Application of Nanotechnology Incorporated with Natural Ingredients in Natural Cosmetics
Abstract
:1. Introduction
2. Development of Cosmetics
3. Market Trend of Cosmetics
4. Nanotechnology in Cosmetics
4.1. Nanomaterials on Skin
4.2. Formation of Nanoemulsions
Penetration of Nanoemulsion Systems into the Skin
4.3. Formation of Micelle Nanoparticles
- i.
- The use of micelle-forming amphiphiles in drug solubilization leads to an increased bioavailability of sparingly soluble drugs and water solubility;
- ii.
- Toxicity and other negative consequences are minimized;
- iii.
- Permeability across physiological barriers is enhanced, and there are promising improvements in drug biodistribution;
- iv.
- The use of specific amphiphilic substances could also contribute to the characteristic of micelles’ blood having an extended half-life;
- v.
- Due to their small size, micelles can spontaneously permeate the interstitium with leaky vasculature due to the increased permeability and retention (EPR) effect in bodily compartments;
- vi.
- The drug in micellar form is adequately shielded from biological surround inactivation and has no adverse side effects on tissues and non-target organs.
Micellar Nanoparticle Formulation
5. Natural Cosmetic in Marketing
- i.
- Processed;
- ii.
- Unprocessed—only by naturally, mechanical, manual, naturally derived solvent, or gravitational processes, dissolving in steam or water, heating merely to separate water, flotation and;
- iii.
- Extracted from the air in every way possible.
- i.
- Any component derived from a plant, mineral, animal, or microorganism, which is the raw material that has been chemically treated;
- ii.
- Any substance in which the basic material is of plant, mineral, animal, or microbial origin and has been chemically treated and mixed with other ingredients, with the exception of fossil fuel-derived and petroleum substances;
- iii.
- Ingredients are generated from a bio-manufactured and plant feedstock by processes such as saponification, fermentation, esterification, or condensation to facilitate the efficient, economical, sustainable, or biodegradable creation of ingredients.
6. Natural Ingredients in Cosmetics
7. Application of Nanotechnology-Incorporated Natural Ingredients
8. Commercialized Nanotechnology-Based Micellar Cosmetics
8.1. L’Oreal
8.2. Garnier
8.3. NK Age-Reverse
9. Regulatory Aspects of Nanocosmeceuticals
- i.
- The extremely small size and shape of nanoparticles allow them to easily move inside the human body and pass through membranes. This makes them able to access cells, bloodstream, tissues, and organs and, consequently, cause cell damage or death [90];
- ii.
- The physicochemical properties of nanomaterials are altered and associated with a larger surface-area-to-volume ratio. High reactivity and biological activities can be observed compared to larger particles, which increases free radicals, leads to oxidative damage and skin irritation, and causes toxicity in the human system [90];
- iii.
- High surfactant concentrations are used in nanocosmetics to ensure their stability, and active compound penetration can trigger skin irritation by affecting cells in the deep skin layer [91];
- iv.
- A common route of exposure to nanoparticles is inhalation, which may cause the substances to enter the pulmonary tract, travel to the brain, and gain access to the nervous system, blood and organs, leading to various adverse effects. Other modes of exposure are ingestion and through the skin [92].
10. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Juliano, C.; Magrini, G.A. Cosmetic functional ingredients from botanical sources for anti-pollution skincare products. Cosmetics 2018, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Karayana, J.; Jusuf, N.K.; Putra, I.B. Identification of HPV types 6 and 11 in skin tags using PCR. In Stem Cell Oncology; Adella, C.A., Ed.; CRC Press: London, UK, 2018; pp. 11–14. [Google Scholar]
- Rodan, K.; Fields, K.; Majewski, G.; Falla, T. Skincare bootcamp: The evolving role of skincare. Plast. Reconstr. Surg. Glob. Open 2016, 4 (Suppl. S12), e1152. [Google Scholar] [CrossRef]
- Thibane, V.S.; Ndhlala, A.R.; Abdelgadir, H.A.; Finnie, J.F.; Van Staden, J. The cosmetic potential of plants from the Eastern Cape Province traditionally used for skincare and beauty. S. Afr. J. Bot. 2019, 122, 475–483. [Google Scholar] [CrossRef]
- Dlova, N.C.; Hamed, S.H.; Tsoka-Gwegweni, J.; Grobler, A. Skin lightening practices: An epidemiological study of South African women of African and Indian ancestries. Br. J. Dermatol. 2015, 173 (Suppl. S2), 2–9. [Google Scholar] [CrossRef]
- Emerald, M.; Emerald, A.; Emerald, L.; Kumar, V. Perspective of natural products in skincare. Pharm. Pharmacol. Int. 2016, 4, 3. [Google Scholar] [CrossRef]
- Vollmer, D.L.; West, V.A.; Lephart, E.D. Enhancing skin health: By oral administration of natural compounds and minerals with implications to the dermal microbiome. Int. J. Mol. Sci. 2018, 19, 3059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Minero, F.J.; Bravo-Díaz, L. The use of plants in skin-care products, cosmetics and fragrances: Past and present. Cosmetics 2018, 5, 50. [Google Scholar] [CrossRef] [Green Version]
- Saha, R. Cosmeceuticals and herbal drugs: Practical uses. Int. J. Pharm. Sci. Res. 2012, 3, 59–65. [Google Scholar]
- Kim, S.; Cho, D.-H.; Kweon, D.-K.; Jang, E.-H.; Hong, J.-Y.; Lim, S.-T. Improvement of mechanical properties of orodispersible hyaluronic acid film by carboxymethyl cellulose addition. Food Sci. Biotechnol. 2020, 29, 1233–1239. [Google Scholar] [CrossRef]
- Amberg, N.; Fogarassy, C. Green consumer behavior in the cosmetics market. Resources 2019, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Annual Growth Rate of the Cosmetics Market Worldwide. 2021. Available online: https://www.statista.com/statistics/297070/growth-rate-of-the-global-cosmetics-market/ (accessed on 10 August 2022).
- Cosmetics Market Size, Share, Industry Trends & Analysis 2021–2027. Available online: https://www.alliedmarketresearch.com/cosmetics-market (accessed on 19 September 2022).
- 2022 Beauty Industry Trends & Cosmetics Marketing: Statistics and Strategies for Your Ecommerce Growth. Available online: https://commonthreadco.com/blogs/coachs-corner/beauty-industry-cosmetics-marketing-ecommerce#trends (accessed on 19 September 2022).
- Eng, T.C. Conceptual study on malaysian male consumption behaviour towards skin care products. Int. J. Innov. Bus. 2018, 9, 1. [Google Scholar]
- Malaysia Men’s Grooming Ecommerce Market Trends: Calling it Self-Confidence-Janio. Available online: https://janio.asia/articles/malaysia-mens-grooming-ecommerce-market-trends/ (accessed on 12 July 2021).
- Hassali, M.A.; AL-Tamimi, S.K.; Dawood, O.T.; Verma, A.K.; Saleem, F. Malaysian cosmetic market: Current and future prospects. Pharm. Regul. Aff. 2015, 4, 155–157. [Google Scholar] [CrossRef]
- Ahmad, A.; Abd Rahman, A.; Ab Rahman, S. Assessing knowledge and religiosity on consumer behavior towards halal food and cosmetic products. Int. J. Soc. Sci. Humanit. 2015, 5, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Mendonça Munhoz, A.; Santanelli di Pompeo, F.; De Mezerville, R. Nanotechnology, nanosurfaces and silicone gel breast implants: Current aspects. Case Rep. Plast. Surg. Hand Surg. 2017, 4, 99–113. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.; Chauhan, C. Emerging Trends of Nanotechnology in Beauty Solutions: A Review. Mater. Today Proc. 2021, in press. [Google Scholar] [CrossRef]
- Effiong, D.E.; Umoh, R.A.; Akpabio, A.E.; Sunday, N.-A.I.; Anamanyie, I.U. The oral film delivery-application of nanotechnology and potential in medication adherence. GSC Biol. Pharm. Sci. 2020, 11, 34–51. [Google Scholar] [CrossRef]
