Biological Activities of Paper Mulberry (Broussonetia papyrifera): More than a Skin-Lightening Agent
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Chemical Composition of Paper Mulberry
3.2. Biological Activities of Paper Mulberry and Its Components
3.2.1. Antityrosinase Activity
3.2.2. Anti-Inflammatory Activity
3.2.3. Antioxidant Activity
3.2.4. Anti-Microbial Activity
3.2.5. Anti-Viral Activity
3.2.6. Anti-Cancer Activity
3.2.7. Anti-Diabetic Activity
3.2.8. Anti-Cholinesterase Activity
3.2.9. Anti-Gout Activity
3.2.10. Antinociceptive Activity
3.2.11. Hepatoprotective Activity
3.3. Application of Paper Mulberry in Cosmetics
3.3.1. Skin Lightening and Moisturizing
3.3.2. Hair Protection and Hair Growth
3.4. Safety Assessment of Paper Mulberry for Cosmetic Topical Application
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grand View Research. Skin Lightening Products Market Size, Share & Trends Analysis Report By Product (Creams, Cleanser, Mask), by Nature, by Region, and Segment Forecasts, 2022–2030. Available online: https://www.grandviewresearch.com/industry-analysis/skin-lightening-products-market (accessed on 6 October 2022).
- Rendon, M.I.; Gaviria, J.I. Review of skin-lightening agents. Dermatol. Surg. 2005, 31, 886–890. [Google Scholar] [CrossRef] [PubMed]
- Briganti, S.; Camera, E.; Picardo, M. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res. 2003, 16, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Draelos, Z.; Dahl, A.; Yatskayer, M.; Chen, N.; Krol, Y.; Oresajo, C. Dyspigmentation, skin physiology, and a novel approach to skin lightening. J. Cosmet. Dermatol. 2013, 12, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Kamakshi, R. Fairness via formulations: A review of cosmetic skin-lightening ingredients. J. Cosmet. Sci. 2012, 63, 43–54. [Google Scholar] [PubMed]
- Mehta, R.C.; Makino, E.T.H.; Sonti, S.D.; Garruto, J.A. Melanin Modification Compositions and Methods of Use. U.S. Patent No 8,236,288, 7 August 2012. Available online: https://patents.google.com/patent/EP2661264B1/en (accessed on 6 October 2022).
- D’Mello, S.A.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hearing, V.J. Biochemical control of melanogenesis and melanosomal organization. J. Investig. Dermatol. Symp. Proc. 1999, 4, 24–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slominski, A.; Zmijewski, M.A.; Pawelek, J. L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res. 2012, 25, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Aroca, P.; Solano, F.; Salina, C.; García-Borrón, J.C.; Lozano, J.A. Regulation of the final phase of mammalian melanogenesis: The role of dopachrome tautomerase and the ratio between 5,6-dihydroxyindole-2-carboxylic acid and 5,6-dihydroxyindole. Eur. J. Biochem. 1992, 208, 155–163. [Google Scholar] [CrossRef]
- Jiménez-Cervantes, C.; Solano, F.; Kobayashi, T.; Urabe, K.; Hearing, V.J.; Lozano, J.A.; García-Borrón, J.C. A new enzymatic function in the melanogenic pathway. The 5,6-dihydroxyindole-2-carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1). J. Biol. Chem. 1994, 269, 17993–18000. [Google Scholar] [CrossRef]
- Hearing, V.J.; Korner, A.M.; Pawelek, J.M. New Regulators of Melanogenesis Are Associated with Purified Tyrosinase Isozymes. J. Invest. Dermatol. 1982, 79, 16–18. [Google Scholar] [CrossRef]
- Schallreuter, K.; Slominski, A.; Pawelek, J.; Jimbow, K.; Gilchrest, B. What controls melanogenesis? Exp. Dermatol. 1998, 7, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Videira, I.F.d.S.; Moura, D.F.L.; Magina, S. Mechanisms regulating melanogenesis. An. Bras. Dermatol. 2013, 88, 76–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slominski, A.; Tobin, D.J.; Shibahara, S.; Wortsman, J. Melanin Pigmentation in Mammalian Skin and Its Hormonal Regulation. Physiol. Rev. 2004, 84, 1155–1228. [Google Scholar] [CrossRef] [PubMed]
- Slominski, R.M.; Sarna, T.; Płonka, P.M.; Raman, C.; Brożyna, A.A.; Slominski, A.T. Melanoma, Melanin, and Melanogenesis: The Yin and Yang Relationship. Front. Oncol. 2022, 12, 842496:1–842496:18. [Google Scholar] [CrossRef]
- Kim, S.S.; Kim, M.-J.; Choi, Y.H.; Kim, B.K.; Kim, K.S.; Park, K.J.; Park, S.M.; Lee, N.H.; Hyun, C.-G. Down-regulation of tyrosinase, TRP-1, TRP-2 and MITF expressions by citrus press-cakes in murine B16 F10 melanoma. Asian Pac. J. Trop. Biomed. 2013, 3, 617–622. [Google Scholar] [CrossRef] [Green Version]
- Ancans, J.; Tobin, D.J.; Hoogduijn, M.J.; Smit, N.P.; Wakamatsu, K.; Thody, A.J. Melanosomal pH controls rate of melanogenesis, eumelanin/phaeomelanin ratio and melanosome maturation in melanocytes and melanoma cells. Exp. Cell Res. 2001, 268, 26–35. [Google Scholar] [CrossRef]
- Ito, S.; Wakamatsu, K. Chemistry of mixed melanogenesis—Pivotal roles of dopaquinone. Photochem. Photobiol. 2008, 84, 582–592. [Google Scholar] [CrossRef]
- Peñailillo, J.; Olivares, G.; Moncada, X.; Payacán, C.; Chang, C.-S.; Chung, K.-F.; Matthews, P.J.; Seelenfreund, A.; Seelenfreund, D. Sex distribution of paper mulberry (Broussonetia papyrifera) in the Pacific. PLoS ONE 2016, 11, e0161148. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.R.; Wang, L.; Liu, X.; Wang, F.L.; An, Y.; Zhao, W.; Tian, J.L.; Kong, D.G.; Zhang, W.R.; Xu, Y.; et al. The Genus Broussonetia: An Updated Review of Phytochemistry, Pharmacology and Applications. Molecules 2022, 27, 5344. [Google Scholar] [CrossRef]
