Development of Enzyme-Based Cosmeceuticals: Studies on the Proteolytic Activity of Arthrospira platensis and Its Efficient Incorporation in a Hydrogel Formulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Extraction from Lyophilized Arthrospira platensis
2.2.2. Synthesis of Azoprotein Substrates
2.2.3. Determination of Proteolytic Activity with Azoprotein Substrate
2.2.4. The Effect of pH and Metal Ions on Proteolytic Activity
2.2.5. Zymography
2.2.6. Aqueous Two-Phase System (ATPS)
2.2.7. Preparation of a Hydrogel with Proteolytic Activity with A. platensis Lysate as the Main Ingredient
2.2.8. Enzyme Stability
3. Results and Discussion
3.1. Effects of Different pH, Metal Ions and Different Protein Substrates on the Proteolytic Activity of A. platensis Lysate
3.2. Development of an Aqueous Two-Phase System (ATPS) for the Purification of A. platensis Proteolytic Content
3.3. Development of a Hydrogel Formulation with Proteolytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krem, M.M.; Rose, T.; Di Cera, E. Sequence determinants of function and evolution in serine proteases. Trends Cardiovasc. Med. 2000, 10, 171–176. [Google Scholar] [CrossRef]
- Puente, X.S.; Sánchez, L.M.; Overall, C.M.; López-Otín, C. Human and mouse proteases: A comparative genomic approach. Nat. Rev. Genet. 2003, 4, 544–558. [Google Scholar] [CrossRef] [PubMed]
- Tavano, O.L.; Berenguer-Murcia, A.; Secundo, F.; Fernandez-Lafuente, R. Biotechnological Applications of Proteases in Food Technology. Compr. Rev. Food Sci. Food Saf. 2018, 17, 412–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craik, C.; Page, M.; Madison, E. Proteases as therapeutics. Biochem. J. 2011, 435, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Yi, L.; Marek, P.; Iverson, B.L. Commercial proteases: Present and future. FEBS Lett. 2013, 587, 1155–1163. [Google Scholar] [CrossRef] [Green Version]
- Sanman, L.E.; Bogyo, M. Activity-based profiling of proteases. Annu. Rev. Biochem. 2014, 83, 249–273. [Google Scholar] [CrossRef] [Green Version]
- Kumari, A.; Kaur, B.; Srivastava, R.; Sangwan, R.S. Isolation and immobilization of alkaline protease on mesoporous silica and mesoporous ZSM-5 zeolite materials for improved catalytic properties. Biochem. Biophys. Rep. 2015, 2, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Gurumallesh, P.; Alagu, K.; Ramakrishnan, B.; Muthusamy, S. A systematic reconsideration on proteases. Int. J. Biol. Macromol. 2019, 128, 254–267. [Google Scholar] [CrossRef]
- Leary, D.; Vierros, M.; Hamon, G.; Arico, S.; Monagle, C. Marine genetic resources: A review of scientific and commercial interest. Mar. Policy 2009, 33, 183–194. [Google Scholar] [CrossRef]
- Barzkar, N.; Homaei, A.; Hemmati, R.; Patel, S. Thermostable marine microbial proteases for industrial applications: Scopes and risks. Extremophiles 2018, 22, 335–346. [Google Scholar] [CrossRef]
- Barzkar, N.; Sohail, M.; Jahromi, S.T.; Gozari, M.; Poormozaffar, S.; Nahavandi, R.; Hafezieh, M. Marine Bacterial Esterases: Emerging Biocatalysts for Industrial Applications. Appl. Biochem. Biotechnol. 2021, 193, 1187–1214. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, L.; Chen, X.; Lv, K.; Basiony, M.; Zhu, G.; Karthik, L.; Ouyang, L.; Zhang, L.; Liu, X. Recent advances in biotechnology for marine enzymes and molecules. Curr. Opin. Biotechnol. 2021, 69, 308–315. [Google Scholar] [CrossRef]
