Arbutus unedo: Innovative Source of Antioxidant, Anti-Inflammatory and Anti-Tyrosinase Phenolics for Novel Cosmeceuticals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction Procedure
2.3. Total Phenolics Evaluation
2.4. Total Flavonoids Measurement
2.5. Evaluation of Total Condensed Tannins
2.6. Identification of Phenolic Compounds
2.7. Antioxidant Activity
2.7.1. Total Antioxidant Activity (TAA)
2.7.2. ABTS Radical Scavenging Assay
2.7.3. DPPH Radical Scavenging Assay
2.7.4. Iron Reducing Power
2.7.5. Chelating Effect
2.8. Cell Culture
2.9. Cell Viability Assay
2.10. Anti-Inflammatory Activity
2.11. Tyrosinase Inhibition Assay
2.12. Development of Formulation
2.13. Encapsulation Efficiency Measurement
2.14. Preliminary Stability Tests
2.14.1. Centrifugation Test
2.14.2. Thermal Stress
2.14.3. pH Analysis
2.14.4. Particle Size and Zeta Potential Evaluation
2.15. Statistical Analysis
3. Results and Discussion
3.1. Yield of Arbutus unedo Leaves Extracts
3.2. Effect of Solvent and Extraction Method on Total Phenolics, Flavonoids, and Tannins Contents
3.2.1. Total Phenolic Contents
3.2.2. Total Flavonoids
3.2.3. Condensed Tannins
3.3. Phytochemicals Identification
3.4. Effect of Solvent and Extraction Method on Antioxidant Activities
3.5. Effect of Solvent and Extraction Method on Anti-Tyrosinase Activity
3.6. Effect of Solvent and Extraction Method on Cytotoxic and Anti-Inflammatory Activities
3.7. Characterization of Emulsion Containing A. unedo Extract
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
References
- Domaszewska-Szostek, A.; Puzianowska-Kuźnicka, M.; Kuryłowicz, A. Flavonoids in Skin Senescence Prevention and Treatment. Int. J. Mol. Sci. 2021, 22, 6814. [Google Scholar] [CrossRef] [PubMed]
- Lohani, A.; Morganti, P. Age-Defying and Photoprotective Potential of Geranium/Calendula Essential Oil Encapsulated Vesicular Cream on Biochemical Parameters against UVB Radiation Induced Skin Aging in Rat. Cosmetics 2022, 9, 43. [Google Scholar] [CrossRef]
- Farage, M.A.; Miller, K.W.; Elsner, P.; Maibach, H.I. Intrinsic and extrinsic factors in skin ageing: A review. Int. J. Cosmet. Sci. 2008, 30, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Chu, Q.; Fu, L.; Ye, J. Determination of antioxidants in cosmetics by micellar electrokinetic capillary chromatography with electrochemical detection. J. Chromatogr. A 2005, 1074, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Chiocchio, I.; Mandrone, M.; Sanna, C.; Maxia, A.; Tacchini, M.; Poli, F. Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Ind. Crop. Prod. 2018, 122, 498–505. [Google Scholar] [CrossRef]
- Michalak, M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef] [PubMed]
- Şöhretoğlu, D.; Sari, S.; Barut, B.; Özel, A. Tyrosinase inhibition by some flavonoids: Inhibitory activity, mechanism by in vitro and in silico studies. Bioorganic Chem. 2018, 81, 168–174. [Google Scholar] [CrossRef]
