A Mini Review: The Application of Eupatorium Plants as Potential Cosmetic Ingredients
Abstract
:1. Introduction
2. Biochemical Constituents
3. Application in Cosmetics
3.1. Antioxidant Activity
3.2. Anti-Melanin/Melanogenesis Activity
3.3. Anti-Acne Activity
3.4. Anti-Inflammatory Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dini, I.; Laneri, S. The new challenge of green cosmetics: Natural food ingredients for cosmetic formulations. Molecules 2021, 26, 3921. [Google Scholar] [CrossRef] [PubMed]
- Cáceres, A.; Menéndez, H.; Méndez, E.; Cohobón, E.; Samayoa, B.E.; Jauregui, E.; Peralta, E.; Carrillo, G. Antigonorrhoeal activity of plants used in Guatemala for the treatment of sexually transmitted diseases. J. Ethnopharmacol. 1995, 48, 85–88. [Google Scholar] [CrossRef]
- De las Heras, B.; Slowing, K.; Benedí, J.; Carretero, E.; Ortega, T.; Toledo, C.; Bermejo, P.; Iglesias, I.; Abad, M.J.; Gómez-Serranillos, P.; et al. Antiinflammatory and antioxidant activity of plants used in traditional medicine in Ecuador. J. Ethnopharmacol. 1998, 61, 161–166. [Google Scholar] [CrossRef]
- Urzua, A.; Caroli, M.; Vasquez, L.; Mendoza, L.; Wilkens, M.; Tojo, E. Antimicrobial study of the resinous exudate and of diterpenoids isolated from Eupatorium salvia (Asteraceae). J. Ethnopharmacol. 1998, 62, 251–254. [Google Scholar] [CrossRef]
- Abad, M.J.; Bermejo, P.; Sanchez Palomino, S.; Chiriboga, X.; Carrasco, L. Antiviral activity of some South American medicinal plants. Phytother. Res. 1999, 13, 142–146. [Google Scholar] [CrossRef]
- Zanon, S.M.; Ceriatti, F.S.; Rovera, M.; Sabini, L.J.; Ramos, B.A. Search for antiviral activity of certain medicinal plants from Córdoba, Argentina. Rev. Lat. Microbiol. 1999, 41, 59–62. [Google Scholar]
- Clavin, M.L.; Gorzalczany, S.; Miño, J.; Kadarian, C.; Martino, V.; Ferraro, G.; Acevedo, C. Antinociceptive effect of some Argentine medicinal species of Eupatorium. Phytother. Res. 2000, 14, 275–277. [Google Scholar] [CrossRef]
- Muschietti, L.; Gorzalczany, S.; Ferraro, G.; Acevedo, C.; Martino, V. Phenolic compounds with anti-inflammatory activity from Eupatorium buniifolium. Planta Med. 2001, 67, 743–744. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; Ohara, T.; Sata, N.; Nishiyama, S. Antimicrobial diterpenoids from Eupatorium glutinosum (Asteraceae). J. Ethnopharmacol. 2002, 81, 293–296. [Google Scholar] [CrossRef]
- Gupta, M.; Mazumder, K.; Chaudhuri, I.; Chaudhuri, R.; Bose, P.; Bhattacharya, S.; Lakshmanan, M.; Patra, S. Antimicrobial activity of Eupatorium ayapana. Fitoterapia 2002, 73, 168–170. [Google Scholar] [CrossRef]
- García, C.C.; Talarico, L.; Almeida, N.; Colombres, S.; Duschatzky, C.; Damonte, E.B. Virucidal activity of essential oils from aromatic plants of San Luis, Argentina. Phytother. Res. 2003, 17, 1073–1075. [Google Scholar] [CrossRef]
- Navarro García, V.M.; Gonzalez, A.; Fuentes, M.; Aviles, M.; Rios, M.Y.; Zepeda, G.; Rojas, M.G. Antifungal activities of nine traditional Mexican medicinal plants. J. Ethnopharmacol. 2003, 87, 85–88. [Google Scholar] [CrossRef]
- Rios, M.Y.; Aguilar-Guadarrama, A.B.; Navarro, V. Two new benzofuranes from Eupatorium aschenbornianum and their antimicrobial activity. Planta Med. 2003, 69, 967–970. [Google Scholar] [CrossRef]
- Sasikumar, J.M.; Doss, A.P.A.; Doss, A. Antibacterial activity of Eupatorium glandulosum leaves. Fitoterapia 2005, 76, 240–243. [Google Scholar] [CrossRef]
- Lira-Salazar, G.; Marines-Montiel, E.; Torres-Monzón, J.; Hernández-Hernández, F.; Salas-Benito, J.S. Effects of homeopathic medications Eupatorium perfoliatum and Arsenicum album on parasitemia of Plasmodium berghei-infected mice. Homeopathy 2006, 95, 223–228. [Google Scholar] [CrossRef]
- Liu, P.Y.; Liu, D.; Li, W.H.; Zhao, T.; Sauriol, F.; Gu, Y.C.; Shi, Q.W.; Zhang, M.L. Chemical Constituents of Plants from the Genus Eupatorium (1904–2014). Chem. Biodivers. 2015, 12, 1481–1515. [Google Scholar] [CrossRef]
- Hnatyszyn, O.; Broussalis, A.; Herrera, G.; Muschietti, L.; Coussio, J.; Martino, V.; Ferraro, G.; Font, M.; Monge, A.; Martínez-Irujo, J.J.; et al. Argentine plant extracts active against polymerase and ribonuclease H activities of HIV-1 reverse transcriptase. Phytother. Res. 1999, 13, 206–209. [Google Scholar] [CrossRef]
- Miño, J.; Muschietti, L.; Ferraro, G.; Martino, V.; Acevedo, C. Antinociceptive activity of Eupatorium buniifolium aqueous extract. Fitoterapia 2005, 76, 100–103. [Google Scholar] [CrossRef]
- Sobrinho, A.C.; Morais, S.; Souza, E.; Fontenelle, R. The genus Eupatorium, L. (Asteraceae): A review of their antimicrobial activity. J. Med. Plants Res. 2017, 11, 43. [Google Scholar] [CrossRef] [Green Version]