- Qureshi, H.; Anwar, T.; Khan, S.; Fatimah, H.; Waseem, M. Phytochemical constituents of Broussonetia papyrifera (L.) LʹHeʹr. ex Vent: An overview. J. Indian Chem. Soc. 2020, 97, 55. [Google Scholar]
- Shivhare, S.; Malviya, K.; Malviya, K.S.; Jain, V. A Review: Natural skin lighting and nourishing agents. Res. J. Top. Cosmet. Sci. 2013, 3, 11–15. [Google Scholar]
- Wang, L.; Son, H.J.; Xu, M.-L.; Hu, J.-H.; Wang, M.-H. Anti-inflammatory and anticancer properties of dichloromethane and butanol fractions from the stem bark of Broussonetia papyrifera. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 297–303. [Google Scholar] [CrossRef]
- Sohn, H.Y.; Son, K.H.; Kwon, C.S.; Kwon, G.S.; Kang, S.S. Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L., Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai. Phytomedicine 2004, 11, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.-L.; Wang, L.; Hu, J.-H.; Lee, S.K.; Wang, M.-H. Antioxidant activities and related polyphenolic constituents of the methanol extract fractions from Broussonetia papyrifera stem bark and wood. Food Sci. Biotechnol. 2010, 19, 677–682. [Google Scholar] [CrossRef]
- Amir, M.K.; Rizwana, A.Q.; Faizan, U.; Syed, A.G.; Asia, N.; Sumaira, S.; Muhammad, K.L.; Muhammad, Y.L.; Ishtiaq, H.; Waheed, M. Phytochemical analysis of selected medicinal plants of Margalla Hills and surroundings. J. Med. Plant. Res. 2011, 5, 6055–6060. [Google Scholar] [CrossRef]
- Sirita, J.; Chomsawan, B.; Yodsoontorn, P.; Kornochalert, S.; Lapinee, C.; Jumpatong, K. Antioxidant activities, phenolic and tannin contents of paper mulberry (Broussonetia papyrifera) extract. Med. Plants—Int J. Phytomed. Relat. Ind. 2020, 12, 371–375. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, C.S.; Yu, L.N.; Bi, J.; Liu, S.F.; Zhu, F.; Yang, Q.L. Antioxidant activity and total phenolics of Broussonetia papyrifera flower extracts. Appl. Mech. Mater. 2012, 140, 263–267. [Google Scholar] [CrossRef]
- Xu, B.; Hao, K.; Chen, X.; Wu, E.; Nie, D.; Zhang, G.; Si, H. Broussonetia papyrifera Polysaccharide Alleviated Acetaminophen-Induced Liver Injury by Regulating the Intestinal Flora. Nutrients 2022, 14, 2636. [Google Scholar] [CrossRef]
- Qureshi, H.; Arshad, M.; Bibi, Y. Toxicity assessment and phytochemical analysis of Broussonetia papyrifera and Lantana camara: Two notorious invasive plant species. J. Biodivers Environ. Sci. 2014, 5, 508–517. [Google Scholar]
- Ryu, H.W.; Park, M.H.; Kwon, O.K.; Kim, D.Y.; Hwang, J.Y.; Jo, Y.H.; Ahn, K.S.; Hwang, B.Y.; Oh, S.R. Anti-inflammatory flavonoids from root bark of Broussonetia papyrifera in LPS-stimulated RAW264.7 cells. Bioorg. Chem. 2019, 92, 103233. [Google Scholar] [CrossRef]
- Chen, R.M.; Hu, L.H.; An, T.Y.; Li, J.; Shen, Q. Natural PTP1B inhibitors from Broussonetia papyrifera. Bioorg. Med. Chem. Lett. 2002, 12, 3387–3390. [Google Scholar] [CrossRef]
- Ryu, H.W.; Lee, J.H.; Kang, J.E.; Jin, Y.M.; Park, K.H. Inhibition of xanthine oxidase by phenolic phytochemicals from Broussonetia papyrifera. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 587–594. [Google Scholar] [CrossRef]
- Ryu, H.W.; Lee, B.W.; Curtis-Long, M.J.; Jung, S.; Ryu, Y.B.; Lee, W.S.; Park, K.H. Polyphenols from Broussonetia papyrifera displaying potent alpha-glucosidase inhibition. J. Agric. Food Chem. 2010, 58, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Park, M.H.; Jung, S.; Yuk, H.J.; Jang, H.J.; Kim, W.J.; Kim, D.Y.; Lim, G.; Lee, J.; Oh, S.R.; Lee, S.U.; et al. Rapid identification of isoprenylated flavonoids constituents with inhibitory activity on bacterial neuraminidase from root barks of paper mulberry (Broussonetia papyrifera). Int J. Biol. Macromol. 2021, 174, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Fudhaili, A.; Oh, S.S.; Lee, K.W.; Madhi, H.; Kim, D.H.; Yoo, J.; Ryu, H.W.; Park, K.H.; Kim, K.D. Cytotoxic effects of kazinol A derived from Broussonetia papyrifera on human bladder cancer cells, T24 and T24R2. Phytomedicine 2016, 23, 1462–1468. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Yuk, H.J.; Ryu, H.W.; Lim, S.H.; Kim, K.S.; Park, K.H.; Ryu, Y.B.; Lee, W.S. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 504–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, R.; Chakraborty, A.; Biswas, A.; Chowdhuri, S. Identification of polyphenols from Broussonetia papyrifera as SARS CoV-2 main protease inhibitors using in silico docking and molecular dynamics simulation approaches. J. Biomol. Struct. Dyn. 2021, 39, 6747–6760. [Google Scholar] [CrossRef]
- Tian, J.L.; Liu, T.L.; Xue, J.J.; Hong, W.; Zhang, Y.; Zhang, D.X.; Cui, C.C.; Liu, M.C.; Niu, S.L. Flavanoids derivatives from the root bark of Broussonetia papyrifera as a tyrosinase inhibitor. Ind. Crops Prod. 2019, 138, 111445. [Google Scholar] [CrossRef]
- Ryu, H.W.; Curtis-Long, M.J.; Jung, S.; Jeong, I.Y.; Kim, D.S.; Kang, K.Y.; Park, K.H. Anticholinesterase potential of flavonols from paper mulberry (Broussonetia papyrifera) and their kinetic studies. Food Chem. 2012, 132, 1244–1250. [Google Scholar] [CrossRef]
- Lin, L.W.; Chen, H.Y.; Wu, C.R.; Liao, P.M.; Lin, Y.T.; Hsieh, M.T.; Ching, H. Comparison with various parts of Broussonetia papyrifera as to the antinociceptive and anti-inflammatory activities in rodents. Biosci. Biotechnol. Biochem. 2008, 72, 2377–2384. [Google Scholar] [CrossRef] [Green Version]
- Ko, H.H.; Yu, S.M.; Ko, F.N.; Teng, C.M.; Lin, C.N. Bioactive constituents of Morus australis and Broussonetia papyrifera. J. Nat. Prod. 1997, 60, 1008–1011. [Google Scholar] [CrossRef] [PubMed]