- Saeedi, M.; Eslamifar, M.; Khezri, K. Kojic acid applications in cosmetic and pharmaceutical preparations. Biomed. Pharmacother. 2018, 110, 582–593. [Google Scholar] [CrossRef]
- Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef] [Green Version]
- Widyarini, S.; Spinks, N.; Husband, A.J.; Reeve, V.E. Isoflavonoid Compounds from Red Clover (Trifolium pratense) Protect from Inflammation and Immune Suppression Induced by UV Radiation. Photochem. Photobiol. 2001, 74, 465–470. [Google Scholar] [CrossRef]
- Choi, S.; Youn, J.; Kim, K.; Joo, D.H.; Shin, S.; Lee, J.; Lee, H.K.; An, I.-S.; Kwon, S.; Youn, H.J.; et al. Apigenin inhibits UVA-induced cytotoxicity in vitro and prevents signs of skin aging in vivo. Int. J. Mol. Med. 2016, 38, 627–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bing-Rong, Z.; Song-Liang, J.; Xiao-E, C.; Xiang-Fei, L.; Bao-Xiang, C.; Jie, G.; Dan, L. Protective effect of the Baicalin against DNA damage induced by ultraviolet B irradiation to mouse epidermis. Photodermatol. Photoimmunol. Photomed. 2008, 24, 175–182. [Google Scholar] [CrossRef]
- El-Mahdy, M.A.; Zhu, Q.; Wang, Q.-E.; Wani, G.; Patnaik, S.; Zhao, Q.; Arafa, E.-S.; Barakat, B.; Mir, S.N.; Wani, A.A. Naringenin Protects HaCaT Human Keratinocytes Against UVB-induced Apoptosis and Enhances the Removal of Cyclobutane Pyrimidine Dimers from the Genome. Photochem. Photobiol. 2007, 84, 307–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvakumar, K.; Madhan, R.; Srinivasan, G.; Baskar, V. Antioxidant Assays in Pharmacological Research. Asian J. Pharm. Tech. 2011, 1, 99–103. [Google Scholar]
- Bouzid, A.; Chadli, R.; Bouzid, K. Étude ethnobotanique de la plante médicinale Arbutus unedo L. dans la région de Sidi Bel Abbés en Algérie occidentale Ethnobotanical study of the medicinal plant Arbutus unedo L. in the region of Sidi Bel Abbes in western Algeria. Phytothérapie 2017, 15, 373–378. [Google Scholar] [CrossRef]
- Tenuta, M.C.; Deguin, B.; Loizzo, M.R.; Dugay, A.; Acquaviva, R.; Malfa, G.A.; Bonesi, M.; Bouzidi, C.; Tundis, R. Contribution of Flavonoids and Iridoids to the Hypoglycaemic, Antioxidant, and Nitric Oxide (NO) Inhibitory Activities of Arbutus unedo L. Antioxidants 2020, 9, 184. [Google Scholar] [CrossRef] [Green Version]
- El Haouari, M.; Assem, N.; Changan, S.; Kumar, M.; Daştan, S.D.; Rajkovic, J.; Taheri, Y.; Sharifi-Rad, J. An Insight into Phytochemical, Pharmacological, and Nutritional Properties of Arbutus unedo L. from Morocco. Evid. Based Complement Altern. Med. 2021, 2021, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Malheiro, R.; Sá, O.; Pereira, E.; Aguiar, C.; Baptista, P.; Pereira, J.A. Arbutus unedo L. leaves as source of phytochemicals with bioactive properties. Ind. Crop. Prod. 2012, 37, 473–478. [Google Scholar] [CrossRef]