- Grigore, A.; Neagu, G.; Dobre, N.; Albulescu, A.; Ionita, L.; Ionita, C.; Albulescu, R. Evaluation of antiproliferative and protective effects of Eupatorium cannabinum L. extracts. Turk. J. Biol. 2018, 42, 334–344. [Google Scholar] [CrossRef]
- Carvalho, L.H.; Brandão, M.G.; Santos-Filho, D.; Lopes, J.L.; Krettli, A.U. Antimalarial activity of crude extracts from Brazilian plants studied in vivo in Plasmodium berghei-infected mice and in vitro against Plasmodium falciparum in culture. Braz. J. Med. Biol. Res. 1991, 24, 1113–1123. [Google Scholar]
- Blair, S.; Mesa, J.; Correa, A.; Carmona-Fonseca, J.; Granados, H.; Sáez, J. Antimalarial activity of neurolenin B and derivates of Eupatorium inulaefolium (Asteraceae). Pharmazie 2002, 57, 413–415. [Google Scholar]
- Habtemariam, S.; Macpherson, A.M. Cytotoxicity and antibacterial activity of ethanol extract from leaves of a herbal drug, boneset (Eupatorium perfoliatum). Phytother. Res. 2000, 14, 575–577. [Google Scholar] [CrossRef]
- Selvamangai, G.; Bhaskar, A. GC–MS analysis of phytocomponents in the methanolic extract of Eupatorium triplinerve. Asian Pac. J. Trop. Biomed. 2012, 2, S1329–S1332. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, B.; Yang, J.; Ma, X.; Deng, S.; Huang, Y.; Wen, Y.; Yuan, J.; Yang, X. Essential Oil Derived From Eupatorium adenophorum Spreng. Mediates Anticancer Effect by Inhibiting STAT3 and AKT Activation to Induce Apoptosis in Hepatocellular Carcinoma. Front. Pharm. 2018, 9, 483. [Google Scholar] [CrossRef] [Green Version]
- Rossini, C.; Rodrigo, F.; Davyt, B.; Umpiérrez, M.L.; González, A.; Garrido, P.M.; Cuniolo, A.; Porrini, L.P.; Eguaras, M.J.; Porrini, M.P. Sub-lethal effects of the consumption of Eupatorium buniifolium essential oil in honeybees. PLoS ONE 2020, 15, e0241666. [Google Scholar] [CrossRef]
- Sugumar, N.; Karthikeyan, S.; Gowdhami, T. Phytochemical analysis and antimicrobial activity of Eupatorium triplinerve Vahl. Int. J. Appl. Res. 2015, 1, 108–112. [Google Scholar]
- Garg, S.C.; Nakhare, S. Studies on the essential oil from the flower of Eupatohum triplinerve. Ind. Perfum. 1993, 37, 318–323. [Google Scholar]
- Fernie, A.R.; Trethewey, R.N.; Krotzky, A.J.; Willmitzer, L. Metabolite profiling: From diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 2004, 5, 763–769. [Google Scholar] [CrossRef]
- Kokate, C.; Verma, K.C. Pharmacological studies on the essential oil of Eupatorium triplinerve. Flavour. Ind. 1971, 2, 177–180. [Google Scholar]
- Warrier, P.K. Indian Medicinal Plants: A Compendium of 500 Species; Orient Blackswan PVT. LTD.: Hyderabad, India, 1994; Volume 2. [Google Scholar]
- Subash, K.; Rao, N.; Cheriyan, B.; Bhaarati, G.; Kumar, K. The anthelmintic activity of Eupatorium triplinerve and Alpinia galanga in Pheritima posthuman and Ascardia galli: A comparative study. J. Clin. Diagn. Res. 2012, 6, 947–950. [Google Scholar]
- Wang, R.; Wang, Y.-Z. Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora (Asteraceae) in China. Divers. Distrib. 2006, 12, 397–408. [Google Scholar] [CrossRef]
- Liu, X.; Qi, C.; Wang, Z.; Li, Y.; Wang, Q.; Guo, M.; Cao, A. Effect of picloram herbicide on physiological responses of E. adenophorum Spreng. Chil. J. Agric. Res. 2014, 74, 438–444. [Google Scholar] [CrossRef] [Green Version]
- Buccellato, L.; Byrne, M.; Witkowskki, E. Interactions between a stem gall fly and a leaf-spot pathogen in the biological control of Ageratina adenophora. Biol. Control 2012, 61, 222–229. [Google Scholar] [CrossRef]
- Codilla, L.T.; Metillo, E.B. Distribution and abundance of the invasive plant species Chromolaena odorata L. in the Zamboanga Peninsula, Philippines. Int. J. Environ. Sci. Dev. 2011, 2, 406. [Google Scholar] [CrossRef]
- Owoyele, V.B.; Adediji, J.O.; Soladoye, A.O. Anti-inflammatory activity of aqueous leaf extract of Chromolaena odorata. Inflammopharmacology 2005, 13, 479–484. [Google Scholar] [CrossRef]
- Anyasor, G.N.; Aina, D.A.; Olushola, M.; Aniyikaye, A.F. Phytochemical constituent, proximate analysis, antioxidant, antibacterial and wound healing properties of leaf extracts of Chromolaena odorata. Ann. Biol. Res. 2011, 2, 441–451. [Google Scholar]
- Vaisakh, M.N.; Anima, P. Pharmacognostic study of leaves of Chromolaena odorata Linn. Int. J. Pharma Sci. Res. 2009, 3, 80–83. [Google Scholar]
- Omoregie, E.S.; Oriakhi, K.; Oikeh, E.I.; Okugbo, O.T.; Akpobire, D. Comparative study of phenolic content and antioxidant activity of leaf extracts of Alstonia boonei and Eupatorium odoratum. Niger. J. Basic Appl. Sci. 2014, 22, 91–97. [Google Scholar]