- Bangale, M.S.; Mitkare, S.; Gattani, S.G.; Sakarkar, D.M. Recent nanotechnological aspects in cosmetics and dermatological preparations. Int. J. Pharm. Pharm. Sci. 2012, 4, 88–97. [Google Scholar]
- Kaul, S.; Gulati, N.; Verma, D.; Mukherjee, S.; Nagaich, U. Role of nanotechnology in cosmeceuticals: A Review of recent advances. J. Pharm. 2018, 2018, e3420204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvioni, L.; Morelli, L.; Ochoa, E.; Labra, M.; Fiandra, L.; Palugan, L.; Prosperi, D.; Colombo, M. The emerging role of nanotechnology in skincare. Adv. Colloid Interface Sci. 2021, 293, 102437. [Google Scholar] [CrossRef]
- Shah, M.S.; Mirza, U.; Shubeena, S.; Gull, B.; Shafi, M.; Shaheen, S. Nanotechnology: A miniature miracle. J. Entomol. Zool. Stud. 2018, 6, 1984–1988. [Google Scholar]
- Suter, F.; Schmid, D.; Wandrey, F.; Zülli, F. Heptapeptide-loaded solid lipid nanoparticles for cosmetic anti-aging applications. Eur. J. Pharm. Biopharm. 2016, 108, 304–309. [Google Scholar] [CrossRef]
- Otlatici, G.; Yegen, G.; Gungor, S.; Aksu, B. Overview on nanotechnology based cosmeceuticals to prevent skin aging. Istanb. J. Pharm. 2019, 48, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Souto, E.B.; Fernandes, A.R.; Martins-Gomes, C.; Coutinho, T.E.; Durazzo, A.; Lucarini, M.; Souto, S.B.; Silva, A.M.; Santini, A. Nanomaterials for skin delivery of cosmeceuticals and pharmaceuticals. Appl. Sci. 2020, 10, 1594. [Google Scholar] [CrossRef] [Green Version]
- Miastkowska, M.; Lasoń, E.; Sikora, E.; Wolińska-Kennard, K. Preparation and characterization of water-based nano-perfumes. Nanomaterials 2018, 8, 981. [Google Scholar] [CrossRef] [PubMed]
- Musazzi, U.M.; Marini, V.; Casiraghi, A.; Minghetti, P. Is the European regulatory framework sufficient to assure the safety of citizens using health products containing nanomaterials? Drug Discov. Today 2017, 22, 870–882. [Google Scholar] [CrossRef] [PubMed]
- Maccelli, A.; Vitanza, L.; Imbriano, A.; Fraschetti, C.; Filippi, A.; Goldoni, P.; Maurizi, L.; Ammendolia, M.G.; Crestoni, M.E.; Fornarini, S.; et al. Essential oils: Chemical profiles/phytochemical screening, antimicrobial activity and O/W Nanoemulsion formulations. Pharmaceutics 2019, 12, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClements, D.J.; Jafari, S.M. Chapter 1—General aspects of nanoemulsions and their formulation. In Nanoemulsions; Jafari, S.M., McClements, D.J., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 3–20. [Google Scholar] [CrossRef]
- Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release 2017, 252, 28–49. [Google Scholar] [CrossRef] [PubMed]
- Hagigit, T.; Abdulrazik, M.; Valamanesh, F.; Behar-Cohen, F.; Benita, S. Ocular antisense oligonucleotide delivery by cationic nanoemulsion for improved treatment of ocular neovascularization: An in-vivo study in rats and mice. J. Control. Release 2012, 160, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Sutradhar, K.B.; Amin, M.L. Nanoemulsions: Increasing possibilities in drug delivery. Eur. J. Nanomed. 2013, 5, 97–110. [Google Scholar] [CrossRef]
- Nair, H.A.; Singh Rajawat, G.; Nagarsenker, M.S. Chapter 8-Stimuli-responsive micelles: A nanoplatform for therapeutic and diagnostic applications. In Drug Targeting and Stimuli Sensitive Drug Delivery Systems; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2018; pp. 303–342. [Google Scholar] [CrossRef]
- Priya, L.B.; Baskaran, R.; Padma, V.V. Chapter 21-Phytonanoconjugates in oral medicine. In Nanostructures for Oral Medicine; Andronescu, E., Grumezescu, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 639–668. [Google Scholar] [CrossRef]
- Joseph, M.; Trinh, H.M.; Mitra, A.K. Chapter 7—Peptide and protein-based therapeutic agents*. In Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices; Mitra, A.K., Cholkar, K., Mandal, A., Eds.; Elsevier: Boston, MA, USA, 2017; pp. 145–167. [Google Scholar] [CrossRef]
- Peng, Y.; Meng, Q.; Zhou, J.; Chen, B.; Xi, J.; Long, P.; Zhang, L.; Hou, R. Nanoemulsion delivery system of tea polyphenols enhanced the bioavailability of catechins in rats. Food. Chem. 2018, 242, 527–532. [Google Scholar] [CrossRef]