- Brčić Karačonji, I.; Jurica, K.; Gašić Uroš, M.; Drami´canin, A.; Teši´c, Ž.; Milojković-Opsenica, D.M. Comparative Study on the Phenolic Fingerprint and Antioxidant Activity of Strawberry Tree (Arbutus unedo L.) Leaves and Fruits. Plants 2022, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- Bourgou, S.; Rebey, I.B.; Mkadmini, K.; Isoda, H.; Ksouri, R.; Ksouri, W.M. LC-ESI-TOF-MS and GC-MS profiling of Artemisia herba-alba and evaluation of its bioactive properties. Food Res. Int. 2017, 99, 702–712. [Google Scholar] [CrossRef]
- Sun, J.; Chu, Y.-F.; Wu, X.; Liu, R.H. Antioxidant and Antiproliferative Activities of Common Fruits. J. Agric. Food Chem. 2002, 50, 7449–7454. [Google Scholar] [CrossRef]
- Zhao, H.; Dong, J.; Lu, J.; Chen, J.; Li, Y.; Shan, L.; Lin, Y.; Fan, A.W.; Gu, G. Effects of Extraction Solvent Mixtures on Antioxidant Activity Evaluation and Their Extraction Capacity and Selectivity for Free Phenolic Compounds in Barley (Hordeum vulgare L.). J. Agric. Food Chem. 2006, 54, 7277–7286. [Google Scholar] [CrossRef]
- O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef]
- Momtaz, S.; Mapunya, B.; Houghton, P.; Edgerly, C.; Hussein, A.; Naidoo, S.; Lall, N. Tyrosinase inhibition by extracts and constituents of Sideroxylon inerme L. stem bark, used in South Africa for skin lightening. J. Ethnopharmacol. 2008, 119, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Khairi, N.; As’Ad, S.; Djawad, K.; Alam, G. The determination of antioxidants activity and sunblock Sterculia populifolia extract- based cream. Pharm. Biomed. Res. 2018, 4, 2026. [Google Scholar] [CrossRef]
- Regan, J.O.; Mulvihill, D.M. Water soluble inner aqueous phase markers as indicators of the encapsulation properties of water-in-oil-in-water emulsions stabilized with sodium caseinate. Food Hydrocoll. 2009, 23, 2339–2345. [Google Scholar] [CrossRef]
- Niknam, S.M.; Escudero, I.; Benito, J.M. Formulation and Preparation of Water-In-Oil-In-Water Emulsions Loaded with a Phenolic-Rich Inner Aqueous Phase by Application of High Energy Emulsification Methods. Foods 2020, 9, 1411. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Arias, S.; Zapata-Valencia, S.; Cano-Agudelo, Y.; Arias, J.C.O.; Vega-Castro, O. Evaluation of the antioxidant and physical properties of an exfoliating cream developed from coffee grounds. J. Food Process Eng. 2019, 43, e13067. [Google Scholar] [CrossRef]
- Wakeel, A.; Jan, S.A.; Ullah, I.; Shinwari, Z.K.; Xu, M. Solvent polarity mediates phytochemical yield and antioxidant capacity of Isatis tinctoria. Peerj 2019, 7, e7857. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, I.; Coelho, V.; Baltasar, R.; Pereira, J.A.; Baptista, P. Scavenging capacity of strawberry tree (Arbutus unedo L.) leaves on free radicals. Food Chem. Toxicol. 2009, 47, 1507–1511. [Google Scholar] [CrossRef]
- Orak, H.H.; Yagar, H.; Isbilir, S.S.; Demirci, A.; Gümüş, T.; Ekinci, N. Evaluation of antioxidant and antimicrobial potential of strawberry tree (Arbutus Unedo L.) leaf. Food Sci. Biotechnol. 2011, 20, 1249–1256. [Google Scholar] [CrossRef]