- Flores-Fernández, J.M.; Padilla-Camberos, E.; Fernández-Flores, O.; Diaz-Martínez, N.E.; Barragán-Álvarez, C.P.; Ramírez-Rodríguez, P.B. Gastroprotective activity and pharmacological safety evaluation of Eupatorium aschenbornianum. Exp. Ther. Med. 2019, 18, 4467–4472. [Google Scholar]
- Lee, J.H.; Jung, M.H.; Lee, Y.H.; Shin, Y.; Kim, H.S.; Schreiber, J.; Kim, T.J. Inhibited apoptosis of C2C12 myoblasts by a Eupatorium chinense var. simplicifolium root extract. Biosci. Biotechnol. Biochem. 2013, 77, 2134–2136. [Google Scholar] [CrossRef]
- Jiangsu College of New Medicine. A Dictionary of the Traditional Chinese Medicines; Jiangsu College of New Medicine: Zhenjiang, China, 1977. [Google Scholar]
- Pham, T.N.; Pham, H.D.; Dang, D.K.; Duong, T.T.; Le, T.P.Q.; Nguyen, Q.D.; Nguyen Tien, D. Anticyanobacterial phenolic constituents from the aerial parts of Eupatorium fortunei Turcz. Nat. Prod. Res. 2019, 33, 1345–1348. [Google Scholar] [CrossRef]
- Shi, J.; Yuan, M.; Yu, Y.; Shi, S.-B.; Liu, Y.-G. Chiral resolution, absolute configuration of two pairs of unusual monoterpene enantiomers from Eupatorium fortunei. Tetrahedron. Lett. 2020, 61, 151655. [Google Scholar] [CrossRef]
- Nan, G.; Zhang, L.; Liu, Z.; Liu, Y.; Du, Y.; Zhao, H.; Zheng, H.; Lin, R.; Yang, G.; Zheng, S. Quantitative Determination of p-Cymene, Thymol, Neryl Acetate, and β-Caryophyllene in Different Growth Periods and Parts of Eupatorium fortunei Turcz. by GC-MS/MS. J. Anal. Methods Chem. 2021, 2021, 2174667. [Google Scholar] [CrossRef]
- Tori, M.; Takeichi, Y.; Kuga, H.; Nakashima, K.; Sono, M. Seven germacranolides, eupaglehnins A, B, C, D, E, and F, and 2α-acetoxyepitulipinolide from Eupatorium glehni. Chem. Pharm. Bull. 2002, 50, 1250–1254. [Google Scholar] [CrossRef]
- Yang, N.Y.; Qian, S.H.; Duan, J.A.; Li, P.; Tian, L.J. Cytotoxic sesquiterpene lactones from Eupatorium lindleyanum. J. Asian Nat. Prod. Res. 2007, 9, 339–345. [Google Scholar] [CrossRef]
- Yan, G.; Ji, L.; Luo, Y.; Hu, Y. Antioxidant activities of extracts and fractions from Eupatorium lindleyanum DC. Molecules 2011, 16, 5998–6009. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Zhao, Y.; Lou, C.; Zhao, H. Eupalinolide O, a novel sesquiterpene lactone from Eupatorium lindleyanum DC., induces cell cycle arrest and apoptosis in human MDA-MB-468 breast cancer cells. Oncol. Rep. 2016, 36, 2807–2813. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zhong, H.; Fang, S.; Zheng, Y.; Li, C.; Peng, G.; Shen, X. Potential anti-inflammatory sesquiterpene lactones from Eupatorium lindleyanum. Planta Med. 2018, 84, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Chen, Y.; Yang, B.; Lou, C.; Zhu, R.; Zhao, Y.; Zhao, H. F1012-2 inhibits the growth of triple negative breast cancer through induction of cell cycle arrest, apoptosis, and autophagy. Phytother. Res. 2018, 32, 908–922. [Google Scholar] [CrossRef]
- Yang, B.; Shen, J.W.; Zhou, D.H.; Zhao, Y.P.; Wang, W.Q.; Zhu, Y.; Zhao, H.J. Precise discovery of a STAT3 inhibitor from Eupatorium lindleyanum and evaluation of its activity of anti-triple-negative breast cancer. Nat. Prod. Res. 2019, 33, 477–485. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, X.; Dai, L.; Wang, Y.; Yang, B.; Zhao, H.; Lou, C. Eupalinolide J induces apoptosis, cell cycle arrest, mitochondrial membrane potential disruption and DNA damage in human prostate cancer cells. J. Toxicol. Sci. 2020, 45, 15–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, G.-J.; Eom, S.-H.; Shin, H.-J.; Paek, J.H.; Kim, S.; Lim, S.S.; Youn, H.-S. Japanese bog orchid (Eupatorium japonicum) extract suppresses expression of inducible nitric oxide synthase and cyclooxygenase-2 induced by toll-like receptor agonists. Food Sci. Biotechnol. 2013, 22, 811–815. [Google Scholar] [CrossRef]
- Shin, J.-I.; Jeon, Y.-J.; Lee, S.; Lee, Y.G.; Kim, J.B.; Kwon, H.C.; Kim, S.H.; Kim, I.; Lee, K.; Han, Y.S. Apoptotic and anti-inflammatory effects of Eupatorium japonicum thunb. in rheumatoid arthritis fibroblast-like synoviocytes. BioMed Res. Int. 2018, 2018, 1383697. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, Y.; Li, M.; Liu, S.; Yu, J.; Yan, Z.; Zhou, H. Traditional uses, bioactive constituents, biological functions, and safety properties of Oviductus ranae as functional foods in China. Oxidative Med. Cell. Longev. 2019, 2019, 4739450. [Google Scholar] [CrossRef] [Green Version]
- Dai, G.; Wang, C.; Tang, W.; Liu, J.; Xue, B. A 90-Day Oral Toxicity Study of the Ethanol Extract from Eupatorium japonicum Thunb and Foeniculum vulgare in Rats. Biomed Res. Int. 2020, 2020, 6859374. [Google Scholar] [CrossRef]