- Antranikian, G.; Vorgias, C.E.; Bertoldo, C. Extreme environments as a resource for microorganisms and novel biocatalysts. Adv. Biochem. Eng. Biotechnol. 2005, 96, 219–262. [Google Scholar] [CrossRef]
- Ferrer, M.; Golyshina, O.; Beloqui, A.; Golyshin, P.N. Mining enzymes from extreme environments. Curr. Opin. Microbiol. 2007, 10, 207–214. [Google Scholar] [CrossRef]
- Trincone, A. Marine biocatalysts: Enzymatic features and applications. Mar. Drugs 2011, 9, 478–499. [Google Scholar] [CrossRef] [Green Version]
- Bull, A.T.; Ward, A.C.; Goodfellow, M. Search and discovery strategies for biotechnology: The paradigm shift. Microbiol. Mol. Biol. Rev. 2000, 64, 573–606. [Google Scholar] [CrossRef] [Green Version]
- Bose, A.; Chawdhary, V.; Keharia, H.; Subramanian, R.B. Production and characterization of a solvent-tolerant protease from a novel marine isolate Bacillus tequilensis P15. Ann. Microbiol. 2014, 64, 343–354. [Google Scholar] [CrossRef]
- Tang, H.; Yang, Z.; Xu, F.; Wang, Q.; Wang, B. Soft Sensor Modeling Method Based on Improved KH-RBF Neural Network Bacteria Concentration in Marine Alkaline Protease Fermentation Process. Appl. Biochem. Biotechnol. 2022, 194, 4530–4545. [Google Scholar] [CrossRef]
- Soto-Sierra, L.; Wilken, L.R.; Mallawarachchi, S.; Nikolov, Z.L. Process development of enzymatically-generated algal protein hydrolysates for specialty food applications. Algal Res. 2021, 55, 102248. [Google Scholar] [CrossRef]
- Michalak, I.; Chojnacka, K. Algal extracts: Technology and advances. Eng. Life Sci. 2014, 14, 581–591. [Google Scholar] [CrossRef]
- Yun, E.J.; Choi, I.G.; Kim, K.H. Red macroalgae as a sustainable resource for biobased products. Trends Biotechnol. 2015, 33, 247–249. [Google Scholar] [CrossRef]
- Ragusa, I.; Nardone, G.N.; Zanatta, S.; Bertin, W.; Amadio, E. Spirulina for Skin Care: A Bright Blue Future. Cosmetics 2021, 8, 7. [Google Scholar] [CrossRef]
- Amor, F.B.; Hlima, H.B.; Abdelkafi, S.; Fendri, I. Insight into Arthrospira platensis Δ9 desaturase: A key enzyme in poly-unsaturated fatty acid synthesis. Mol. Biol. Rep. 2018, 45, 1873–1879. [Google Scholar] [CrossRef]
- Sommella, E.; Conte, G.M.; Salviati, E.; Pepe, G.; Bertamino, A.; Ostacolo, C.; Sansone, F.; Prete, F.D.; Aquino, R.P.; Campiglia, P. Fast Profiling of Natural Pigments in Different Spirulina (Arthrospira platensis) Dietary Supplements by DI-FT-ICR and Evaluation of their Antioxidant Potential by Pre-Column DPPH-UHPLC Assay. Molecules 2018, 23, 1152. [Google Scholar] [CrossRef] [Green Version]
- Braune, S.; Krüger-Genge, A.; Kammerer, S.; Jung, F.; Küpper, J.H. Phycocyanin from Arthrospira platensis as Potential Anti-Cancer Drug: Review of In Vitro and In Vivo Studies. Life 2021, 11, 91. [Google Scholar] [CrossRef]
- Nuhu, A.A. Spirulina (Arthrospira): An important source of nutritional and medicinal compounds. J. Mar. Biol. 2013, 2013, 325636. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.H.; Chang, G.K.; Kuo, S.M.; Huang, S.Y.; Hu, I.C.; Lo, Y.L.; Shih, S.R. Well-tolerated Spirulina extract inhibits influenza virus replication and reduces virus-induced mortality. Sci. Rep. 2016, 6, 24253. [Google Scholar] [CrossRef] [Green Version]
- Finamore, A.; Palmery, M.; Bensehaila, S.; Peluso, I. Antioxidant, Immunomodulating, and Microbial-Modulating Activities of the Sustainable and Ecofriendly Spirulina. Oxidative Med. Cell. Longev. 2017, 2017, 3247528. [Google Scholar] [CrossRef] [Green Version]