- Lee, R.W.; Shenoy, D.B.; Sheel, R. Chapter 2-Micellar nanoparticles: Applications for topical and passive transdermal drug delivery. In Handbook of Non-Invasive Drug Delivery Systems; Kulkarni, V.S., Ed.; William Andrew Publishing: Boston, MA, USA, 2010; pp. 37–58. [Google Scholar] [CrossRef]
- Razavi, H.; Janfaza, S. Ethosome: A nanocarrier for transdermal drug delivery. Arch. Adv. Biosci. 2015, 6, 38–43. [Google Scholar] [CrossRef]
- Saberi, A.H.; Fang, Y.; McClements, D.J. Fabrication of vitamin E-enriched nanoemulsions: Factors affecting particle size using spontaneous emulsification. J. Colloid Interface Sci. 2013, 391, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Komaiko, J.S.; McClements, D.J. Formation of Food-Grade Nanoemulsions using low-energy preparation methods: A review of available methods. Compr. Rev. Food Sci. Food Saf. 2016, 15, 331–352. [Google Scholar] [CrossRef] [PubMed]
- Yukuyama, M.N.; Ghisleni, D.D.M.; Pinto, T.J.A.; Bou-Chacra, N.A. Nanoemulsion: Process selection and application in cosmetics—A review. Int. J. Cosmet. Sci. 2016, 38, 13–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilbao-Sáinz, C.; Avena-Bustillos, R.J.; Wood, D.F.; Williams, T.G.; McHugh, T.H. Nanoemulsions prepared by a low-energy emulsification method applied to edible films. J. Agric. Food Chem. 2010, 58, 11932–11938. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P. Ostwald ripening in emulsions. Adv. Colloid Interface Sci. 1998, 75, 107–163. [Google Scholar] [CrossRef]
- Rai, V.K.; Mishra, N.; Yadav, K.S.; Yadav, N.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J. Control. Release 2018, 270, 203–225. [Google Scholar] [CrossRef]
- Barros, C.; Barros, R.B.G. Natural and organic cosmetics: Definition and concepts. J. Cosmetol. Trichol. 2020, 6, 2020050374. [Google Scholar] [CrossRef]
- Fonseca-Santos, B.; Corrêa, M.A.; Chorilli, M. Sustainability, Natural and organic cosmetics: Consumer, products, efficacy, toxicological and regulatory considerations. Braz. J. Pharm. Sci. 2015, 51, 17–26. [Google Scholar] [CrossRef]
- Lourenço-Lopes, C.; Fraga-Corral, M.; Jimenez-Lopez, C.; Pereira, A.G.; Garcia-Oliveira, P.; Carpena, M.; Prieto, M.A.; Simal-Gandara, J. Metabolites from macroalgae and its applications in the cosmetic industry: A circular economy approach. Resources 2020, 9, 101. [Google Scholar] [CrossRef]
- Aziz, Z.A.A.; Peng, W.L.; Nasir, H.M.; Asmak, N.; Setapar, S.H.M.; Ahmad, A. 2-Survey of nanotechnology in beauty products development. In Nanotechnology for the Preparation of Cosmetics Using Plant-Based Extracts; Mohd Setapar, S.H., Ahmad, A., Jawaid, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 13–25. [Google Scholar] [CrossRef]
- Mohd-Nasir, H.; Mohd-Setapar, S.H. Natural ingredients in cosmetics from Malaysian plants: A review. Sains Malays. 2018, 47, 951–959. [Google Scholar] [CrossRef]
- Kim, M.; Son, D.; Shin, S.; Park, D.; Byun, S.; Jung, E. Protective effects of Camellia japonica flower extract against urban air pollutants. BMC Complement. Altern. Med. 2019, 19, 30. [Google Scholar] [CrossRef] [PubMed]
- Camellia Japonica. Available online: https://www.lorealparisusa.com/ingredient-library/camellia-japonica (accessed on 10 September 2022).
- Pereira, A.G.; Garcia-Perez, P.; Cassani, L.; Chamorro, F.; Cao, H.; Barba, F.J.; Simal-Gandara, J.; Prieto, M.A. Camellia japonica: A phytochemical perspective and current applications facing its industrial exploitation. Food Chem. X 2022, 13, 100258. [Google Scholar] [CrossRef]
- Miraj, S.; Alesaeidi, S. A Systematic Review study of therapeutic effects of Matricaria recuitta chamomile (chamomile). Electron. Physician 2016, 8, 3024–3031. [Google Scholar] [CrossRef] [Green Version]
- Fereira, E.B.; Vasques, C.I.; Jesus, C.A.C.; Reis, P.E.D. Topical effects of Chamomile recutita in skin damage: A literature review. PharmacologyOnLine 2015, 3, 123–130. [Google Scholar]
- El Mihyaoui, A.; Esteves da Silva, J.C.G.; Charfi, S.; Candela Castillo, M.E.; Lamarti, A.; Arnao, M.B. Chamomile (Matricaria chamomilla L.): A review of ethnomedicinal use, phytochemistry and pharmacological uses. Life 2022, 12, 479. [Google Scholar] [CrossRef] [PubMed]
- 5 Skincare Benefits of Chamomile (and 8 Products to Try). Available online: https://www.byrdie.com/skincare-benefits-of-chamomile-4691698 (accessed on 11 September 2022).