- Phan, M.G.; Do, T.T.; Nguyen, T.N.; Do, T.V.H.; Dong, N.P.; Vu, M.T. Chemical Constituents of Eupatorium japonicum and Anti-Inflammatory, Cytotoxic, and Apoptotic Activities of Eupatoriopicrin on Cancer Stem Cells. Evid. Based Complement. Altern. Med. 2021, 2021, 6610347. [Google Scholar] [CrossRef]
- Liang, W.H.; Chang, T.W.; Charng, Y.C. Influence of harvest stage on the pharmacological effect of Angelica dahurica. Bot. Stud. 2018, 59, 14. [Google Scholar] [CrossRef]
- Szymborska-Sandhu, I.; Przybył, J.L.; Kosakowska, O.; Bączek, K.; Węglarz, Z. Chemical Diversity of Bastard Balm (Melittis melisophyllum L.) as Affected by Plant Development. Molecules 2020, 25, 2421. [Google Scholar] [CrossRef]
- Zheng, Y.L.; Feng, Y.L.; Zhang, L.K.; Callaway, R.M.; Valiente-Banuet, A.; Luo, D.Q.; Liao, Z.Y.; Lei, Y.B.; Barclay, G.F.; Silva-Pereyra, C. Integrating novel chemical weapons and evolutionarily increased competitive ability in success of a tropical invader. New Phytol. 2015, 205, 1350–1359. [Google Scholar] [CrossRef]
- Arung, E.T.; Kuspradini, H.; Kusuma, I.W.; Shimizu, K.; Kondo, R. Validation of Eupatorium triplinerve Vahl leaves, a skin care herb from East Kalimantan, using a melanin biosynthesis assay. J. Acupunct. Meridian Stud. 2012, 5, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Cheriyan, B.V., Sr.; Kadhirvelu, P., Sr.; Nadipelly, J., Jr.; Shanmugasundaram, J.; Sayeli, V., Sr.; Subramanian, V., Sr. Anti-nociceptive Effect of 7-methoxy Coumarin from Eupatorium Triplinerve vahl (Asteraceae). Pharm. Mag. 2017, 13, 81–84. [Google Scholar] [CrossRef]
- Biswas, A.; Bhattacharya, S.; Mahapatra, S.D.; Debnath, M.D.; Biswas, M. The Antioxidant Effects of Eupatorium triplinerve, Hygrophila triflora and Pterocarpus marsupium—A Comparative Study. Eur. J. Appl. Sci. 2012, 4, 136–139. [Google Scholar]
- Ding, J.; Xuejian, Y.; Yu, W.; Ding, Z.; Chen, Z.; Hayashi, N.; Komae, H. Aromatic Components of the Essential Oils of Four Chinese Medicinal Plants (Asarum petelotii, Elsholtzia souliei, Eupatorium adenophorum, Micromeria biflora) in Yunnan. Z. Für Nat. C 1994, 49, 703–706. [Google Scholar] [CrossRef] [Green Version]
- Pala-Paul, J.; Perez-Alonso, M.; Velasco-Negueruela, S. Spectrometry of the volatile components of Ageratina adenophora Spreng, growing in the Canary Islands. J. Chromatogr. A 2002, 947, 327–331. [Google Scholar] [CrossRef]
- Ouyang, C.-B.; Liu, X.-M.; Liu, Q.; Bai, J.; Li, H.-Y.; Li, Y.; Wang, Q.-X.; Yan, D.-D.; Mao, L.-G.; Cao, A.; et al. Toxicity Assessment of Cadinene Sesquiterpenes from Eupatorium adenophorum in Mice. Nat. Prod. Bioprospecting. 2015, 5, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, C.-b.; Liu, X.-m.; Yan, D.-d.; Li, Y.; Wang, Q.-x.; Cao, A.-c.; Guo, m.-x. Immunotoxicity assessment of cadinene sesquiterpenes from Eupatorium adenophorum in mice. J. Integr. Agric. 2016, 15, 2319–2325. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Cao, L.; Zhang, L.; Yuan, X.; Zhao, B. Preparation, Phytochemical Investigation, and Safety Evaluation of Chlorogenic Acid Products from Eupatorium adenophorum. Molecules 2017, 22, 67. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Gao, Y.; Zhang, K.; Ito, Y. Isolation of caffeic acid from Eupatorium adenophorum-spreng by high-speed countercurrent chromatography and synthesis of caffeic acid-intercalates layered double hydroxide. J. Liq. Chromatogr. Relat. Technol. 2010, 33, 837–845. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Zhang, K.; Zhang, G.; Ito, Y. Isolation of five bioactive components from Eupatorium adenophorum spreng using stepwise elution by high-speed countercurrent chromatography. J. Liq. Chromatogr. Relat. Technol. 2011, 34, 2505–2515. [Google Scholar] [CrossRef] [Green Version]
- Mo, Q.; Hu, L.; Weng, J.; Zhang, Y.; Zhou, Y.; Xu, R.; Zuo, Z.; Deng, J.; Ren, Z.; Zhong, Z.; et al. Euptox A Induces G1 Arrest and Autophagy via p38 MAPK- and PI3K/Akt/mTOR-Mediated Pathways in Mouse Splenocytes. J. Histochem. Cytochem. 2017, 65, 543–558. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Luo, S.-H.; Hua, J.; Li, D.-S.; Ling, Y.; Luo, Q.; Li, S.-H. Characterization of defensive cadinenes and a novel sesquiterpene synthase responsible for their biosynthesis from the invasive Eupatorium adenophorum. New Phytol. 2021, 229, 1740–1754. [Google Scholar] [CrossRef]
- Wagner, H.; Proksch, A.; Riess-Maurer, I.; Vollmar, A.; Odenthal, S.; Stuppner, H.; Jurcic, K.; Le Turdu, M.; Heur, Y.H. Immunostimulant action of polysaccharides (heteroglycans) from higher plants. Preliminary communication. Arzneim. Forsch. 1984, 34, 659–661. [Google Scholar]