- Barkallah, M.; Slima, A.B.; Fendri, I.; Pichon, C.; Abdelkafi, S.; Baril, P. Protective role of Spirulina platensis against bifenthrin-induced reprotoxicity in adult male mice by reversing expression of altered histological, biochemical, and molecular markers including microRNAs. Biomolecules 2020, 10, 753. [Google Scholar] [CrossRef]
- Ebaid, R.; Elhussainy, E.; El-Shourbagy, S.; Ali, S.; Abomohra, A. Protective effect of Arthrospira platensis against liver injury induced by copper nanoparticles. Orient. Pharm. Exp. Med. 2017, 17, 203–210. [Google Scholar] [CrossRef]
- Chia, S.R.; Chew, K.W.; Show, P.L.; Xia, A.; Ho, S.H.; Lim, J.W. Spirulina platensis based biorefinery for the production of value-added products for food and pharmaceutical applications. Bioresour. Technol. 2019, 289, 121727. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Ebaid, R.; El-Sheekh, M.; Abomohra, A.; Eladel, H. Pharmaceutical applications and consequent environmental impacts of Spirulina (Arthrospira): An overview. Grasas Aceites 2019, 70, 292. [Google Scholar] [CrossRef] [Green Version]
- Martelli, F.; Alinovi, M.; Bernini, V.; Gatti, M.; Bancalari, E. Arthrospira platensis as natural fermentation booster for milk and soy fermented beverages. Foods 2020, 9, 350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsudo, M.C.; Bezerra, R.P.; Sato, S.; Perego, P.; Converti, A.; Carvalho, J.C.M. Repeated fed-batch cultivation of Arthrospira (Spirulina) platensis using urea as nitrogen source. Biochem. Eng. J. 2009, 43, 52–57. [Google Scholar] [CrossRef]
- Rodrigues, M.S.; Ferreira, L.S.; Carvalho, J.C.M.; Lodi, A.; Finocchio, E.; Converti, A. Metal biosorption onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris: Multi-metal systems. J. Hazard. Mater. 2012, 217–218, 246–255. [Google Scholar] [CrossRef]
- Tabagari, I.; Kurashvili, M.; Varazi, T.; Adamia, G.; Gigolashvili, G.; Pruidze, M.; Chokheli, L.; Khatisashvili, G.; von Fragstein und Niemsdorff, P. Application of Arthrospira (Spirulina) platensis against Chemical Pollution of Water. Water 2019, 11, 1759. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Shen, H.; Li, Y.; Liu, Q.; Jin, G.; Han, J.; Zhao, Y.; Pan, K. Large-scale cultivation of Spirulina for biological CO2 mitigation in open raceway ponds using purified CO2 from a coal chemical flue gas. Front. Bioeng. Biotechnol. 2020, 7, 441. [Google Scholar] [CrossRef]
- Zahra, Z.; Choo, D.H.; Lee, H.; Parveen, A. Cyanobacteria: Review of Current Potentials and Applications. Environments 2020, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Lima, G.M.; Teixeira, P.C.N.; Teixeira, C.M.L.L.; Filócomo, D.; Lage, C.L.S. Influence of spectral light quality on the pigment concentrations and biomass productivity of Arthrospira platensis. Algal Res. 2018, 31, 157–166. [Google Scholar] [CrossRef]
- Khandual, S.; Sanchez, E.O.L.; Andrews, H.E.; de la Rosa, J.D.P. Phycocyanin content and nutritional profile of Arthrospira platensis from Mexico: Efficient extraction process and stability evaluation of phycocyanin. BMC Chem. 2021, 15, 24. [Google Scholar] [CrossRef]
- Nanni, E.; Balestreti, E.; Dainese, E.; Cozzani, I.; Felicioli, R. Characterisation of a specific Phycocyanin-hydrolysing protease purified from Spirulina platensis. Microbiol. Res. 2011, 156, 259–266. [Google Scholar] [CrossRef]