- Sohn, H.Y.; Kwon, C.S.; Son, K.H. Fungicidal effect of prenylated flavonol, papyriflavonol A, isolated from Broussonetia papyrifera (L.) vent. against Candida albicans. J. MicroBiol. Biotechnol. 2010, 20, 1397–1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dou, C.Z.; Liu, Y.F.; Zhang, L.L.; Chen, S.H.; Hu, C.Y.; Liu, Y.; Zhao, Y.T. Polyphenols from Broussonetia papyrifera Induce Apoptosis of HepG2 Cells via Inactivation of ERK and AKT Signaling Pathways. Evid. Based Complement. Altern. Med. 2021, 2021, 8841706. [Google Scholar] [CrossRef]
- Guo, F.; Feng, L.; Huang, C.; Ding, H.; Zhang, X.; Wang, Z.; Li, Y. Prenylflavone derivatives from Broussonetia papyrifera, inhibit the growth of breast cancer cells in vitro and in vivo. Phytochem. Lett. 2013, 6, 331–336. [Google Scholar] [CrossRef]
- Chang, C.-F.; Wang, C.-H.; Lee, T.-H.; Liu, S.-M. Bioactive compounds from the bark of Broussonetia papyrifera after solid fermentation with a white rot fungus Perenniporia tephropora. J. Wood Chem. Technol. 2020, 40, 317–330. [Google Scholar] [CrossRef]
- Zheng, Z.-P.; Cheng, K.-W.; Chao, J.; Wu, J.; Wang, M. Tyrosinase inhibitors from paper mulberry (Broussonetia papyrifera). Food Chem. 2008, 106, 529–535. [Google Scholar] [CrossRef]
- Malaník, M.; Treml, J.; Leláková, V.; Nykodýmová, D.; Oravec, M.; Marek, J.; Šmejkal, K. Anti-inflammatory and antioxidant properties of chemical constituents of Broussonetia papyrifera. Bioorg. Chem. 2020, 104, 104298. [Google Scholar] [CrossRef]
- Zhou, X.J.; Mei, R.Q.; Zhang, L.; Lu, Q.; Zhao, J.; Adebayo, A.H.; Cheng, Y.X. Antioxidant phenolics from Broussonetia papyrifera fruits. J. Asian Nat. Prod. Res. 2010, 12, 399–406. [Google Scholar] [CrossRef]
- Mei, R.Q.; Wang, Y.H.; Du, G.H.; Liu, G.M.; Zhang, L.; Cheng, Y.X. Antioxidant Lignans from the Fruits of Broussonetia papyrifera. J. Nat. Prod. 2009, 72, 621–625. [Google Scholar] [CrossRef]
- Sun, J.; Liu, S.F.; Zhang, C.S.; Yu, L.N.; Bi, J.; Zhu, F.; Yang, Q.L. Chemical composition and antioxidant activities of Broussonetia papyrifera fruits. PLoS ONE 2012, 7, e32021. [Google Scholar] [CrossRef] [Green Version]
- Hongfang, Z.; Linzhang, H.; Luping, Q.; Baokang, H. Antioxidative and anti-inflammatory properties of Chushizi oil from Fructus Broussonetiae. J. Med. Plant. Res. 2011, 5, 6407–6412. [Google Scholar] [CrossRef]
- Pang, S.Q.; Wang, G.Q.; Lin, J.S.; Diao, Y.; Xu, R.A. Cytotoxic activity of the alkaloids from Broussonetia papyrifera fruits. Pharm. Biol. 2014, 52, 1315–1319. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.-Q.; Wang, G.-Q.; Huang, B.-K.; Zhang, Q.-Y.; Qin, L.-P. Isoquinoline alkaloids from Broussonetia papyrifera fruits. Chem. Nat. Compd. 2007, 43, 100–102. [Google Scholar] [CrossRef]
- Han, Q.H.; Wu, Z.L.; Huang, B.; Sun, L.Q.; Ding, C.B.; Yuan, S.; Zhang, Z.W.; Chen, Y.E.; Hu, C.; Zhou, L.J.; et al. Extraction, antioxidant and antibacterial activities of Broussonetia papyrifera fruits polysaccharides. Int. J. Biol. Macromol. 2016, 92, 116–124. [Google Scholar] [CrossRef]
- Kumar, N.N.; Ramakrishnaiah, H.; Krishna, V.; Deepalakshmi, A. GC-MS analysis and antimicrobial activity of seed oil of Broussonetia papyrifera (L.) Vent. Int. J. Pharm. Sci. Res. 2015, 6, 3954. [Google Scholar] [CrossRef]
- Ran, X.K.; Wang, X.T.; Liu, P.P.; Chi, Y.X.; Wang, B.J.; Dou, D.Q.; Kang, T.G.; Xiong, W. Cytotoxic constituents from the leaves of Broussonetia papyrifera. Chin. J. Nat. Med. 2013, 11, 269–273. [Google Scholar] [CrossRef]
- Cao, X.; Yang, L.; Xue, Q.; Yao, F.; Sun, J.; Yang, F.; Liu, Y. Antioxidant evaluation-guided chemical profiling and structure-activity analysis of leaf extracts from five trees in Broussonetia and Morus (Moraceae). Sci Rep. 2020, 10, 4808. [Google Scholar] [CrossRef] [Green Version]
- Ko, H.H.; Chang, W.L.; Lu, T.M. Antityrosinase and antioxidant effects of ent-kaurane diterpenes from leaves of Broussonetia papyrifera. J. Nat. Prod. 2008, 71, 1930–1933. [Google Scholar] [CrossRef]
- Yang, C.; Li, F.; Du, B.; Chen, B.; Wang, F.; Wang, M. Isolation and characterization of new phenolic compounds with estrogen biosynthesis-inhibiting and antioxidation activities from Broussonetia papyrifera leaves. PLoS ONE 2014, 9, e94198. [Google Scholar] [CrossRef]
- Lee, D.; Bhat, K.P.; Fong, H.H.; Farnsworth, N.R.; Pezzuto, J.M.; Kinghorn, A.D. Aromatase inhibitors from Broussonetia papyrifera. J. Nat. Prod. 2001, 64, 1286–1293. [Google Scholar] [CrossRef]
- Thungmungmee, S.; Ingkaninan, K.; Pitaksuteepong, T. Stability study of Broussonetia papyrifera leaf extract. Thai J. Pharm. Sci. 2012, 36, 197–200. [Google Scholar]
- Hwang, J.-H.; Lee, B.M. Inhibitory effects of plant extracts on tyrosinase, L-DOPA oxidation, and melanin synthesis. J. Toxicol. Environ. Health A 2007, 70, 393–407. [Google Scholar] [CrossRef]
- Wu, W.-T. Evaluation of anti-inflammatory effects of Broussonetia papyrifera stem bark. Indian J. Pharmacol. 2012, 44, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.M.; Choi, S.S.; Park, M.H.; Jang, H.; Lee, Y.H.; Khim, K.W.; Oh, S.R.; Park, J.; Ryu, H.W.; Choi, J.H. Broussonetia papyrifera Root Bark Extract Exhibits Anti-inflammatory Effects on Adipose Tissue and Improves Insulin Sensitivity Potentially Via AMPK Activation. Nutrients 2020, 12, 773. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Lin, C.; Hwang, T.; Teng, C. Broussochalcone A, a potent antioxidant and effective suppressor of inducible nitric oxide synthase in lipopolysaccharide-activated macrophages. Biochem. Pharmacol. 2001, 61, 939–946. [Google Scholar] [CrossRef]