- Gao, Y.; Zhang, Y.; Fan, Y. Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway. Iran J. Basic Med. Sci. 2019, 22, 1340–1346. [Google Scholar] [CrossRef]
- Sanjukta, R.; Das, S.; Puro, K.; Ghatak, S.; Shakuntala, I.; Sen, A. Screening of Phytochemical and Antibacterial Property of Some Local Herbs of Meghalaya. Indian J. Hill Farming 2019, 27–32. [Google Scholar]
- Al-Snafi, A. Chemical constituents, pharmacological and therapeutic effects of eupatorium cannabinum-a review. Indo Am. J. Pharm. Sci. 2017, 4, 160–168. [Google Scholar]
- Zhu, Z.; Yuan, J.; Xu, X.; Wei, Y.; Yang, B.; Zhao, H. Eucannabinolide, a novel sesquiterpene lactone, suppresses the growth, metastasis and BCSCS-like traits of TNBC via inactivation of STAT3. Neoplasia 2021, 23, 36–48. [Google Scholar] [CrossRef]
- Reyes-Trejo, B.; Guerra-Ramírez, D.; Zuleta-Prada, H.; Santillán, R.; Sánchez-Mendoza, M.E.; Arrieta, J.; Reyes, L. Molecular Disorder in (–)-Encecanescin. Molecules 2014, 19, 4695–4707. [Google Scholar] [CrossRef] [Green Version]
- Conner, W.E.; Boada, R.; Schroeder, F.C.; González, A.; Meinwald, J.; Eisner, T. Chemical defense: Bestowal of a nuptial alkaloidal garment by a male moth on its mate. Proc. Natl. Acad. Sci. USA 2000, 97, 14406–14411. [Google Scholar] [CrossRef] [Green Version]
- Itoh, T.; Ohguchi, K.; Nozawa, Y.; Akao, Y. Intracellular Glutathione Regulates Sesquiterpene Lactone-induced Conversion of Autophagy to Apoptosis in Human Leukemia HL60 Cells. Anticancer. Res. 2009, 29, 1449. [Google Scholar]
- Lee, J.; Park, J.; Kim, J.; Jeong, B.; Choi, S.Y.; Jang, H.S.; Yang, H. Targeted Isolation of Cytotoxic Sesquiterpene Lactones from Eupatorium fortunei by the NMR Annotation Tool, SMART 2.0. ACS Omega 2020, 5, 23989–23995. [Google Scholar] [CrossRef]
- Chang, C.-H.; Wu, S.; Hsu, K.-C.; Huang, W.-J.; Chen, J.-J. Dibenzofuran, 4-Chromanone, Acetophenone, and Dithiecine Derivatives: Cytotoxic Constituents from Eupatorium fortunei. Int. J. Mol. Sci. 2021, 22, 7448. [Google Scholar] [CrossRef]
- Tori, M.; Morishita, N.; Hirota, N.; Saito, Y.; Nakashima, K.; Sono, M.; Tanaka, M.; Utagawa, A.; Hirota, H. Sesquiterpenoids Isolated from Eupatorium glehnii. Isolation of Guaiaglehnin A, Structure Revision of Hiyodorilactone B, and Genetic Comparison. Chem. Pharm. Bull. 2008, 56, 677–681. [Google Scholar] [CrossRef] [Green Version]
- Saito, Y.; Mukai, T.; Iwamoto, Y.; Baba, M.; Takiguchi, K.; Okamoto, Y.; Gong, X.; Kawahara, T.; Kuroda, C.; Tori, M. Germacranolides and their diversity of Eupatorium heterophyllum collected in PR China. Chem. Pharm. Bull. 2014, 62, 1092–1099. [Google Scholar] [CrossRef] [Green Version]
- Abourashed, E.A. Bioavailability of Plant-Derived Antioxidants. Antioxidants 2013, 2, 309–325. [Google Scholar] [CrossRef] [Green Version]
- Dubey, N. Plants as a Source of Natural Antioxidants; CABI International: Wallingford, UK, 2015. [Google Scholar]
- Sikora, E.; Cieślik, E.; Topolska, K. The sources of natural antioxidants. Acta Sci. Pol. Technol. Aliment. 2008, 7, 5–17. [Google Scholar]
- Saxena, M.; Saxena, J.; Pradhan, A. Flavonoids and phenolic acids as antioxidants in plants and human health review article. Int. J. Pharm. Sci. Rev. Res. 2012, 16, 130–134. [Google Scholar]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 2011, 89, 217–233. [Google Scholar] [CrossRef]
- Barański, M.; Srednicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.K.; Micali, M.; Pellerito, A.; Santangelo, A.; Natalello, S.; Tulumello, R.; Singla, R.K. Studies on the Determination of Antioxidant Activity and Phenolic Content of Plant Products in India (2000–2017). J. AOAC Int. 2019, 102, 1407–1413. [Google Scholar] [CrossRef]
- Rezaeian, S.; Hamid Reza Pourianfar, H.; Janpoor, J. Antioxidant properties of several medicinal plants growing wild in northeastern Iran. Asian J. Plant Sci. Res. 2015, 5, 63–68. [Google Scholar]
- Agarwal, A.; Aponte-Mellado, A.; Premkumar, B.J.; Shaman, A.; Gupta, S. The effects of oxidative stress on female reproduction: A review. Reprod. Biol. Endocrinol. 2012, 10, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salas-Pacheco, J.M.; Lourenco-Jaramillo, D.L.; Mendez-Hernandez, E.M.; Sandoval-Carrillo, A.A.; Hernandez Rayon, Y.I.; Llave-Leon, O.L.; Aguilar-Duran, M.; Lopez-Terrones, M.A.; Barraza-Salas, M.; Vazquez-Alaniz, F. Oxidative stress equilibrium during obstetric event in normal pregnancy. J. Matern. Fetal Neonatal Med. 2017, 30, 1836–1840. [Google Scholar] [CrossRef] [PubMed]