- Bamba, B.S.B.; Shi, J.; Tranchant, C.C.; Xue, S.J.; Forney, C.F.; Lim, L.-T. Influence of Extraction Conditions on Ultrasound-Assisted Recovery of Bioactive Phenolics from Blueberry Pomace and Their Antioxidant Activity. Molecules 2018, 23, 1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurica, K.; Brčić Karačonji, I.; Šegan, S.; Milojkovi´c Opsenica, D.; Kremer, D. Quantitative analysis of arbutin and hydroquinone in strawberry tree (Arbutus unedo L., Ericaceae) leaves by gas chromatography-mass spectrometry. Arh. Hig. Rada Toksikol. 2015, 66, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Guendouze-Bouchefa, N.; Madani, K.; Chibane, M.; Boulekbache-Makhlouf, L.; Hauchard, D.; Kiendrebeogo, M.; Stévigny, C.; Okusa, P.N.; Duez, P. Phenolic compounds, antioxidant and antibacterial activities of three Ericaceae from Algeria. Ind. Crop. Prod. 2015, 70, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Andrade, D.; Gil, C.; Breitenfeld, L.; Domingues, F.; Duarte, A.P. Bioactive extracts from Cistus ladanifer and Arbutus unedo L. Ind. Crop. Prod. 2009, 30, 165–167. [Google Scholar] [CrossRef]
- Fiorentino, A.; Castaldi, S.; D’Abrosca, B.; Natale, A.; Carfora, A.; Messere, A.; Monaco, P. Polyphenols from the hydroalcoholic extract of Arbutus unedo living in a monospecific Mediterranean woodland. Biochem. Syst. Ecol. 2007, 35, 809–811. [Google Scholar] [CrossRef]
- Pavlović, D.R.; Branković, S.; Kovačević, N.; Kitić, D.; Veljković, S. Comparative study of spasmolytic properties, antioxidant activity and phenolic content of Arbutus unedo from Montenegro and Greece. Phyther. Res. 2011, 25, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Maleš, Z.; Plazibat, M.; Vunda´c, V.B.; Zuntar, I. Qualitative and quantitative analysis of flavonoids of the strawberry tree—Arbutus unedo L. (Ericaceae). Acta. Pharm. 2006, 56, 245–250. [Google Scholar]
- Jardim, C.E.C.G.; Macedo, D.; Figueira, I.; Dobson, G.; McDougall, G.J.; Stewart, D.; Ferreira, R.B.; Menezes, R.; Santos, C.N. (Poly)phenol metabolites from Arbutus unedo leaves protect yeast from oxidative injury by activation of antioxidant and protein clearance pathways. J. Funct. Foods 2017, 32, 332–346. [Google Scholar] [CrossRef]
- Legssyer, A.; Ziyyat, A.; Mekh, H.; Bnouham, M.; Herrenknecht, C.; Roumy, V.; Fourneau, C.; Laurens, A.; Hoerter, J.; Fischmeister, R. Tannins and catechin gallate mediate the vasorelaxant effect ofArbutus unedo on the rat isolated aorta. Phytotherapy Res. 2004, 18, 889–894. [Google Scholar] [CrossRef]
- Mendes, L.; de Freitas, V.; Baptista, P.; Carvalho, M. Comparative antihemolytic and radical scavenging activities of strawberry tree (Arbutus unedo L.) leaf and fruit. Food Chem. Toxicol. 2011, 49, 2285–2291. [Google Scholar] [CrossRef] [PubMed]
- Treml, J.; Šmejkal, K. Flavonoids as Potent Scavengers of Hydroxyl Radicals. Compr. Rev. Food Sci. Food Saf. 2016, 15, 720–738. [Google Scholar] [CrossRef]