- Ko, H.J.; Jin, J.H.; Kwon, O.S.; Jong Taek Kim, K.H.S.; Kim, H.P. Inhibition of experimental lung inflammation and bronchitis by phytoformula containing Broussonetia papyrifera and Lonicera japonica. Korean Soc. Appl. Pharmacol. 2011, 19, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Kwak, W.J.; Moon, T.C.; Lin, C.X.; Rhyn, H.G.; Jung, H.; Lee, E.; Kwon, D.Y.; Son, K.H.; Kim, H.P.; Kang, S.S.; et al. Papyriflavonol A from Broussonetia papyrifera inhibits the passive cutaneous anaphylaxis reaction and has a secretory phospholipase A2-inhibitory activity. Biol. Pharm. Bull. 2003, 26, 299–302. [Google Scholar] [CrossRef] [Green Version]
- Tsai, F.H.; Lien, J.C.; Lin, L.W.; Chen, H.Y.; Ching, H.; Wu, C.R. Protective effect of Broussonetia papyrifera against hydrogen peroxide-induced oxidative stress in SH-SY5Y cells. Biosci. Biotechnol. Biochem. 2009, 73, 1933–1939. [Google Scholar] [CrossRef]
- Yao, L.; Xiong, L.; Yoo, C.G.; Dong, C.; Meng, X.; Dai, J.; Ragauskas, A.J.; Yang, C.; Yu, J.; Yang, H. Correlations of the physicochemical properties of organosolv lignins from Broussonetia papyrifera with their antioxidant activities. Sustain. Energy Fuels 2020, 4, 5114–5119. [Google Scholar] [CrossRef]
- Tao, H.; Si, B.; Xu, W.; Tu, Y.; Diao, Q. Effect of Broussonetia papyrifera L. silage on blood biochemical parameters, growth performance, meat amino acids and fatty acids compositions in beef cattle. Asian Australas J. Anim. Sci. 2020, 33, 732–741. [Google Scholar] [CrossRef]
- Si, B.; Tao, H.; Zhang, X.; Guo, J.; Cui, K.; Tu, Y.; Diao, Q. Effect of Broussonetia papyrifera L. (paper mulberry) silage on dry matter intake, milk composition, antioxidant capacity and milk fatty acid profile in dairy cows. Asian Australas J. Anim. Sci. 2018, 31, 1259–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Shui, S.; Chai, M.; Wang, D.; Su, Y.; Wu, H.; Sui, X.; Yin, Y. Effects of Paper Mulberry (Broussonetia papyrifera) Leaf Extract on Growth Performance and Fecal Microflora of Weaned Piglets. Biomed. Res. Int. 2020, 2020, 6508494. [Google Scholar] [CrossRef] [PubMed]
- Amir, M.K.; Rizwana, A.Q.; Syed, A.G.; Faizan, U. Antimicrobial activity of selected medicinal plants of Margalla hills, Islamabad, Pakistan. J. Med. Plants Res. 2011, 5, 4665–4670. [Google Scholar] [CrossRef]
- Geng, C.-A.; Yan, M.-H.; Zhang, X.-M.; Chen, J.-J. Anti-oral microbial flavanes from Broussonetia papyrifera under the guidance of bioassay. Nat. Prod. Bioprospect. 2019, 9, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.N.; Ramakrishnaiah, H.; Krishna, V.; Radhika, M. Cytotoxic activity of Broussonetia papyrifera (L.) Vent on MCF-7, HeLa and HepG2 cell lines. Int. J. Pharm. Pharm. Sci. 2014, 6, 339–342. [Google Scholar]
- Shin, S.; Son, Y.; Liu, K.H.; Kang, W.; Oh, S. Cytotoxic activity of broussochalcone a against colon and liver cancer cells by promoting destruction complex-independent β-catenin degradation. Food Chem. Toxicol. 2019, 131, 110550. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, J.; Shon, J.C.; Phuc, N.M.; Jee, J.G.; Liu, K.H. The inhibitory potential of Broussochalcone A for the human cytochrome P450 2J2 isoform and its anti-cancer effects via FOXO3 activation. Phytomedicine 2018, 42, 199–206. [Google Scholar] [CrossRef]
- Jang, D.; Lee, B.-G.; Jeon, C.; Jo, N.; Park, J.; Cho, S.; Lee, H.; Koh, J. Melanogenesis inhibitor from paper mulberry. Cosmet. Toilet. 1997, 112, 59–64. [Google Scholar]
- Guo, M.; Wang, M.; Zhang, X.; Deng, H.; Wang, Z.Y. Broussoflavonol B restricts growth of ER-negative breast cancer stem-like cells. Anticancer Res. 2013, 33, 1873–1879. [Google Scholar] [PubMed]
- Guo, M.; Wang, M.; Deng, H.; Zhang, X.; Wang, Z.Y. A novel anticancer agent Broussoflavonol B downregulates estrogen receptor (ER)-α36 expression and inhibits growth of ER-negative breast cancer MDA-MB-231 cells. Eur. J. Pharmacol. 2013, 714, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Eleftheriou, P.; Geronikaki, A.; Petrou, A. PTP1b Inhibition, A Promising Approach for the Treatment of Diabetes Type II. Curr. Top. Med. Chem. 2019, 19, 246–263. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Narwal, S.; Kumar, V.; Prakash, O. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn. Rev. 2011, 5, 19–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rees, T.M.; Brimijoin, S. The role of acetylcholinesterase in the pathogenesis of Alzheimer’s disease. Drugs Today 2003, 39, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Darvesh, S. Butyrylcholinesterase as a Diagnostic and Therapeutic Target for Alzheimer’s Disease. Curr. Alzheimer Res. 2016, 13, 1173–1177. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.D.; Cai, Y.; Huang, W.W.; Cheng, C.H.K.; Tan, R.X. Inhibition of xanthine oxidase by some Chinese medicinal plants used to treat gout. J. Ethnopharmacol. 2000, 73, 199–207. [Google Scholar] [CrossRef]
- D’Amelio, F.; Mirhom, Y. Paper mulberry and its preparations as tyrosinase inhibitors and skin lightening agents. Cosmet. Toiletr. Manufact. Worldw. 2000, 2000, 31–34. [Google Scholar]
- Lee, J.Y.; Lim, H.J.J. Skin-Whitening Composition Containing Extracts from Trees Including Paper Mulberry. U.S. Patent 14/478,195, 25 December 2014. Available online: https://patents.google.com/patent/WO2012002783A3/en (accessed on 6 October 2022).
