteristics of residual pulp of potato. Food Sci. Technol. 2016, 36, 570–576. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, W.; Yu, H.; Cao, X.; Wang, Y.; Liu, M.; Yan, X.; Liu, H. Antioxidant activity of polysaccharides extracted from Lentinus edodes mycelia and their protective effects on INS-1 cells. Bioscience 2016, 32, 1679–1688. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhao, D.; Winkworth-Smith, C.G.; Foster, T.J.; Nirasawa, S.; Tatsumi, E.; Cheng, Y. Effect of a small amount of sodium carbonate on konjac glucomannan-induced changes in wheat starch gel. Carbohydr. Polym. 2015, 116, 182–188. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, F.; Liu, X.; Ange, K.S.; Zhang, A.; Li, Q.; Linhardt, R.J. Isolation of a lectin binding rhamnogalacturonan-I containing pectic polysaccharide from pumpkin. Carbohydr. Polym. 2017, 163, 330–336. [Google Scholar] [CrossRef]
- Essendoubi, M.; Gobinet, C.; Reynaud, R.; Angiboust, J.F.; Manfait, M.; Piot, O. Human skin penetration of hyaluronic acid of different molecular weights as probed by Raman spectroscopy. Skin Res. Technol. 2016, 22, 55–62. [Google Scholar] [CrossRef]
- Mazzucco, A. Hyaluronic Acid: Evaluation of Efficacy with Different Molecular Weights. Int. J. Chem. Res. 2019, 1, 13–18. [Google Scholar] [CrossRef]
- Zhu, H.-Y.; Chen, G.-T.; Meng, G.-L.; Xu, J.-L. Characterization of pumpkin polysaccharides and protective effects on streptozotocin-damaged islet cells. Chin. J. Nat. Med. 2015, 13, 199–207. [Google Scholar] [CrossRef]
Descriptive Term | Parts of Solvent Required for 1 Part of Solute |
---|---|
Very soluble | Less than 1 |
Freely soluble | From 1–10 |
Soluble | From 10–30 |
Sparingly soluble | From 30–100 |
Slightly soluble | From 100–1000 |
Very slightly soluble | From 1000–10,000 |
Practically insoluble, or insoluble | Greater than or equal to 10,000 |
M.I.I | Class |
---|---|
M.I.I < 0.20 | Non-Irritation (NI) |
0.20 < M.I.I < 0.50 | Slightly Irritating (SI) |
0.50 < M.I.I < 1 | Moderately Irritating (MI) |
M.I.I > 1 | Irritating (I) |
Pumpkin | P-TP | P-JP |
---|---|---|
Crude Polysaccharide (g) | 3.93 ± 0.59 a | 32.42 ± 0.99 b |
Protein (g) | 1.45 ± 0.52 a | 4.21 ± 0.08 b |
Yield of protein (%) | 0.73 ± 0.16 a | 2.10 ± 0.04 b |
Purified polysaccharide (g) | 2.07 ± 0.33 a | 25.91 ± 1.20 b |
Yield of purified polysaccharide (%) | 1.04 ± 0.26 a | 12.96 ± 0.60 b |
Parameters | P-TP | P-JP |
---|---|---|
Total polysaccharide content (mg/mL) | 0.17 ± 0.00 a | 0.89 ± 0.04 b |
Swelling Index (mL/mL) | 1.02 ± 0.00 a | 1.04 ± 0.00 a |
Swelling capacity (%) | 2.00 ± 0.00 a | 4.00 ± 0.00 a |
Solubility in water (%) | 100.00 ± 0.00 a | 126.67 ± 5.77 b |
Viscosity (cps) | 1.00 ± 0.00 a | 1.25 ± 0.00 a |
Water absorption (g/g) | 0.53 ± 0.06 a | 0.93 ± 0.15 b |
Oil absorption (g/g) | 4.80 ± 0.36 a | 5.93 ± 0.06 b |
Antioxidant activity (IC50, µg/mL) | 9.98 ± 0.25 a | 9.30 ± 0.58 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chanpirom, S.; Saewan, N.; Sripisut, T. Alternative Utilization of Vegetable Crop: Pumpkin Polysaccharide Extract and Their Efficacy on Skin Hydration. Cosmetics 2022, 9, 113. https://doi.org/10.3390/cosmetics9060113
Chanpirom S, Saewan N, Sripisut T. Alternative Utilization of Vegetable Crop: Pumpkin Polysaccharide Extract and Their Efficacy on Skin Hydration. Cosmetics. 2022; 9(6):113. https://doi.org/10.3390/cosmetics9060113
Chicago/Turabian StyleChanpirom, Setinee, Nisakorn Saewan, and Tawanun Sripisut. 2022. "Alternative Utilization of Vegetable Crop: Pumpkin Polysaccharide Extract and Their Efficacy on Skin Hydration" Cosmetics 9, no. 6: 113. https://doi.org/10.3390/cosmetics9060113
APA StyleChanpirom, S., Saewan, N., & Sripisut, T. (2022). Alternative Utilization of Vegetable Crop: Pumpkin Polysaccharide Extract and Their Efficacy on Skin Hydration. Cosmetics, 9(6), 113. https://doi.org/10.3390/cosmetics9060113