- Liu, Z.; Tao, X.; Zhang, C.; Lu, Y.; Wei, D. Protective effects of hyperoside (quercetin-3-o-galactoside) to PC12 cells against cytotoxicity induced by hydrogen peroxide and tert-butyl hydroperoxide. Biomed. Pharmacother. 2005, 59, 481–490. [Google Scholar] [CrossRef]
- Kiliç, I.; Yeşiloğlu, Y. Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2013, 115, 719–724. [Google Scholar] [CrossRef]
- Tai, A.; Ohno, A.; Ito, H. Isolation and Characterization of the 2,2’-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Radical Cation-Scavenging Reaction Products of Arbutin. J. Agric. Food. Chem. 2016, 64, 7285–7290. [Google Scholar] [CrossRef]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef] [Green Version]
- Kooyers, T.; Westerhof, W. Toxicology and health risks of hydroquinone in skin lightening formulations. J. Eur. Acad. Dermatol. Venereol. 2006, 20, 777–780. [Google Scholar] [CrossRef]
- Deniz, F.S.S.; Orhan, I.E.; Duman, H. Profiling cosmeceutical effects of various herbal extracts through elastase, collagenase, tyrosinase inhibitory and antioxidant assays. Phytochem. Lett. 2021, 45, 171–183. [Google Scholar] [CrossRef]
- Qin, L.; Wu, Y.; Liu, Y.; Chen, Y.; Zhang, P. Dual Effects of Alpha-Arbutin on Monophenolase and Diphenolase Activities of Mushroom Tyrosinase. PLoS ONE 2014, 9, e109398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugimoto, K.; Nishimura, T.; Nomura, K.; Sugimoto, K.; Kuriki, T. Inhibitory effects of α-arbutin on melanin synthesis in cultured human melanoma cells and a three-dimensional human skin model. Biol. Pharm. Bull. 2004, 27, 510–514. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Chai, W.; Ma, Z.; Deng, W.; Wei, Q.; Song, S.; Zou, Z.; Peng, Y. Antityrosinase mechanism of ellagic acid in vitro and its effect on mouse melanoma cells. J. Food Biochem. 2019, 43, e12996. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.-Y.; Sharma, V.K.; Sharma, N. Mushroom Tyrosinase: Recent Prospects. J. Agric. Food Chem. 2003, 51, 2837–2853. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.H.; Lee, T.J.; Park, J.W.; Kwon, T.K. Withaferin A inhibits iNOS expressionand nitric oxide production by Akt inactivation and down-regulating LPS-induced activity of NF-kappaB in RAW 264.7 cells. Eur. J. Pharmacol. 2008, 599, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Mariotto, S.; Esposito, E.; di Paola, R.; Ciampa, A.; Mazzon, E.; de Prati, A.C.; Darra, E.; Vincenzi, S.; Cucinotta, G.; Caminiti, R.; et al. Protective effect of Arbutus unedo aqueous extract in carrageenan-induced lung inflammation in mice. Pharmacol. Res. 2008, 57, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Kim, K.-W. Anti-inflammatory effects of arbutin in lipopolysaccharide-stimulated BV2 microglial cells. Inflamm. Res. 2012, 61, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Hashem, F.; Shaker, D.; Ghorab, M.K.; Nasr, M.; Ismail, A. Formulation, Characterization, and Clinical Evaluation of Microemulsion Containing Clotrimazole for Topical Delivery. AAPS PharmSciTech 2011, 12, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Karami, Z.; Zanjani, M.R.S.; Hamidi, M. Nanoemulsions in CNS drug delivery: Recent developments, impacts and challenges. Drug Discov. Today 2019, 24, 1104–1115. [Google Scholar] [CrossRef]