- Lee, J.Y.; Lim, H.J. Skin-Whitening Composition for External Application on Skin Containing Extracts from Paper Mulberry Flowers and Fruits. U.S. Patent 13/807,904, 2 May 2013. Available online: https://patents.google.com/patent/SG186891A1/en (accessed on 6 October 2022).
- Yun, W.; Lee, Y.; Kim, D.; Kim, J.; Sung, J.; Lee, H.; Son, H.; Hwang, D.; Jung, Y. The preparation of mask-pack sheet blended with Styela clava tunics and natural polymer. Text. Color. Finish. 2017, 29, 45–54. [Google Scholar] [CrossRef]
- Kwon, S.S.; Yeom, M.H.; Park, C.M.; Kim, D.H.; Kim, H.K. Mask Pack Comprising Cosmetic Cotton-Like Material Prepared from Paper Mulberry. U.S. Patent No 8,329,234, 11 December 2012. Available online: https://patents.google.com/patent/WO2010062142A2/en (accessed on 6 October 2022).
- Go Un, H.; Soon Sang, K.; Sun Young, P.; Jeong Cheol, H.; Youn Joon, K.; Sang Hoon, H. Antioxidant Cosmetic Composition Containing White Ginseng Powder and White Paper Powder. PubChem. Patent KR-20110035265-A, 2009. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/KR-20110035265-A (accessed on 6 October 2022).
- Slominski, A.T.; Zmijewski, M.A.; Plonka, P.M.; Szaflarski, J.P.; Paus, R. How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology 2018, 159, 1992–2007. [Google Scholar] [CrossRef] [Green Version]
- Ha, J.; Jo, N.; Lee, H.; Kim, J.; Lee, B.; Park, W. The depigmentation effect of a new material extracted from Paper Mulberry and its comparison by three colorimetric instruments. J. Soc. Cosmet. Sci. Korea 1996, 22, 9–19. [Google Scholar]
- Rendon, M.I.; Vazquez, Y.; Micciantuono, S. Cosmeceutical Skin Lighteners. In Cosmeceuticals and Cosmetic Practice; John Wiley & Sons Ltd.: West Sussex, UK, 2014; p. 218. [Google Scholar]
- Kim, J.-S.; Kim, J.-S. Effect of paper mulberry extract on damaged hair. Asian J. Beauty Cosmetol. 2021, 19, 175–182. [Google Scholar] [CrossRef]
- Lee, Y.H.; Nam, G.; Kim, M.-K.; Cho, S.-C.; Choi, B.Y. Broussonetia papyrifera Promotes Hair Growth Through the Regulation of β-Catenin and STAT6 Target Proteins: A Phototrichogram Analysis of Clinical Samples. Cosmetics 2020, 7, 40. [Google Scholar] [CrossRef]
- Thungmungmee, S.; Ingkaninan, K.; Tuntijarukorn, P.; Pitaksuteepong, T. Skin Lightening Microemulsion Formulation of Broussonetia papyrifera Leaf Extract and Human Skin Irritation Test. J. Interdiscip. Netw. 2013, 2, 71–76. [Google Scholar]
Part | Compound | Reference |
---|---|---|
Root | (−)-(2S)-kazinol I | [32] |
(2R)-7,3′,4′-trihydroxy-6-prenylflavanone | [32] | |
3,3′,4′,5,7-pentahydroxyflavone | [33] | |
3,4-dihydroxyisolonchocarpin | [34,35,36] | |
3′-(3-methylbut-2-enyl)-3′,4′,7-trihydroxyflavane | [33,34,36,37,38,39] | |
4-hydroxyisolonchocarpin | [34,35,36,38] | |
7,8-dihydroxy-6-(3-methylbut-2-en-1-yl)-2H-chromen-2-one | [40] | |
8-(1,1-dimethylallyl)-5′-(3-methylbut-2-enyl)-3′,4′,5,7-tetrahydroxyflanvonol | [32,33,36,37,41] | |
Brossoflurenone A | [41] | |
Brossoflurenone B | [41] | |
Betulin | [42] | |
Betulinic acid | [42] | |
Broussoaurone A | [43] | |
Broussochalcone A | [25,32,33,34,35,36,38,39] | |
Broussochalcone B | [34,35,36,37,38] | |
Broussochalcone C | [32] | |
Broussocoumarin A | [40] | |
Broussoflavan A | [32,34,36,38,39,43] | |
Broussoflavanonol A | [32] | |
Broussoflavonol B | [32,36,40,41] | |
Broussoflavonol C | [32] | |
Broussoflavonol F | [40,43] | |
Broussoflavonol G | [43] | |
Broussoflavonol H | [40] | |
Broussoflavonol I | [40] | |
Broussoflavonol J | [40] | |
Broussoflavonol K | [40] | |
Broussonin A | [32] | |
Broussonin B | [32] | |
Broussonol D | [32] | |
Broussonol G | [32] | |
Daphnegiravan H | [32] | |
Glycyrrhiza flavonol A | [40] | |
Isolicoflavonol | [40] | |
Kazinol A | [32,34,36,37,38] | |
Kazinol B | [25,32,34,36,38] | |
Kazinol E | [34,36] | |
Kazinol F | [32,38,39] | |
Kazinol J | [32,38,39] | |
Kazinol V | [32] | |
Kazinol W | [32] | |
Oleanolic acid | [42] | |
Papyriflavonol A | [25,36,37,39,40,41,44] | |
Ursolic acid | [42] | |
Bark | 3,4,5-trimethoxyphenyl-1-O-β-D-xylopyranosyl-β-D-glucopyranoside | [45] |
4,5-dicaffeoylquinic acid | [45] | |
5,7,3′,4′-tetrahydroxy-3-methoxy-8,5′-diprenylflavone | [46] | |
5,7,3′,4′-tetrahydroxy-3-methoxy-8-geranylflavone | [46] | |
7,4′-dihydroxy-3′-prenylflavan | [47] | |
Broussochalcone A | [46] | |
Broussochalcone B | [47] | |
Broussoflavonol B | [46,47] | |
Broussonin A | [47] | |
Broussonin B | [47] | |
Caffeic acid | [26] | |
Cathayanon H | [47] | |
Chlorogenic acid | [45] | |
cis-form-5-coffee acylchlorogenic acid | [45] | |
Coumaric acid | [26] | |
Cryptochlorogenic acid | [45] | |
Epicatechin | [26] | |
Glyasperin A | [47] | |
Isoliquiritigenin | [47] | |
Isoquercetin | [45] | |
Kaempferol | [26] | |
Marmesin | [47] | |
Papyriflavonol A | [46] | |
Quercetin | [26,48] | |
Uralenol | [46] | |
Vomifoliol | [47] | |
Branch/twig | (S)-8-methoxymarmesin | [49] |