- Anagha, H.; Manasi, D.; Priya, L.; Meera, M. Antimicrobial activity of Yashtimadhu (Glycyrrhiza glabra L.)—A review. Int. J. Curr. Microbiol. App. Sci 2014, 3, 329–336. [Google Scholar]
- Mamedov, N.A.; Egamberdieva, D. Phytochemical constituents and pharmacological effects of licorice: A review. In Plant and Human Health, Volume 3: Pharmacology and Therapeutic Uses; Ozturk, M., Hakeem, K.R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–21. [Google Scholar] [CrossRef]
- Shang, W.; Fan, S.; Short, D.; Cao, X.; Zhang, H.; Kasson, M.; Chen, Y.; Hu, X. Cochineal scale (Porphyrophora ningxiana) enhances fusarium wilt and root rot of Chinese licorice plant (Glycyrrhiza uralensis). Austin Biol. 2016, 1, 1016. [Google Scholar]
- Yokota, T.; Nishio, H.; Kubota, Y.; Mizoguchi, M. The inhibitory effect of glabridin from licorice extracts on melanogenesis and inflammation. Pigment Cell Res. 1998, 11, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Ren, S.; Yang, H.; Tang, S.; Guo, C.; Liu, M.; Tao, Q.; Ming, T.; Xu, H. Peppermint essential oil: Its phytochemistry, biological activity, pharmacological effect and application. Biomed. Pharmacother. 2022, 154, 113559. [Google Scholar] [CrossRef] [PubMed]
- Sarkic, A.; Stappen, I. Essential oils and their single compounds in cosmetics—A critical review. Cosmetics 2018, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Peppermint Oil Uses and Benefits to Try Now for Beauty, Health and Home. Available online: https://www.today.com/style/peppermint-oil-uses-benefits-beauty-health-home-cleanliness-t145583 (accessed on 11 September 2022).
- Kaur, C.D.; Saraf, S. In vitro sun protection factor determination of herbal oils used in cosmetics. Pharmacogn. Res. 2010, 2, 22–25. [Google Scholar] [CrossRef] [Green Version]
- Poon, T.S.C.; Freeman, S. Cheilitis caused by contact allergy to anethole in spearmint flavoured toothpaste. Australas. J. Dermatol. 2006, 47, 300–301. [Google Scholar] [CrossRef] [PubMed]
- Ou, M.-C.; Hsu, T.-F.; Lai, A.C.; Lin, Y.-T.; Lin, C.-C. Pain relief assessment by aromatic essential oil massage on outpatients with primary dysmenorrhea: A randomized, double-blind clinical trial. J. Obstet. Gynaecol. Res. 2012, 38, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Mohebitabar, S.; Shirazi, M.; Bioos, S.; Rahimi, R.; Malekshahi, F.; Nejatbakhsh, F. Therapeutic efficacy of rose oil: A comprehensive review of clinical evidence. Avicenna J. Phytomed. 2017, 7, 206–213. [Google Scholar] [PubMed]
- Andjić, M.; Božin, B.; Draginić, N.; Kočović, A.; Jeremić, J.N.; Tomović, M.; Milojević, Š.A.; Kladar, N.; Čapo, I.; Jakovljević, V.; et al. Formulation and evaluation of Helichrysum italicum essential oil-Based Topical formulations for wound healing in diabetic rats. Pharmaceuticals 2021, 14, 813. [Google Scholar] [CrossRef] [PubMed]
- Helichrysum: What It Is and why It’s Good for Your Skin. Available online: https://greengoo.com/blogs/news/helichrysum-what-it-is-and-why-it-s-good-for-your-skin (accessed on 11 September 2022).