- Kabri, T.-H.; Arab-Tehrany, E.; Belhaj, N.; Linder, M. Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3. J. Nanobiotechnology 2011, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Barreto, S.M.A.G.; Maia, M.S.; Benicá, A.M.; de Assis, H.R.B.S.; Leite-Silva, V.R.; da Rocha-Filho, P.A.; de Negreiros, M.M.F.; Rocha, H.A.D.O.; Ostrosky, E.A.; Lopes, P.S.; et al. Evaluation of in vitro and in vivo safety of the by-product of Agave sisalana as a new cosmetic raw material: Development and clinical evaluation of a nanoemulsion to improve skin moisturizing. Ind. Crop. Prod. 2017, 108, 470–479. [Google Scholar] [CrossRef]
Components | % (w/w) |
---|---|
Aqueous phase | |
Glycerin | 1 |
A. unedo extract | 1 |
Xanthan gum | 0.1 |
Phenoxyethanol | 0.1 |
Distilled water | 75.3 |
Oily phase | |
Almond oil | 15 |
Glyceryl monostearate | 7.5 |
Yield (%) | Total Phenolics (mg GAE/g DW) | Total Flavonoids (mg CE/g DW) | Total Tannins (mg CE/g DW) | |
---|---|---|---|---|
Reflux water | 38 | 73 ± 0.7 a | 51 ± 1.9 a | 54 ± 3.8 a |
Maceration water | 28 | 79 ± 3.6 a | 22 ± 0.9 c | 29 ± 2.6 c |
Maceration ethanol | 5 | 32 ± 1.0 d | 11 ± 0.4 e | 17 ± 1.3 d |
Maceration ethanol 50% | 35 | 67 ± 2.7 b | 18 ± 1.6 d | 34 ± 1.1 bc |
Ultrasound water | 29 | 48 ± 1.5 c | 19 ± 0.3 cd | 30 ± 1.4 c |
Ultrasound ethanol | 20 | 76 ± 2.1 a | 21 ± 0.4 cd | 38 ± 2.6 b |
Ultrasound ethanol 50% | 30 | 74 ± 1.2 a | 27 ± 1.3 b | 32 ± 1.0 bc |
Phenolic Acids | Flavonoids | ||||||||
---|---|---|---|---|---|---|---|---|---|
Gallic Acid | Caffeic Acid | p-Coumaric Acid | Ellagic Acid | Arbutin | Catechin | Epigallocatechin | Rutin | Hyperoside | |
Reflux water | 0.42 ± 0.1 b | 0.07 ± 0.00 e | 0.39 ± 0.00 d | 1.27 ± 0.05 bc | 1.2 ± 0.2 bc | ND | 0.96 ± 0.2 a | ND | 56.06 ± 1.8 a |
Maceration water | 0.18 ± 0.0 c | 0.05 ± 0.00 e | 0.27 ± 0.04 d | 0.83 ± 0.1 d | 2.78 ± 1.2 a | 0.58 ± 0.1 b | 0.19 ± 0.04 b | 1.55 ± 0.4 c | 31.32 ± 3.1 b |
Maceration ethanol | 0.09 ± 0.0 c | 0.27 ± 0.1 d | 0.59 ± 0.01 c | 1.26 ± 0.2 bc | 2.26 ± 0.7 a | ND | 0.77 ± 0.1 a | 2.07 ± 0.3 b | 34.24 ± 6.1 b |
Maceration ethanol 50% | 0.08 ± 0.0 c | 0.31 ± 0.08 bc | 0.28 ± 0.03 d | 1.06 ± 0.01 cd | 1.87 ± 0.4 ab | 1.22 ± 0.6 a | 0.34 ± 0.1 b | 2.14 ± 0.01 ab | 33.97 ± 4.5 b |
Ultrasound water | 1.83 ±0.6 c | 0.38 ± 0.02 b | 1.45 ± 0.9 a | 1.51 a ± 0.45 | 0.73 ± 0.02 c | 0.58 ± 0.03 b | 0.18 ± 0.07 b | ND | 30.03 ± 5.5 b |
Ultrasound ethanol | 0.18 ± 0.05 c | 0.28 ± 0.1 d | 0.96 ± 0.2 b | 1.50 ± 0.1 ab | 0.85 ± 0.1 c | ND | 0.16 ± 0.04 b | 2.66 ± 0.7 a | 55.05 ± 2.1 a |