3,5,7,4′-tetrahydroxy-3′-(2-hydroxy-3-methylbut-3-enyl) flavone | [48] | |
5,7,3′,4′-tetrahydroxy-3-methoxy-8,5′-diprenylflavone | [49] | |
5,7,3′,4′-tetrahydroxy-3-methoxyflavone | [48] | |
5,7,3′,5′-tetrahydroxyflavanone | [48] | |
Brossoflurenone C | [49] | |
Broussin | [49] | |
Broussoflavonol A | [49] | |
Broussoflavonol B | [49] | |
Broussoflavonol F | [48] | |
Fipsotwin | [49] | |
Isolicoflavonol | [48] | |
Isoliquiritigenin | [48] | |
Kazinol B | [49] | |
Kazinol N | [49] | |
Kazinol M | [49] | |
Kazinol Q | [49] | |
Luteolin | [48] | |
Marmesin | [49] | |
Papyriflavonol A | [48] | |
Quercetin | [48] | |
threo-dadahol A | [49] | |
threo-dadahol B | [49] | |
Uralenol | [48] | |
Fruit | 2-(4-hydroxyphenyl) propane-1,3-diol-1-O-β-D-glucopyranoside | [50] |
3,4-dihydroxybenzoic acid | [50] | |
3-[2-(4- hydroxyphenyl)-3-hydroxymethyl-2,3-dihydro-1-benzofuran-5-yl]propan-1-ol | [51] | |
4-hydroxybenzaldehyde | [50] | |
7-hydroxycoumarin | [52] | |
8,11-Octadecadienoic acid | [53] | |
8-Octadecenoic acid | [53] | |
Arbutine | [50] | |
Betulin | [42] | |
Betulinic acid | [42] | |
Broussonpapyrine | [54,55] | |
Chelerythrine | [54] | |
Chushizisin A | [51] | |
Chushizisin B | [51] | |
Chushizisin C | [51] | |
Chushizisin D | [51] | |
Chushizisin E | [51] | |
Chushizisin F | [51] | |
Chushizisin G | [51] | |
Chushizisin H | [51] | |
Chushizisin I | [51] | |
cis-coniferin | [50] | |
cis-syringin | [50] | |
Coniferyl alcohol | [50] | |
Curculigoside C | [50] | |
Curculigoside I | [50] | |
Dihydroconiferyl alcohol | [50] | |
Dihydrosanguinarine | [54] | |
Epicatechin | [52] | |
erythro-1-(4-hydroxy-3-methoxyphenyl)-2-{4-[(E)-3-hydroxy-1-propenyl]-2-methoxyphenoxy}-1,3-propanediol | [51] | |
erythro-1-(4-hydroxyphenyl) glycerol | [50] | |
Ferulic acid | [50] | |
Linolenic acid | [53] | |
Liriodenine | [54,55] | |
Nitidine | [54,55] | |
N-Norchelerythrine | [54] | |
Oleanolic acid | [42] | |
Oleic acid | [53] | |
Oxyavicine | [54,55] | |
Palmitic acid | [53] | |
p-coumaraldehyde | [50] | |
Polysaccharides | [56] | |
Protocatechuic acid | [52] | |
Stearic acid | [53] | |
threo-1-(4-hydroxy-3-methoxyphenyl)-2-{4-[(E)-3-hydroxy-1-propenyl]-2-methoxyphenoxy}-1,3-propanediol | [51] | |
threo-1-(4-hydroxyphenyl) glycerol | [50] | |
Ursolic acid | [42] | |
Seed | Caryophyllene | [57] |
Heptadecene-8-carbonic acid | [57] | |
Hexadecanoic acid | [57] | |
Leaf | (+)-pinoresinol-4′-O-β-D-glucopyranosyl-4″-O-β-D-apiofuranoside | [58] |
3,5,4′-trihydroxy-bibenzyl-3-O-β-D-glucoside | [58] | |
4-Caffeoylquinic acid | [59] | |
4-Feruloylquinic acid | [59] | |
5-Caffeoylquinic acid | [59] | |
Apigenin | [60,61] | |
Apigenin-6-C-β-D-glucopyranside | [58] | |
Apigenin-7-glucoside | [59] | |
Apigenin-7-O-glucuronide | [59] | |
Apigenin-7-O-β -D-glucoside | [61] | |
Broussonetone A | [60] | |
Broussonetone B | [60] | |
Broussonetone C | [60] | |
Broussoside A | [61] | |
Broussoside B | [61] | |
Broussoside C | [61] | |
Broussoside D | [61] | |
Broussoside E | [61] | |
Chrysoriol-7-O-β-D-glucoside | [61] | |
Cosmosiin | [58] | |
Coumaric acid | [61] | |
Dihydrosyringin | [61] | |
Flacourtin | [61] | |
Gentisoyl hexoside | [59] | |
Isoorientin | [61] | |
Isovitexin | [59,61] | |
Liriodendrin | [58] | |
Luteolin | [61] | |
Luteolin-7-O-glucuronide | [59] | |
Luteolin-7-O-β-D-glucopyranoside | [58] | |
Luteoloside | [61] | |
Orientin | [59,61] | |
Pinoresinol-4′-O-β-D-glucopyranoside | [61] | |
Poliothyrsoside | [61] | |
Polysaccharides | [30] | |
Syringaresinol-4′-O-β-D-glucoside | [61] | |
Vitexin | [59,60,61] | |
Whole plant | (2S)-2′,4′-dihydroxy-2″-(1-hydroxy-1-methylethyl) dihydrofuro [2,3-h] flavanone | [62] |
(2S)-abyssinone II | [62] | |
3′-[γ-hydroxymethyl-(E)-γ-methylallyl]-2,4,2′,4′-tetrahydroxychalcone 11′-O-coumarate | [62] | |
5,7,2′,4′-tetrahydroxy-3-geranylflavone | [62] | |
Demethylmoracin I | [62] | |
Isogemichalcone C | [62] | |
Isolicoflavonol | [62] |
Biological Activity | Part | Compound | Model | Dose | Detailed Effects | Reference |
---|---|---|---|---|---|---|
Antityrosinase | Leaf | n/a | In vitro | IC50 = 17.68 ± 5.3 μg/mL | Inhibit mushroom tyrosinase | [63] |
Leaf | n/a | In vitro | 66.67~666.67 μg/mL | Inhibit mushroom tyrosinase | [64] | |
Leaf | Broussonetones A-C | In vitro | IC50 = 0.317 ~ 0.323 mM | Inhibit mushroom tyrosinase | [60] | |
Twig | Broussoflavonol F, 3,5,7,4′-tetrahydroxy-3′-(2-hydroxy-3-methylbut-3-enyl)flavone, uralenol, quercetin | In vitro | IC50 = 49.5~96.6 μM | Inhibit mushroom tyrosinase | [48] | |
Root | Broussoflavonol B/F/H-K, papyriflavonol A, isolicofavonol, glycyrrhiza flavonol | In vitro | IC50 = 9.29~31.74 μM | Inhibit mushroom tyrosinase | [40] | |
Anti-inflammatory | Bark | n/a | RAW264.7 cells | 10~200 μg/mL | Inhibit NO and iNOS production | [24] |
Bark | n/a | RAW264.7 cells | 10~80 μg/mL | Inhibit production of NO, iNOS, TNF-α, and IL-1β | [65] | |