- Yada, E.; Nagata, H.; Noguchi, Y.; Kodera, Y.; Nishimura, H.; Inada, Y.; Matsushima, A. An arginine specific protease from Spirulina platensis. Mar. Biotechnol. 2005, 7, 474–480. [Google Scholar] [CrossRef]
- Elleuch, J.; Kacem, F.H.; Amor, F.B.; Hadrich, B.; Michaud, P.; Fendri, I.; Abdelkafi, S. Extracellular neutral protease from Arthrospira platensis: Production, optimization and partial characterization. Int. J. Biol. Macromol. 2021, 167, 1491–1498. [Google Scholar] [CrossRef]
- Pangestuti, R.; Kim, S.K. Biological activities and health benefit effects of natural pigments derived from marine algae. J. Funct. Foods 2011, 3, 255–266. [Google Scholar] [CrossRef]
- Ariede, M.B.; Candido, T.M.; Jacome, A.L.M.; Velasco, M.V.R.; de Carvalho, J.C.M.; Baby, A.R. Cosmetic attributes of algae—A review. Algal Res. 2017, 25, 483–487. [Google Scholar] [CrossRef]
- Klimova, O.A.; Chebotarev, V.Y. Applications of collagenolytic protease preparations from invertebrates. Bull. Exp. Biol. Med. 1999, 128, 1241–1243. [Google Scholar] [CrossRef]
- Klimova, O.A.; Chebotarev, V.Y. Collagenolytic protease preparations from invertebrates: Biochemical aspects of medical and cosmetological applications. Bull. Exp. Biol. Med. 2000, 130, 671–675. [Google Scholar] [CrossRef]
- Klasen, H.J. A review on the nonoperative removal of necrotic tissue from burn wounds. Burns 2000, 26, 207–222. [Google Scholar] [CrossRef]
- Ramundo, J.; Gray, M. Enzymatic wound debridement. J. Wound Ostomy Cont. Nurs. 2000, 35, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Alipour, H.; Raz, A.; Zakeri, S.; Djadid, N.D. Therapeutic applications of collagenase (metalloproteases): A review. Asian Pac. J. Trop. Biomed. 2016, 6, 975–981. [Google Scholar] [CrossRef]
- Ataide, J.A.; Cefali, L.C.; Croisfelt, F.M.; Shimojo, A.A.M.; Oliveira-Nascimento, L.; Mazzola, P.G. Natural actives for wound healing: A review. Phytother. Res. 2018, 32, 1664–1674. [Google Scholar] [CrossRef] [PubMed]
- Avila-Rodríguez, M.I.; Meléndez-Martínez, D.; Licona-Cassani, C.; Aguilar-Yañez, J.M.; Benavides, J.; Sánchez, M.L. Practical context of enzymatic treatment for wound healing: A secreted protease approach (Review). Biomed. Rep. 2020, 13, 3–14. [Google Scholar] [CrossRef]
- Masunaga, T. Enzymes in cleansers. In Skin Moisturization, 1st ed.; Leyden, J.J., Rawlings, A.V., Eds.; Marcel Dekker Inc.: New York, NY, USA, 2002; pp. 385–403. [Google Scholar]
- Smith, W.P.; Bishop, M.; Gillis, G.; Maibach, H. Topical proteolytic enzymes affect epidermal and dermal properties. Int. J. Cosmet. Sci. 2007, 29, 15–21. [Google Scholar] [CrossRef]
- Rawlings, A.V.; Voegeli, R. Stratum corneum proteases and dry skin conditions. Cell Tissue Res. 2013, 351, 217–235. [Google Scholar] [CrossRef]
- Del Rosso, J.Q. Application of protease technology in dermatology: Rationale for incorporation into skin care with initial observations on formulations designed for skin cleansing, maintenance of hydration, and restoration of the epidermal permeability barrier. J. Clin. Aesthet. Dermatol. 2013, 6, 14–22. [Google Scholar]
- Parnell, L.K. Protein degradation and protection observed in the presence of novel wound dressing components. J. Funct. Biomater. 2011, 2, 338–354. [Google Scholar] [CrossRef] [Green Version]