- Piccinino, D.; Capecchi, E.; Tomaino, E.; Gabellone, S.; Gigli, V.; Avitabile, D.; Saladino, R. Nano-structured lignin as green antioxidant and uv shielding ingredient for sunscreen applications. Antioxidants 2021, 10, 274. [Google Scholar] [CrossRef] [PubMed]
- Selyanin, M.A.; Boykov, P.Y.; Khabarov, V.N.; Polyak, F. The history of hyaluronic acid discovery, foundational research and initial use. In Hyaluronic Acid: Preparation, Properties, Application in Biology and Medicine; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Weissmann, B.; Meyer, K.; Sampson, P.; Linker, A. isolation of oligosaccharides enzymatically produced from hyaluronic acid. J. Biol. Chem. 1954, 208, 417–429. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Roth, M.; Karakiulakis, G. Hyaluronic acid: A key molecule in skin aging. Dermatoendocrinol. 2012, 4, 253–258. [Google Scholar] [CrossRef]
- Neuman, M.G.; Nanau, R.M.; Oruña-Sanchez, L.; Coto, G. Hyaluronic acid and wound healing. J. Pharm. Pharm. Sci. 2015, 18, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glaser, D.A.; Kenkel, J.M.; Paradkar-Mitragotri, D.; Murphy, D.K.; Romagnano, L.; Drinkwater, A. Duration of effect by injection volume and facial subregion for a volumizing hyaluronic acid filler in treating midface volume deficit. Dermatol. Surg. 2015, 41, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Aziz, Z.A.A.; Mohd Setapar, S.H. 9-Current status and future prospect of nanotechnology incorporated plant-based extracts in cosmeceuticals. In Nanotechnology for the Preparation of Cosmetics Using Plant-Based Extracts; Mohd Setapar, S.H., Ahmad, A., Jawaid, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 235–261. [Google Scholar] [CrossRef]
- Faria-Silva, A.C.; Mota, A.L.; Costa, A.M.; Silva, A.M.; Ascenso, A.; Reis, C.; Marto, J.; Ribeiro, H.M.; Carvalheiro, M.; Simões, S. 7-Application of natural raw materials for development of cosmetics through nanotechnology. In Nanotechnology for the Preparation of Cosmetics Using Plant-Based Extracts; Mohd Setapar, S.H., Ahmad, A., Jawaid, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 157–201. [Google Scholar] [CrossRef]
- Kumar, S.; Lather, V.; Pandita, D. Green Synthesis of therapeutic nanoparticles: An expanding horizon. Nanomedicine 2015, 10, 2451–2471. [Google Scholar] [CrossRef]
- Sugumar, S.; Mukherjee, A.; Chandrasekaran, N. Nanoemulsion formation and characterization by spontaneous emulsification: Investigation of its antibacterial effects on listeria monocytogenes. Asian J. Pharm. 2015, 9, 23. [Google Scholar] [CrossRef]
- Gordobil, O.; Oberemko, A.; Saulis, G.; Baublys, V.; Labidi, J. In vitro cytotoxicity studies of industrial Eucalyptus kraft lignins on mouse hepatoma, melanoma and chinese hamster ovary cells. Int. J. Biol. Macromol. 2019, 135, 353–361. [Google Scholar] [CrossRef]
- Widsten, P.; Tamminen, T.; Liitiä, T. Natural sunscreens based on nanoparticles of modified kraft lignin (CatLignin). ACS Omega 2020, 5, 13438–13446. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, J.C.; Downs, C.A. Dermatological and environmental toxicological impact of the sunscreen ingredient oxybenzone/benzophenone-3. J. Cosmet. Dermatol. 2018, 17, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Consolidated Sales of L’Oréal Worldwide 2021 | Statista. Available online: https://www.statista.com/statistics/243986/consolidated-sales-of-loreal-worldwide/ (accessed on 12 August 2022).
- A Bottle of Garnier Micellar Water is Sold Once Every Four Seconds | Allure. Available online: https://www.allure.com/story/garnier-micellar-water-sells-every-four-seconds (accessed on 12 August 2022).
- Aziz, Z.A.A.; Mohd-Nasir, H.; Ahmad, A.; Mohd, S.S.H.; Peng, W.L.; Chuo, S.C.; Khatoon, A.; Umar, K.; Yaqoob, A.A.; Mohamad Ibrahim, M.N. Role of nanotechnology for design and development of cosmeceutical: Application in makeup and skin care. Front. Chem. 2019, 7, 739. [Google Scholar] [CrossRef]
- UTM Hasil Produk Penjagaan Kulit. Available online: https://www.bharian.com.my/berita/nasional/2018/04/407224/utm-hasil-produk-penjagaan-kulit (accessed on 12 August 2022).