Fruit | 8,11-octadecadienic acid, palmitic acid, linolenic acid, 8-octadecenoic acid, stearic acid, oleic acid | RAW264.7 cells | 6~100 μg/mL | Reduce NO production | [53] | |
Root | Broussoflavonol B, kazinol J | Mice, 3T3-L1 adipocytes | 40 mg/kg, 3~40 μg/mL | Decrease TNF-α-induced inflammation by inhibiting the NF-κB pathway via AMPK activation | [66] | |
Root | (2R)-7,3′,4′-trihydroxy-6-prenylflavanone, broussochalcone C, broussoflavanonol A/B, kazinol V/W | RAW264.7 cells | 2.5~40 μM | Inhibit production of NO, iNOS, COX-2, TNF-α, and IL-6 | [32] | |
Root | Broussochalcone A | RAW264.7 cells | 1~20 μM | Inhibit production of NO, iNOS, TNF-α, and IL-1β | [67] | |
Branch, twig | Kazinol M, broussoflavonol A/B | THP-1 cells | 1 μM | Reduce production of IL-1β and TNF-α by suppressing NF-κB/AP-1 activation | [49] | |
Root | Broussoflavonol H | Jurkat cells | IC50 = 9.95 μM | Decrease IL-2 production | [40] | |
Root, fruit | Betulin, betulinic acid | Rat | 0.6, 1, 2 g/kg | Reduce edema | [42] | |
Root | Broussochalcone A, papyriflavonol A | Rat, MH-S cells | 200 mg/kg, 5~50 μg/mL | Combined with Lonicera japonica to inhibit the production of NO, TNF-α, and IL-6 in macrophages, reduce pleural cavity inflammation and bronchitis | [68] | |
n/a | Papyriflavonol A | Rat | 12.5~50 mg/kg | Inhibit IgE-induced passive cutaneous anaphylaxis | [69] | |
Antioxidant | Leaf | 4-Caffeoylquinic acid, 5-Caffeoylquinic acid, apigenin-7-O-glucuronide, isovitexin, luteolin-7-O-glucuronide, orientin, vitexin | 1~10 mM | In vitro | Radical-scavenging activities in DPPH and ABTS assays | [59] |
Leaf | Luteolin, luteoloside, orientin, isoorientin | 10 μg/mL | In vitro | Radical-scavenging activities in DPPH and ABTS assays | [61] | |
Leaf | Broussonetones A−C, apigenin, vitexin | IC50 = 43.89~107.7 μM | In vitro | Antioxidant effects in SOD-like effect assays | [60] | |
Root | n/a | 0.1~2.5 mg/mL | SH-SY5Y cells | Decrease extracellular peroxide levels, improve activities of SOD, CAT, glutathione peroxidase, and glutathione reductase | [70] | |
Bark, wood | Epicatechin, caffeic acid, coumaric acid, quercetin, kaempferol | 10~50 mg/mL | In vitro | Superoxide anion radical and hydroxyl radical scavenging activities | [26] | |
Flower | n/a | 0.5~5 mg/mL | In vitro | Scavenging activity of DPPH radical | [29] | |
Fruit | 2-(4-hydroxyphenyl)propane-1,3-diol-1-O-β-D-glucopyranoside, 4-hydroxybenzaldehyde, 3,4-dihydroxybenzoic acid, arbutine, dihydroconiferyl alcohol, coniferyl alcohol, ferulic acid, p-coumaraldehyde, cis-syringin, cis-coniferin, erythro1-(4-hydroxyphenyl)glycerol, threo-1-(4-hydroxyphenyl)glycerol, curculigoside C/I | 0.16~100 mM | SH-SY5Y cells | Scavenging activity of DPPH radical and neuroprotective effects against H2O2-induced SY5Y cell injury | [50] | |
Branch, twig | Kazinol M, broussoflavonol A/B | THP-1 cells | 1 μM | Reduce CAA values | [49] | |
Root | Broussochalcone A | RAW264.7 cells | 1~20 μM | Inhibit production of NO, iNOS, TNF-α, and IL-1β | [67] | |
Root | Broussoflavan A, broussoflavonol F/G, broussoaurone A | In vitro | IC50 = 1.0~2.7 μM | Inhibit oxidative stress caused by Fe2+ in rat brain homogenate | [43] | |
Fruit | Chushizisins A−I, threo-1-(4-hydroxy-3-methoxyphenyl)-2-{4-[(E)-3-hydroxy-1-propenyl]-2-methoxyphenoxy}-1,3-propanediol, erythro-1-(4-hydroxy-3-methoxyphenyl)-2-{4-[(E)-3-hydroxy-1-propenyl]-2-methoxyphenoxy}-1,3-propanediol | PC12 cells | 0.16~100 μM | Scavenging activity of DPPH radical and antioxidant effects against H2O2-induced impairment in PC12 cells | [51] | |
Whole plant | Lignins | In vitro | 10~100 mg/L | Scavenging activity of DPPH radical | [71] | |
Aerial part | n/a | Beef cattle | 5~15% in food | Increase SOD concentration, total antioxidant capacity | [72] | |
Aerial part | n/a | Dairy cow | 5~15% in food | Increase the concentration of CAT, SOD, and TAC and decrease the serum concentration of 8-OHdG | [73] | |
Leaf | n/a | Piglet | 150, 300 g/t | Increase concentration of CAT, SOD, glutathione peroxidase | [74] | |
Anti-microbial | Leaf | n/a | In vitro | MIC = 1~7.5 mg/mL | Inhibit growth of bacteria (Enterococcus faecalis, Vibrio cholera, Bacillus subtilis, Pseudomonas aeruginosa, Klibsella pneumonia) and fungi (Aspergilus niger, A. flavus) | [75] |
Seed | Hexadecanoic acid, heptadecene-8-carbonic acid, caryophyllene | In vitro | 0.125~1% | Antibacterial activity against Staphylococcus aureus, Proteus vulgaris, B. cereus, Enterobacter aerogenes | [57] | |
Aerial part | Daphnegiravan F, 5,7,3′,4′-tetrahydroxy-3-methoxy-8,5′-diprenylflavone | In vitro | MIC = 3.9~250 ppm | Anti-oral microbial effect against Gram-positive strains (Actinomyces naeslundii, A. viscosus, Streptococcus mutans, S. sanguinis, S. sorbrinus) and Gram-negative strains (Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis) | [76] | |