- Baskovich, B.; Sampson, E.M.; Schultz, G.S.; Parnell, L.K. Wound dressing components degrade proteins detrimental to wound healing. Int. Wound J. 2008, 5, 543–551. [Google Scholar] [CrossRef]
- Pocalyko, D.J.; Chandar, P.; Harding, C.; Blaikie, L.; Watkinson, A.; Rawlings, A.V. The efficacy, stability, and safety of topically applied protease in treating xerotic skin. In Skin Moisturization, 1st ed.; Leyden, J.J., Rawlings, A.V., Eds.; Marcel Dekker Inc.: New York, NY, USA, 2002; pp. 365–384. [Google Scholar]
- Sim, Y.C.; Nam, Y.S.; Shin, Y.H.; Shin, E.; Kim, S.; Chang, I.S.; Rhee, J.S. Proteolytic enzyme conjugated to SC-glucan as an enzymatic transdermal drug penetration enhancer. Pharmazie 2003, 58, 252–256. [Google Scholar]
- Gomes, C.; Silva, A.C.; Marques, A.C.; Lobo, J.S.; Amaral, M.H. Biotechnology Applied to Cosmetics and Aesthetic Medicines. Cosmetics 2020, 7, 33. [Google Scholar] [CrossRef]
- Pandey, A.; Höfer, R.; Larroche, C.; Taherzadeh, M.; Nampoothiri, M. Industrial Biorefineries: Industrial Biorefineries and White Biotechnology, 1st ed.; Elsevier Science: New York, NY, USA, 2015; pp. 608–640. [Google Scholar]
- Seki, T.; Yajima, I.; Yabu, T.; Ooguri, M.; Nakanishi, J. Examining an exfoliation-promoting enzyme for cosmetic applications. Cosmet. Toilet. 2005, 120, 87. [Google Scholar]
- Lin, X.; Lee, C.G.; Casale, E.S.; Shih, J.C. Purification and Characterization of a Keratinase from a Feather-Degrading Bacillus licheniformis Strain. Appl. Environ. Microbiol. 1992, 58, 3271–3275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, P.L.; Rajput, M.; Oza, T.; Trivedi, U.; Sanghvi, G. Eminence of Microbial Products in Cosmetic Industry. Nat. Prod. Bioprospect. 2019, 9, 267–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wollina, U.; Voicu, C.; Gianfaldoni, S.; Lotti, T.; França, K.; Tchernev, G. Arthrospira Platensis—Potential in Dermatology and Beyond. Open Access Maced. J. Med. Sci. 2018, 6, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Thiyagarasaiyar, K.; Goh, B.H.; Jeon, Y.J.; Yow, Y.Y. Algae Metabolites in Cosmeceutical: An Overview of Current Applications and Challenges. Mar. Drugs 2020, 18, 323. [Google Scholar] [CrossRef]
- Coêlho, D.F.; Saturnino, T.P.; Fernandes, F.F.; Mazzola, P.G.; Silveira, E.; Tambourgi, E.B. Azocasein Substrate for Determination of Proteolytic Activity: Reexamining a Traditional Method Using Bromelain Samples. BioMed Res. Int. 2016, 2016, 8409183. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, O.; Rito-Palomares, M. Aqueous Two-Phase System Strategies for the Recovery of Proteins from Plants. Methods Mol. Biol. 2014, 1129, 89–100. [Google Scholar] [CrossRef]
- Maciel, M.H.C.; Ottoni, C.A.; Herculano, P.N.; Porto, T.S.; Porto, A.L.F.; Santos, C.; Souza-Motta, C. Purification of polygalacturonases produced by Aspergillus niger using an aqueous two-phase system. Fluid Phase Equilibria 2014, 371, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Spir, L.G.; Ataide, J.A.; De Lencastre Novaes, L.C.; Moriel, P.; Mazzola, P.G.; De Borba Gurpilhares, D.; Silveira, E.; Pessoa, A.; Tambourgi, E.B. Application of an aqueous two-phase micellar system to extract bromelain from pineapple (Ananas comosus) peel waste and analysis of bromelain stability in cosmetic formulations. Biotechnol. Prog. 2015, 31, 937–945. [Google Scholar] [CrossRef]