- Mannaerts, D.; Faes, E.; Cos, P.; Briedé, J.J.; Gyselaers, W.; Cornette, J.; Gorbanev, Y.; Bogaerts, A.; Spaanderman, M.; Van Craenenbroeck, E.; et al. Oxidative stress in healthy pregnancy and preeclampsia is linked to chronic inflammation, iron status and vascular function. PLoS ONE 2018, 13, e0202919. [Google Scholar] [CrossRef] [Green Version]
- Zielińska, M.A.; Wesołowska, A.; Pawlus, B.; Hamułka, J. Health Effects of Carotenoids during Pregnancy and Lactation. Nutrients 2017, 9, 838. [Google Scholar] [CrossRef] [Green Version]
- Ziomkiewicz, A.; Sancilio, A.; Galbarczyk, A.; Klimek, M.; Jasienska, G.; Bribiescas, R.G. Evidence for the Cost of Reproduction in Humans: High Lifetime Reproductive Effort Is Associated with Greater Oxidative Stress in Post-Menopausal Women. PLoS ONE 2016, 11, e0145753. [Google Scholar] [CrossRef] [Green Version]
- Marseglia, L.; D’Angelo, G.; Manti, S.; Arrigo, T.; Barberi, I.; Reiter, R.J.; Gitto, E. Oxidative Stress-Mediated Aging during the Fetal and Perinatal Periods. Oxidative Med. Cell. Longev. 2014, 2014, 358375. [Google Scholar] [CrossRef] [Green Version]
- Ayoola, G.; Abayomi, F.; Adesegun, S.; Abioro, O.; Adepoju-Bello, A.; Coker, H. B Phytochemical and antioxidant screening of some plants of apocynaceae from South West Nigeria. Afr. J. Plant Sci. 2008, 2, 124–128. [Google Scholar]
- Padmanabhan, P.; Jangle, S.N. Evaluation of DPPH Radical Scavenging Activity and Reducing Power of Four Selected Medicinal Plants and Their Combinations. Int. J. Pharmac. Sci. Drug Res. 2012, 4, 143–146. [Google Scholar]
- Uyoh, E.A.; Chukwurah, P.N.; David, I.A.; Bassey, A.C. Evaluation of Antioxidant Capacity of Two Ocimum Species Consumed Locally as Spices in Nigeria as a Justification for Increased Domestication. Am. J. Plant Sci. 2013, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Baptista, R.C.; Horita, C.N.; Sant’Ana, A.S. Natural products with preservative properties for enhancing the microbiological safety and extending the shelf-life of seafood: A review. Food Res. Int. 2020, 127, 108762. [Google Scholar] [CrossRef]
- Mandim, F.; Petropoulos, S.A.; Dias, M.I.; Pinela, J.; Kostic, M.; Soković, M.; Santos-Buelga, C.; Ferreira, I.; Barros, L. Seasonal variation in bioactive properties and phenolic composition of cardoon (Cynara cardunculus var. altilis) bracts. Food Chem. 2021, 336, 127744. [Google Scholar] [CrossRef]
- Garcia-Oliveira, P.; Barral, M.; Carpena, M.; Gullón, P.; Fraga-Corral, M.; Otero, P.; Prieto, M.A.; Simal-Gandara, J. Traditional plants from Asteraceae family as potential candidates for functional food industry. Food Funct. 2021, 12, 2850–2873. [Google Scholar] [CrossRef]
- Ivorra, M.D.; Payá, M.; Villar, A. A review of natural products and plants as potential antidiabetic drugs. J. Ethnopharmacol. 1989, 27, 243–275. [Google Scholar] [CrossRef]
- Ramanathan, S.; Sivakumar, T.; Sundaram, R.; Sivakumar, P.; Nethaji, R.; Gupta, M.; Mazumdar, U. Antimicrobial and Antioxidant Activities of Careya arborea Roxb. Stem Bark. Iran. J. Pharmacol. Ther. 2006, 5, 35–41. [Google Scholar]
- Ahmad, I.; Ahmed, S.; Anwar, Z.; Sheraz, M.A.; Sikorski, M. Photostability and Photostabilization of Drugs and Drug Products. Int. J. Photoenergy 2016, 2016, 8135608. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Tse, Y.; Webb, A.; Mudd, E.; Abedin, M.R.; Mormile, M.; Dutta, S.; Rege, K.; Barua, S. PolyRad-Protection against Free Radical Damage. Sci. Rep. 2020, 10, 8335. [Google Scholar] [CrossRef]
- Holick, M.F. Biological Effects of Sunlight, Ultraviolet Radiation, Visible Light, Infrared Radiation and Vitamin D for Health. Anticancer Res. 2016, 36, 1345–1356. [Google Scholar]
- Jarco, S.; Pilawa, B.; Ramos, P. Free Radical Scavenging Activity of Infusions of Different Medicinal Plants for Use in Obstetrics. Plants 2021, 10, 2016. [Google Scholar] [CrossRef]
- Li, C.; Chen, S.; Sha, J.; Cui, J.; He, J.; Fu, J.; Shen, Y. Extraction and purification of total flavonoids from Eupatorium lindleyanum DC. and evaluation of their antioxidant and enzyme inhibitory activities. Food Sci. Nutr. 2021, 9, 2349–2363. [Google Scholar] [CrossRef]
- Yamashita, Y.; Hoshino, T.; Matsuda, M.; Kobayashi, C.; Tominaga, A.; Nakamura, Y.; Nakashima, K.; Yokomizo, K.; Ikeda, T.; Mineda, K.; et al. HSP70 inducers from Chinese herbs and their effect on melanin production. Exp. Derm. 2010, 19, e340–e342. [Google Scholar] [CrossRef] [PubMed]
- Setyawati, A.; Yamauchi, K.; Mitsunaga, T. Potential of Medicinal Plants Extractives as Anti-Melanogenesis Ingredients. Rev. Agric. Sci. 2018, 6, 46–60. [Google Scholar] [CrossRef] [Green Version]