Ultrasound ethanol 50% | 0.12 ± 0.05 c | 0.59 ± 0.2 a | 0.02 ± 0.01 e | 1.36 ± 0.1 ab | 2.16 ± 0.1 ab | 1.22 ± 0.6 a | 0.34 ± 0.1 b | 2.56 ± 0.2 ab | 41.88 ± 6.6 b |
TAA (mg GAE/g DW) | DPPH IC50 (μg/mL) | ABTS IC50 (μg/mL) | Reducing Power EC50 (μg/mL) | Chelating Power EC50 (mg/mL) | |
---|---|---|---|---|---|
Reflux water | 194 ± 5.2 a | 7 ± 1.1 d | 58 ± 3.2 e | 82 ± 5.2 c | 40 ± 3.1 a |
Maceration water | 86 ± 3.2 b | 17 ± 1.5 a | 66 ± 5.5 d | 112 ± 7.4 a | 33 ± 4.2 b |
Maceration ethanol | 32 ± 2.1 e | 9 ± 1.0 c | 114 ± 7.2 a | 83 ± 4.4 c | NA |
Maceration ethanol 50% | 52 ± 2.1 d | 10 ± 1.1 b | 68 ± 4.1 d | 64 ± 3.2 d | NA |
Ultrasound water | 63 ± 3.2 c | 9 ± 1.0 c | 101 ± 4.3 b | 97 ± 4.3 b | 34 ± 4.4 b |
Ultrasound ethanol | 65 ± 4.2 c | 9 ± 0.7 c | 102 ± 5.1 b | 60 ± 3.7 d | NA |
Ultrasound ethanol 50% | 59 ± 2.2 cd | 6 ± 1.1 d | 94 ± 4.4 c | 62 ± 3.2 d | NA |
Monophenolase Inhibition (IC50 in μg/mL) | Diphenolase Inhibition (IC50 in μg/mL) | |
---|---|---|
Reflux water | 200 ± 2.5 d | 2500 ± 9.5 a |
Maceration water | 340 ± 5 b | 1600 ± 10.0 c |
Maceration ethanol | 90 ± 2.0 f | 450 ± 5.0 f |
Maceration ethanol 50% | 90 ± 1.0 f | 500 ± 5.0 e |
Ultrasound water | 290 ± 6.5 c | 2000 ± 8.0 b |
Ultrasound ethanol | 390 ± 4.5 a | 900 ± 7.5 d |
Ultrasound ethanol 50% | 150 ± 2.5 e | 400 ± 5.0 f |
Arbutin | 100 ± 3.5 f | NA |
Kojic acid | 4.7 ± 0.1 g | 0.018 ± 0.00 g |
Z-Average (d.nm) | Zeta Potential (mV) | pH | ||||
---|---|---|---|---|---|---|
T0 | T8 | T0 | T8 | T0 | T8 | |
A-NE | 197 ± 1.05 b | 243 ± 0.8 b | −56 ± 2 a | −64 ± 1.0 a | 6.9 b | 6.5 b |
NE | 216.± 0.8 a | 286 ± 0.5 a | −59 ± 1,2 a | −70 ± 1.8 a | 7.6 a | 7.9 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habachi, E.; Rebey, I.B.; Dakhlaoui, S.; Hammami, M.; Sawsen, S.; Msaada, K.; Merah, O.; Bourgou, S. Arbutus unedo: Innovative Source of Antioxidant, Anti-Inflammatory and Anti-Tyrosinase Phenolics for Novel Cosmeceuticals. Cosmetics 2022, 9, 143. https://doi.org/10.3390/cosmetics9060143
Habachi E, Rebey IB, Dakhlaoui S, Hammami M, Sawsen S, Msaada K, Merah O, Bourgou S. Arbutus unedo: Innovative Source of Antioxidant, Anti-Inflammatory and Anti-Tyrosinase Phenolics for Novel Cosmeceuticals. Cosmetics. 2022; 9(6):143. https://doi.org/10.3390/cosmetics9060143
Chicago/Turabian StyleHabachi, Emna, Iness Bettaieb Rebey, Sarra Dakhlaoui, Majdi Hammami, Selmi Sawsen, Kamel Msaada, Othmane Merah, and Soumaya Bourgou. 2022. "Arbutus unedo: Innovative Source of Antioxidant, Anti-Inflammatory and Anti-Tyrosinase Phenolics for Novel Cosmeceuticals" Cosmetics 9, no. 6: 143. https://doi.org/10.3390/cosmetics9060143
APA StyleHabachi, E., Rebey, I. B., Dakhlaoui, S., Hammami, M., Sawsen, S., Msaada, K., Merah, O., & Bourgou, S. (2022). Arbutus unedo: Innovative Source of Antioxidant, Anti-Inflammatory and Anti-Tyrosinase Phenolics for Novel Cosmeceuticals. Cosmetics, 9(6), 143. https://doi.org/10.3390/cosmetics9060143