- Gupta, V.; Mohapatra, S.; Mishra, H.; Farooq, U.; Kumar, K.; Ansari, M.J.; Aldawsari, M.F.; Alalaiwe, A.S.; Mirza, M.A.; Iqbal, Z. Nanotechnology in cosmetics and cosmeceuticals—A Review of latest advancements. Gels 2022, 8, 173. [Google Scholar] [CrossRef] [PubMed]
- Seweryn, A. Interactions between surfactants and the skin–Theory and practice. Adv. Colloid Interface Sci. 2018, 256, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Raj, S.; Jose, S.; Sumod, U.S.; Sabitha, M. Nanotechnology in cosmetics: Opportunities and challenges. J. Pharm. Bioallied Sci. 2012, 4, 186–193. [Google Scholar] [CrossRef]
- Alshawwa, S.Z.; Kassem, A.A.; Farid, R.M.; Mostafa, S.K.; Labib, G.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics 2022, 14, 883. [Google Scholar] [CrossRef] [PubMed]
- Jeswani, G.; Das Paul, S.; Chablani, L. Safety and toxicity counts of nanocosmetics. In Nanocosmetics: From Ideas to Products; Cornier, J., Keck, C.M., Van de Voorde, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 299–335. [Google Scholar] [CrossRef]
- Von Goetz, N.; de Jong, W.H.; Simonnard, A. The SCCS guidance on the safety assessment of nanomaterials in cosmetics. Regul. Toxicol. Pharmacol. 2020, 112, 104611. [Google Scholar] [CrossRef]
Natural Ingredients | Overview | Active Constituent | Benefits to Skin | Ref. |
---|---|---|---|---|
Plant extracts | ||||
Tsubaki flower |
|
|
| [53,54,55] |
Chamomile flower |
|
|
| [56,57,58,59] |
Licorice roots |
|
|
| [60,61,62,63] |
Plant oils | ||||
Peppermint oil |
|
|
| [64,65,66,67] |
Rose oil |
|
|
| [68,69,70] |
Helichrysum italicum oil |
|
|
| [71,72] |
Individual compound | ||||
Lignin |
| Lignin |
| [73] |
Hyaluronic acid (HA) |
| HA is a non-sulfate Glycosaminoglycan or mucopolysaccharide consisting of D-glucuronic acid and N-acetyl-D-glucosamine linked by a glucuronidic bond of β (1→3) |
| [74,75,76,77,78] |
Nanotechnology | Commercial Product | Industry | Plant-Based Ingredients | Benefits |
---|---|---|---|---|
Liposomes | Advanced Night Repair Protective Cream | Estée Lauder | Musa cola acuminata, Anthemis nobilis extracts | Skin repair |
Capture Totale Le Serum | Dior | Longoza, limonene, rye seed extract, rice protein, lecithin | Antiwrinkle, skin brightening, sunscreen | |
Hydrance optimale Cream | Avéne | Carthamus tinctorius seed, Glycine soja seed extract | Moisturizer | |
Hydra Radiance Cream | Avon | Citrus paradisi peel oil, hydrolyzed Opuntia Ficus extract, Coenochloris signiensis extract | Vitamin enrichment | |
Russell Organics Liposome Concentrate | Russell Organics | Vegetable oils and floral water | Hydrating and rejuvenating lotion | |
Cleansing Milk | Ecco Bella | Aloe vera barbadensis,Achillea millefolium, Thyme thymus vulgaris,Calendula officinalis,Matricaria chamomillaL, Arctium majus root, Helianthus annuus seed oil | Cleanser | |
Niosomes | Antiage response cream | Simply Man Match | Pomegranate seed oil, ginseng extract avocado oil, mineral salts | Antiaging |
MayuNiosome Base cream | Laon Cosmetics | Ginseng, saponins | Brightening moisturizer | |
Identik Masque Floral Repair | Identik | Punica granatum seed extract, hydrolyzed yeast extract | Hair repair masque | |
SLN and NLC | Allure Body Cream | Chanel | Squalene, linalool, tocopheryl acetate, hexyl cinnamal, limonene, ascorbic acid, citric acid | Moisturizer |
Phyto NLC Active SirehEmas Cell Repair Cream | SirehEmas | Olive oil, Cucumis sectious extract, Curcuma xanthorrhiza extract | Antiwrinkle cream, hyperpigmentation reducing | |
Cutanova NanoVital Q10 and NanoRepair Q10 Creams | Dr. Rimpler | CoQ10, Cannabis sativa seed oil, hydrolyzed wheat protein, soy protein, Zea mays oil, panthenol, ursolic acid | Antiaging, UV protectant | |
Regeneration cream Intensiv | Scholl | Lilium candidum,Crataegus laevigata | Regenerating, wrinkles smoother | |
NLC Deep Effect Eye Serum, Repair Cream, Reconstruction Cream and Reconstruction Serum | Beate Johnem | Mafane extract | Antiaging | |