- Britto, J. Comparative antibacterial activity study of Solanum incanum, L. J. Swamy Bot. Club 2001, 18, 81–82. [Google Scholar]
- Rahman, M.A.; Yan, L.K.; Rukayadi, Y. Antibacterial activity of fingerroot (Boesenbergia rotunda) extract against acne-inducing bacteria. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 2157–2163. [Google Scholar]
- Ramesh, P.; Subramani, A. Effect of antimicrobial activity of Eupatorium odoratum against clinical microbes. Int. J. Sci. Res. Biol. Sci. 2018, 5, 30–35. [Google Scholar] [CrossRef]
- Cheriyan, B.V.; Venkatadri, N.; Viswanathan, S.; Kamalakannan, P. Screening of alcoholic extract of Eupatorium triplinerve Vahl and its fractions for its antinociceptive activity. Indian Drugs 2009, 46, 55–60. [Google Scholar]
- Chakravarty, A.K.; Mazumder, T.; Chatterjee, S.N. Anti-Inflammatory Potential of Ethanolic Leaf Extract of Eupatorium adenophorum Spreng. through Alteration in Production of TNF-α, ROS and Expression of Certain Genes. Evid. Based Complement. Altern. Med. 2011, 2011, 471074. [Google Scholar] [CrossRef] [Green Version]
- Kundu, A.; Saha, S.; Walia, S.; Ahluwalia, V.; Kaur, C. Antioxidant potential of essential oil and cadinene sesquiterpenes of Eupatorium adenophorum. Toxicol. Environ. Chem. 2013, 95, 127–137. [Google Scholar] [CrossRef]
- Nong, X.; Ren, Y.J.; Wang, J.H.; Fang, C.L.; Xie, Y.; Yang, D.Y.; Liu, T.F.; Chen, L.; Zhou, X.; Gu, X.B.; et al. Clinical efficacy of botanical extracts from Eupatorium adenophorum against the scab mite, Psoroptes cuniculi. Vet. Parasitol. 2013, 192, 247–252. [Google Scholar] [CrossRef]
- Ahluwalia, V.; Sisodia, R.; Walia, S.; Sati, O.P.; Kumar, J.; Kundu, A. Chemical analysis of essential oils of Eupatorium adenophorum and their antimicrobial, antioxidant and phytotoxic properties. J. Pest Sci. 2014, 87, 341–349. [Google Scholar] [CrossRef]
- Yadav, M.; Khan, K. Antimicrobial activity of some ethnomedicinal plants used by tribes of rewa, madhya Pradesh. Indian J. Life Sci. 2012, 1, 35–38. [Google Scholar]
Plant Species | Plant Parts | Chemical Compositions | Ref |
---|---|---|---|
E. odoratum | Leaves | Odoratin | [62] |
E. triplinerve | Fresh plant | 1-hexyl-1-nitrocyclohexane (2.09%), Bicyclo [4.1.0] heptane, 7-butyl- (2.38%), Decanoic acid, 8-methyl-, methyl ester (3.86%), 1,14-tetradecanediol (6.78%), 1-undecanol (7.82%), 2-hydroxy-3-[(9E)-9-octadecenoyloxy] propyl(9E)-9-octadecenoate (8.79%), 2,6,10-trimethyl,14-ethylene-14-pentadecne (9.84%) Hexadecenoic acid (14.65%), and Octadecanoic acid, 2-hydroxy-1,3-propanediyl ester (19.18%) | [24] |
Leaves | 7-methoxycoumarin | [63,64] | |
Leaves | Steroids, terpenoids, flavonoids, and glycosides | [65] | |
Leaf, stem, and root | Phytochemical compounds (steroid, saponin, flavonoids, tannin, glycoside, and coumarin) and volatile oil | [27] | |
E. adenophorum | Volatile oils | [66,67] | |
Leaves | Sesquiterpenes (three cadinene sesquiterpenes 2-deoxo-2-(acetyloxy)-9-oxoageraphorone (DAOA), 9-oxo-agerophorone (OA), and 9-oxo-10, and 11-dehydro-agerophorone (ODA)) | [68,69] | |
Whole plants | Anthemol (0.88%), thunbergene (1.09%), phytol (0.95%), thymol (0.94%), linoleic (1.43%) and palmitic (5.15%) acids, spathulenol (2.21%), carvacrol (1.86%), caryophyllene oxide (2.42%), β-cedrene (3.26%), α-bergamotene (3.56%), 8-cedren-13-ol (4.34%), β-sesquiphellandrene (4.76%), β-bisabolene (4.84%), α-curcumene (7.88%), α-bisabolol (9.12%), aristolone (11.54%), and torreyol (30.10%) | [25] | |
Leaves | Neo-chlorogenic acid (3-O-caffeoylquinic acid, 3-CQA), chlorogenic acid (5-O-caffeoylquinic acid, 5-CQA), and cryptochlorogenic acid (4-O-caffeoylquinic acid, 4-CQA) | [70] | |
4’-methyl quercetagetin 7-O-(6”-O-E-caffeoyl glucopyranoside) (1.8%), quercetagetin 7-O-(6”-Oacetyl-β-D-glucopyranoside) (1.8%), caffeic acid (6.7%), eupalitin (9.7%), and eupalitin 3-O-β-D-galactopyranoside (17.2%) | [71,72] | ||
Leaves | Euptox A (9-oxo-10, 11-dehydroageraphorone) | [73] | |
Leaves | amorpha-4,7(11)-diene, (–)-amorph-4-en-7-ol, (E)-β-Caryophyllene, (E)-β-farnesene, (E)-α-bisabolene, (E)-α-Bergamotene, (Z)-β-farnesene, ϒ-curcumene, germacrene D, bicyclogermacrene, β-bisabolene, β-sesquiphellandrene, (E)-α-bisabolene, α-cedrol, α-bisabolol | [74] | |
β-Ecdysone, Eupatorin, Eupatilin, Quercetin, Rutin, Caffeic acid | [20] | ||
E. perfoliatum | Acidic heteroglycans | [15,75] | |
Eupafolin | [76] | ||
E. cannabium | Acidic heteroglycans | [15,75] | |
Leaves and stems | Alkaloid, flavonoids, tannin, and saponin | [77] | |
Immunoactive polysaccharides essential oil, eupatoriopicrin, polyphenols, pyrrolizidine alkaloids, and terpenoids | [78] | ||