Root | Papyriflavonol A, kazinol B, broussochalcone A | In vitro | MIC = 12.5~45 μg/mL | Antifungal effect against Candida albicans and Saccharomyces cerevisiae, antibacterial activity against Escherichia coli, Salmonella typhimurium, S. epidermis, S. aureus | [25] | |
Root | Papyriflavonol A | In vitro | MIC = 10~25 μg/mL | Antifungal effect against C. albicans and S. cerevisiae | [44] | |
Fruit | Polysaccharides | In vitro | 0.4~2.0 mg/mL | Antibacterial activity against E. coli, P. aeruginosa, B. subtilis, S. aureus | [56] | |
Root | Broussochalcone A/B, broussoflavan A, 3′-(3-methylbut-2-enyl)-3′,4′,7-trihydroxyflavane, 3,4-dihydroxyisolonchocarpin, 8-(1,1-dimethylallyl)-5′-(3-methylbut-2-enyl)-3′,4′,5,7-tetrahydroxyflanvonol, daphnegiravan I, kazinol A/B/E, 4-hydroxyisolonchocarpin, papyriflavonol A, broussoflavonol B | In vitro | IC50 = 0.7~54 μM | Inhibit bacterial neuraminidase | [36] | |
Antiviral | Root | Broussochalcone A/B, 4-hydroxyisolonchocarpin, papyriflavonol A (4), 3′-(3-methylbut-2-enyl)-3′,4,7-trihydroxyflavane, kazinol A/B/F/J, broussoflavan A | In vitro | IC50 = 9.2~66.2 μM | Inhibit papain-like protease | [38] |
Anticancer | Bark | n/a | HT-29 cells | 50~200 μg/mL | Induce apoptosis-related DNA fragmentation, increase the expression of p53, caspase 3, Bax, inhibit cell proliferation | [24] |
Bark | Papyriflavonol A, broussoflavonol B, broussochalcone A, uralenol, 5,7,3′,4′-tetrahydroxy-3-methoxy-8,5′-diprenylflavone | MCF-7 cells | 5~25 μM | Anti-proliferation effects on estrogen receptor-positive breast cancer MCF-7 cells | [46] | |
Bark, leaf, fruit | n/a | MCF-7, HeLa, HepG2 cells | 31.25~1000 μg/mL | Cytotoxic activity against cancer cells | [77] | |
Root | Broussoflavonol F/H/I/K, isolicofavonol, glycyrrhiza flavonol A, papyriflavonol A | NCI-H1975, HepG2, MCF-7 cells | IC50 = 0.9~2.0 μM | Growth inhibition activity against three cancer cell lines | [40] | |
Root | Kazinol A | T24, T24R2 cells | Inhibit cell growth through G0/1 arrest mediated by a decrease in cyclin D1 and an increase in p21 | [37] | ||
n/a | Broussochalcone A | HEK293, HCT116, SW480, SNU475 cells | 5~20 μM | Induce apoptosis in colon and liver cancer cells | [78] | |
n/a | Broussochalcone A | HepG2 cells | 5 µM | Cytotoxic effects against human hepatoma HepG2 cells with activation of apoptosis-related proteins | [79] | |
Fruit | N-norchelerythrine, dihydrosanguinarine, oxyavicine, broussonpapyrine, nitidine, chelerythrine, liriodenine | BEL-7402, Hela cells | IC50 = 5.97~47.41 μg/mL | Inhibit cancer cell growth | [54] | |
Antidiabetic | Root | Broussoflavonol B, kazinol J | Mice | 40 mg/kg | Improve glucose tolerance | [66] |
Root | 8-(1,1-dimethylallyl)-5′-(3-methylbut-2-enyl)-3′,4′,5,7-tetrahydroxyflanvonol, uralenol, 3,3′,4′,5,7-pentahydroxyflavone, broussochalcone A | In vitro | IC50 = 4.3~36.8 μM | Inhibit the activity of PTP1B | [33] | |
Root | Broussochalcone A/B, 3,4-Dihydroxyisolonchocarpin, 4-Hydroxyisolonchocarpin, 3′-(3-Methylbut-2-enyl)-3′,4′,7-trihydroxyflavane, kazinol A/B/E, 8-(1,1-Dimethylallyl)-5′-(3-methylbut-2-enyl)-3′,4′,5,7-tetrahydroxyflanvonol, papyriflavonol A, brossoflurenone A | In vitro | IC50 = 2.1~75.7 μM | Inhibit the activity of α-glucosidase | [35] | |
Anticholinesterase | Root | 8-(1,1-Dimethylallyl)-5′-(3-methylbut-2-enyl)-3′,4′,5,7-tetrahydroxyflanvonol, papyriflavonol A, broussoflavonol B, brossoflurenone A/B | In vitro | IC50 = 0.5~24.7 μM | Inhibit human acetylcholinesterase and butyrylcholinesterase | [41] |
Antigout | Root | 3,4-dihydroxyisolonchocarpin, broussochalcone A | In vitro | IC50 = 0.6~1.8 μM | Inhibit the activity of xanthine oxidase | [34] |
Antinociceptive | Root, fruit | Betulin, betulinic acid | Rat | 1, 2 g/kg | Inhibit writhing responses | [42] |
Hepatoprotective | Leaf | Polysaccharides | Mice | 100~400 mg/kg | Improve acetaminophen-induced liver damage, reduce liver apoptosis, enhance the detoxification ability of the liver to acetaminophen | [30] |
Root | Broussoflavonol B, kazinol J | Mice | 40 mg/kg | Suppress hepatic steatosis by decreasing lipogenic gene expression and increasing AMPK phosphorylation | [66] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, L.T.H. Biological Activities of Paper Mulberry (Broussonetia papyrifera): More than a Skin-Lightening Agent. Cosmetics 2022, 9, 112. https://doi.org/10.3390/cosmetics9060112
Nguyen LTH. Biological Activities of Paper Mulberry (Broussonetia papyrifera): More than a Skin-Lightening Agent. Cosmetics. 2022; 9(6):112. https://doi.org/10.3390/cosmetics9060112
Chicago/Turabian StyleNguyen, Ly Thi Huong. 2022. "Biological Activities of Paper Mulberry (Broussonetia papyrifera): More than a Skin-Lightening Agent" Cosmetics 9, no. 6: 112. https://doi.org/10.3390/cosmetics9060112
APA StyleNguyen, L. T. H. (2022). Biological Activities of Paper Mulberry (Broussonetia papyrifera): More than a Skin-Lightening Agent. Cosmetics, 9(6), 112. https://doi.org/10.3390/cosmetics9060112