Nanoemulsions | Olïvenol Anti Falten Pftegekonzentrat Cream | Dr. Theiss | Olive oil, Acacia senegal | Antiaging |
Bepanthol Ultra FacialProtect Cream | Bayer HealthCare | Ceramides, lecithin | Antiaging, moisturizing | |
Korres Red Vine Hair Sun Protection Spray | Korres | Polyphenols, Helianthus annuus seed extract | Prevents hair color from fading away | |
Phyto-Endorphin Hand Cream | Rhonda Allison | Vitex agnus-castus casticin extract, Bellis perennis flower extract, lecithin cholesterol, corn oil, soybean oil, sweet orange peel oil, sweet almond oil | Revitalizing moisturizer | |
Nanospheres | Celazome Eye Treat Cream | Celazome | Shea butter, olive oil, squalene, green tea extract, vitamin E | Antiaging |
Celazome O-Plex Target Acne Spot Treatment Cream | Celazome | Tea tree oil, Origanum complex | Antiacne | |
Nanocapsules | Oligo DX Cellulite Treatment Cream | DS Labs | Nelumbo nucifera extract, acacia gum extract, ivy extract | Body firming |
Eye Contour Nanolift Cream | Euoko | Rhodiola rosea extract, sugar beet extract | Antiwrinkle | |
Hydra Flash Bronzer Daily Cream | Lancôme | Vitamin C, vitamin E, Aloe water | Antioxidant, hydrating moisturizer | |
Gold nanoparticles | NanoGold Energizing Cream | Chantecaille | Vitamin C, vitamin E, algae extract, plantago extracts | Rejuvenating, antiaging |
Orogold 24 K Nano Ultra Silk Serum | Orogold Restores | Helianthus annuus seed oil, Laminaria japonica extract, Chlorella vulgaris extract, Laminaria digitata extract, Helichrysum arenarium extract, Citrus aurantifolia peel extract, Rosmarinus officinalis leaf extract | Prevent moisture loss, improves wrinkles and fine lines, maintains healthy skin | |
Tony Moly Nanogold BB Cream | Tony Moly | Centella asiatica extract, madecasoides, tea tree | Skin whitening, antiaging | |
Silver nanoparticles | Cosil Nano Beauty Soap | Natural Korea | Arbutin, Aloe vera | Cleanser, detoxifier, exfoliator |
Silica nanoparticles | Lancôme Renergie Microlift Cream | Lancôme | Soy protein | Antiwrinkle |
Regulatory Bodies | Rules | Guidance Document | Key Elements |
---|---|---|---|
Food and Drug Administration (FDA), United States | Food, Drug, and Cosmetic Act | Guidance for Industry Safety of Nanomaterials in Cosmetic Products | Recommendations for safety assessment of nanomaterials should consider several important factors:
|
European Medicines Evaluation Agency (EMEA), European Union | Council Directive 76/768/EEC | Scientific Committee on Consumer Safety (SCCS): Guidance on the Safety Assessment of Nanomaterials in Cosmetics | Provide specific guidance on safety evaluation of nanomaterials used as cosmetic ingredients includes:
|
International Cooperation on Cosmetics Regulation (ICCR) | - | Report of the ICCR Working Group—Safety Approaches to Nanomaterials in Cosmetics | Provide experts’ view on the key safety highlighting:
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd-Setapar, S.H.; John, C.P.; Mohd-Nasir, H.; Azim, M.M.; Ahmad, A.; Alshammari, M.B. Application of Nanotechnology Incorporated with Natural Ingredients in Natural Cosmetics. Cosmetics 2022, 9, 110. https://doi.org/10.3390/cosmetics9060110
Mohd-Setapar SH, John CP, Mohd-Nasir H, Azim MM, Ahmad A, Alshammari MB. Application of Nanotechnology Incorporated with Natural Ingredients in Natural Cosmetics. Cosmetics. 2022; 9(6):110. https://doi.org/10.3390/cosmetics9060110
Chicago/Turabian StyleMohd-Setapar, Siti Hamidah, Clera Peter John, Hasmida Mohd-Nasir, Muhammad Mohsin Azim, Akil Ahmad, and Mohammed B. Alshammari. 2022. "Application of Nanotechnology Incorporated with Natural Ingredients in Natural Cosmetics" Cosmetics 9, no. 6: 110. https://doi.org/10.3390/cosmetics9060110
APA StyleMohd-Setapar, S. H., John, C. P., Mohd-Nasir, H., Azim, M. M., Ahmad, A., & Alshammari, M. B. (2022). Application of Nanotechnology Incorporated with Natural Ingredients in Natural Cosmetics. Cosmetics, 9(6), 110. https://doi.org/10.3390/cosmetics9060110