Eucannabinolide | [79] | ||
E. aschembornianum | Leaves | (–)-Encecanescin | [80] |
E. buniifolium | Aerial vegetative | n-tricosane, n-docosane, n-tetracosane, n-triacontane, n-tritriacontane, 9-tricosene, 7-pentacosene, 9-pentacosene, 9-heptacosene, pentacosadiene, tritriacontene, hentriacontadiene, tritriacontadiene and all methyl alkanes | [26] |
E. capillifolium | Roots | Intermedine, lycopsamine, | [81] |
E. chinense | Eupalinin A | [82] | |
E. fortunei | Leaves | p-cymene, thymol, neryl acetate, and β-caryophyllene | [46] |
Stems | p-cymene, thymol, neryl acetate | ||
Roots | thymol | ||
Whole plant | Eight germacrene-type: 14-hydroxy-8β-[4′-hydroxytigloyloxy]-costunolide, 14-acetoxy-8β-[4′-hydroxyti-gloyloxy]-costunolide, 14-acetoxy-8β-hydroxy-costunolide, 8β-[4′-hydroxytigloyloxy]-14-oxo-costunolide, 3β-acetoxy-8β-[4′,5′-dihydroxytigloyloxy]-costunolide, 2β-hydroxy-8β-[5′-hydroxytigloyloxy]-costunolide, prenylated ester, 8β-[4′,5′-dihydroxytigloyloxy]-costunolide, and two eudesmane-type sesquiterpene lactones (1β-hydroxy-8β-[4′-hydroxytigloyloxy]-α-cyclocostunolide and 1β-hydroxy-8β-[4′-ydroxytigloyloxy]-β-cyclocostunolide) | [83] | |
Aerial part | Eupatofortunone, eupatodibenzofuran A, eupatodibenzofuran B, Eupatodithiecine, 6-Acetyl-8-methoxy-2,2-dimethylchroman-4-one, thymyl angelate, 8,9-Dehydrothymol 3-O-tiglate, 9-Angeloyloxythymol, 9-O-Angeloyl-8,10-dehydrothymol, 2-Hydroxy-4-methylacetophenone, trans-o-Coumaric acid, 6-Hydroxy-7-methoxy-2-isopropenyl-5- acetylcumaran, 2,4-Di-tert-butylphenol, 1-(2-Hydroxy-5-methoxy-4-methylphenyl)ethenone, taraxasterol, and coumarin | [84] | |
E. glehni | Aerial part | 2α-Acetoxyepitulipinolide and Eupaglehnin A-F | [47] |
Terrestrial part | Guaiaglehnin A, Eupasimplicin A, Hiyodorilactone B | [85] | |
E. lindleyanum | Eupalinode J | [54] | |
E. heterophyllum | Aerial part | Hydroperoxyheterophyllin A, Hydroperoxyheterophyllin B, Hydroperoxyheterophyllin C, Hydroperoxyheterophyllin D, Hydroperoxyheterophyllin E, Hydroperoxyheterophyllin F, Hydroperoxyheterophyllin G, Hydroperoxyheterophyllin H, Ketoheterophyllin A | [86] |
E. japonicum | Leaves | α-amyrin and ßβ-amyrin acetates, α-amyrin, β-amyrin, β-sitosterol, stigmasterol, β-sitosterol 3-O-β-D-glucopyranoside (daucosterol), behenic acid, stigmasterol 3- O-β-D-glucopyranoside, eupatoriopicrin, (2E)-3-[2-(β-D-glucopyranosyloxy)phenyl]-prop-2-en-oic acid, 1-hydroxy-8-(4,5-dihydroxytigloyloxy)eudesma-4(15),11(13)-dien-6,12-olide, caffeic acid, p-menth-1-ene-3,6-diol, quercetin-3-O-rutinoside (rutin), kaempferol 3,7,4′-trimethylether, and quercetin 3-Omethyl ether | [59] |
Plant Species | Plant Parts | Antioxidant Test Applied | Antioxidant Activity | References |
---|---|---|---|---|
E. odoratum | Leaf | DPPH (IC50) | 0.07–0.042 mg/mL | [40] |
FRAP (IC50) | 0.4–0.6 mg/mL | |||
TPC | 379.0–536.3 mg GAE/g of extract | |||
TFC | 263.33–268.75 mg QE/g of extract | |||
Total flavanol | 273.0–689.0 µg QE/g of extract | |||
E. lindleyanum | Reducing Power (IC50) | 81.22 μg/mL | [113] | |
FRAP (IC50) | 24.72 μg/mL | |||
DPPH (IC50) | 37.13 μg/mL | |||
Superoxide anion (IC50) | 19.62 μg/mL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Putri, A.S.; Haqiqi, M.T.; Supomo; Kusuma, I.W.; Kuspradini, H.; Rosamah, E.; Amirta, R.; Paramita, S.; Ramadhan, R.; Lubis, M.A.R.; et al. A Mini Review: The Application of Eupatorium Plants as Potential Cosmetic Ingredients. Cosmetics 2022, 9, 103. https://doi.org/10.3390/cosmetics9050103
Putri AS, Haqiqi MT, Supomo, Kusuma IW, Kuspradini H, Rosamah E, Amirta R, Paramita S, Ramadhan R, Lubis MAR, et al. A Mini Review: The Application of Eupatorium Plants as Potential Cosmetic Ingredients. Cosmetics. 2022; 9(5):103. https://doi.org/10.3390/cosmetics9050103
Chicago/Turabian StylePutri, Agmi Sinta, Muhammad Taufiq Haqiqi, Supomo, Irawan Wijaya Kusuma, Harlinda Kuspradini, Enih Rosamah, Rudianto Amirta, Swandari Paramita, Rico Ramadhan, Muhammad Adly Rahandi Lubis, and et al. 2022. "A Mini Review: The Application of Eupatorium Plants as Potential Cosmetic Ingredients" Cosmetics 9, no. 5: 103. https://doi.org/10.3390/cosmetics9050103
APA StylePutri, A. S., Haqiqi, M. T., Supomo, Kusuma, I. W., Kuspradini, H., Rosamah, E., Amirta, R., Paramita, S., Ramadhan, R., Lubis, M. A. R., Ariyanta, H. A., Aswandi, A., Kholibrina, C. R., Ismayati, M., Fatriasari, W., Tarmadi, D., Yuliansyah, Suwinarti, W., Kim, Y. -u., & Arung, E. T. (2022). A Mini Review: The Application of Eupatorium Plants as Potential Cosmetic Ingredients. Cosmetics, 9(5), 103. https://doi.org/10.3390/cosmetics9050103