- Raja, S.; Murty, V.R.; Thivaharan, V.; Rajasekar, V.; Ramesh, V. Aqueous Two Phase Systems for the Recovery of Biomolecules—A Review. Sci. Technol. 2011, 1, 7–16. [Google Scholar] [CrossRef]
- Rosso, B.U.; Lima, C.A.; Porto, T.S.; de Oliveira Nascimento, C.; Pessoa, A.; Converti, A.; Carneiro-da-Cunha, M.G.; Porto, A.L.F. Partitioning and extraction of collagenase from Penicillium aurantiogriseum in poly(ethylene glycol)/phosphate aqueous two-phase system. Fluid Phase Equilibria 2012, 335, 20–25. [Google Scholar] [CrossRef]
- Lima, C.A.; Júnior, A.C.V.F.; Filho, J.L.L.; Converti, A.; Marques, D.A.V.; Carneiro-da-Cunha, M.G.; Porto, A.L.F. Two-phase partitioning and partial characterization of a collagenase from Penicillium aurantiogriseum URM4622: Application to collagen hydrolysis. Biochem. Eng. J. 2013, 75, 64–71. [Google Scholar] [CrossRef]
- Barros, K.V.G.; Souza, P.M.; Freitas, M.M.; Filho, E.X.F.; Junior, A.P.; Magalhães, P.O. PEG/NaPA aqueous two-phase systems for the purification of proteases expressed by Penicillium restrictum from Brazilian Savanna. Process Biochem. 2014, 49, 2305–2312. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Marto, J.; Neves, Â.; Gonçalves, L.; Pinto, P.; Almeida, C.; Simões, S. Rice Water: A Traditional Ingredient with Anti-Aging Efficacy. Cosmetics 2018, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Brito, A.M.M.; Oliveira, V.; Icimoto, M.Y.; Nantes-Cardoso, I.L. Collagenase Activity of Bromelain Immobilized at Gold Nanoparticle Interfaces for Therapeutic Applications. Pharmaceutics 2021, 13, 1143. [Google Scholar] [CrossRef]
- Ol’shannikova, S.S.; Red’ko, Y.A.; Lavlinskaya, M.S.; Sorokin, A.V.; Holyavka, M.G.; Artyukhov, V.G. Preparation of Papain Complexes with Chitosan Microparticles and Evaluation of Their Stability Using the Enzyme Activity Level. Pharm. Chem. J. 2022, 55, 1240–1244. [Google Scholar] [CrossRef]
- Barros, P.D.S.; Silva, P.E.C.; Nascimento, T.P.; Costa, R.M.P.B.; Bezerra, R.P.; Porto, A.L.F. Fibrinolytic enzyme from Arthrospira platensis cultivated in medium culture supplemented with corn steep liquor. Int. J. Biol. Macromol. 2020, 164, 3446–3453. [Google Scholar] [CrossRef]
- Platis, D.; Labrou, N.E. Development of an aqueous two-phase partitioning system for fractionating therapeutic proteins from tobacco extract. J. Chromatogr. A 2006, 1128, 114–124. [Google Scholar] [CrossRef]
- Platis, D.; Labrou, N.E. Application of a PEG/salt aqueous two-phase partition system for the recovery of monoclonal antibodies from unclarified transgenic tobacco extract. Biotechnol. J. 2009, 4, 1320–1327. [Google Scholar] [CrossRef] [Green Version]
- Asenjo, J.A.; Andrews, B.A. Aqueous two-phase systems for protein separation: A perspective. J. Chromatogr. A. 2011, 1218, 8826–8835. [Google Scholar] [CrossRef]
- Mao, Y.J.; Sheng, X.R.; Pan, X.M. The effects of NaCl concentration and pH on the stability of hyperthermophilic protein Ssh10b. BMC Biochem. 2007, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Wang, Ζ.; Shui, Μ.; Wyman, I.W.; Zhang, Q.W.; Wang, R. Cucurbit [8]uril-based supramolecular hydrogels for biomedical applications. RSC Med. Chem. 2021, 12, 722–729. [Google Scholar] [CrossRef]
- Elnaggar, Y.S.; El-Refaie, W.M.; El-Massik, M.A.; Abdallah, O.Y. Lecithin-based nanostructured gels for skin delivery: An update on state of art and recent applications. J. Control. Release 2014, 180, 10–24. [Google Scholar] [CrossRef]
- Heger, R.; Kadlec, M.; Trudicova, M.; Zinkovska, N.; Hajzler, J.; Pekar, M.; Smilek, J. Novel Hydrogel Material with Tailored Internal Architecture Modified by “Bio” Amphiphilic Components-Design and Analysis by a Physico-Chemical Approach. Gels 2022, 8, 115. [Google Scholar] [CrossRef]
- Zhuang, D.; He, N.; Khoo, K.S.; Ng, E.P.; Chew, K.W.; Ling, T.C. Application progress of bioactive compounds in microalgae on pharmaceutical and cosmetics. Chemosphere 2022, 291, 132932. [Google Scholar] [CrossRef]
- Wu, J.; Gu, X.; Yang, D.; Xu, S.; Wang, S.; Chen, X.; Wang, Z. Bioactive substances and potentiality of marine microalgae. Food Sci. Nutr. 2021, 9, 5279–5292. [Google Scholar] [CrossRef]
- Coulombier, N.; Jauffrais, T.; Lebouvier, N. Antioxidant Compounds from Microalgae: A Review. Mar. Drugs 2021, 19, 549. [Google Scholar] [CrossRef] [PubMed]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
---|---|---|---|---|---|---|---|---|---|---|
MWPEG (g/mol) | 1500 | 3300 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | |
CPEG (w/w) (%) | 27.4 | 33.8 | 27.4 | 27.4 | 27.4 | 27.4 | 27.4 | 27.4 | 27.4 | |
pH | 7 | 7 | 6.5 | 7.5 | 8 | 8.5 | 7 | 7 | 7 | |
Cphosphate (w/w) (%) | 32.7 | 36.2 | 32.7 | 32.7 | 32.7 | 32.7 | 32.7 | 32.7 | 32.7 | |
% (w/w) NaCl | 0 | 0 | 0 | 0 | 0 | 0 | 0.3 | 0.7 | 10 | |
K | 0.014 | 0.097 | 1.875 | 0.224 | 2.5 | - | 0.026 | 0.034 | 0.005 | |
Kp | 4.597 | 2.157 | 1.979 | 2.317 | 2.335 | 2.495 | 2.159 | 2.638 | 1.848 | |
K/Kp | 0.003 | 0.045 | 0.947 | 0.097 | 1.071 | - | 0.012 | 0.013 | 0.003 | |
Top phase | Specific activity (U/mg) | 0.054 | 0.495 | 0.240 | 0.437 | 1.105 | 1.053 | 0.306 | 0.329 | 0.090 |
Purification | 0.024 | 0.223 | 0.086 | 0.157 | 0.397 | 0.378 | 0.131 | 0.139 | 0.038 | |
Yield(%) | 1.18 | 13.14 | 71.95 | 16.97 | 69.46 | 100 | 2.89 | 3.75 | 0.61 | |
Bottom phase | Specific activity (U/mg) | 18.031 | 11.028 | 0.256 | 4.561 | 1.032 | 0 | 25.289 | 25.488 | 31.084 |
Purification | 8.152 | 4.984 | 0.092 | 1.637 | 0.37 | 0 | 10.785 | 10.543 | 12.857 | |
Yield (%) | 98.82 | 86.86 | 28.05 | 83.03 | 30.54 | 0 | 97.11 | 96.26 | 99.40 |
Samples | Specific Activity (U/mg) |
---|---|
A. platensis extract | 0.262 ± 0.016 |
Hydrogel formulation | 0.255 ± 0.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioannou, E.; Labrou, N.E. Development of Enzyme-Based Cosmeceuticals: Studies on the Proteolytic Activity of Arthrospira platensis and Its Efficient Incorporation in a Hydrogel Formulation. Cosmetics 2022, 9, 106. https://doi.org/10.3390/cosmetics9050106
Ioannou E, Labrou NE. Development of Enzyme-Based Cosmeceuticals: Studies on the Proteolytic Activity of Arthrospira platensis and Its Efficient Incorporation in a Hydrogel Formulation. Cosmetics. 2022; 9(5):106. https://doi.org/10.3390/cosmetics9050106
Chicago/Turabian StyleIoannou, Elisavet, and Nikolaos E. Labrou. 2022. "Development of Enzyme-Based Cosmeceuticals: Studies on the Proteolytic Activity of Arthrospira platensis and Its Efficient Incorporation in a Hydrogel Formulation" Cosmetics 9, no. 5: 106. https://doi.org/10.3390/cosmetics9050106
APA StyleIoannou, E., & Labrou, N. E. (2022). Development of Enzyme-Based Cosmeceuticals: Studies on the Proteolytic Activity of Arthrospira platensis and Its Efficient Incorporation in a Hydrogel Formulation. Cosmetics, 9(5), 106. https://doi.org/10.3390/cosmetics9050106