Closed-Form Expressions for Numerical Evaluation of Self-Impedance Terms Involved on Wire Antenna Analysis by the Method of Moments
Abstract
:1. Introduction
2. Methodology
3. Proposed Self-Impedance Expressions
3.1. Case 1
3.2. Case 2
3.3. Case 3
3.4. Case 4
4. Evaluation of the Proposed Expressions
5. Conclusions
6. Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EFIE | Electric Field Integral Equation |
EMC | Electromagnetic Compatibility |
MoM | Method of Moments |
PM-P | Point Matching Procedure |
Appendix A
Appendix B
Appendix C
References
- Qin, D.; Sun, B. VHF/UHF Miniaturized Ferrite-EBG Composited Choke Structures. IEEE Access 2021, 9, 50025–50034. [Google Scholar] [CrossRef]
- Ma, R.; Behdad, N. Broadband, Small-Aperture Direction-Finding Array With Azimuth and Elevation Estimation Capability. IEEE Trans. Antennas Propag. 2020, 68, 3163–3175. [Google Scholar] [CrossRef]
- Ren, K.; Ranjbar Nikkhah, M.; Behdad, N. Design of Dual-Polarized, Platform-Based HF Antennas Using the Characteristic Mode Theory. IEEE Trans. Antennas Propag. 2020, 68, 5130–5141. [Google Scholar] [CrossRef]
- Hawkins, J.D.; Lok, L.B.; Brennan, P.V.; Nicholls, K.W. HF Wire-Mesh Dipole Antennas for Broadband Ice-Penetrating Radar. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2172–2176. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, J.; Liu, Q.; Li, X. High-Power Dual-Branch Helical Antenna. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 472–475. [Google Scholar] [CrossRef]
- Weiguo, D.; Yongzhong, Z.; Yang, Y.; Kaiwei, Z. A Miniaturized Dual-Orbital-Angular-Momentum (OAM)–Mode Helix Antenna. IEEE Access 2018, 17, 57056–57060. [Google Scholar] [CrossRef]
- Mattioni, L.; Marrocco, G. Design of a broadband HF antenna for multimode naval communications. IEEE Antennas Wirel. Propag. Lett. 2005, 4, 2–16. [Google Scholar] [CrossRef]
- ARRL Inc. ARRL Handbook 2021; The American Radio Relay League, Inc.: Newington, CT, USA, 2020. [Google Scholar]
- King, R.W. The linear antenna—Eighty years of progress. Proc. IEEE 1967, 55, 2–16. [Google Scholar] [CrossRef]
- Forati, E.; Mueller, A.D.; Gandomkar Yarandi, P.; Hanson, G.W. A new formulation of pocklington’s equation for thin wires using the exact kernel. IEEE Trans. Antennas Propag. 2011, 59, 4355–4360. [Google Scholar] [CrossRef]
- Shamsi, M.; Nazarzadeh, J.; Shafiee, M.; Razzaghi, M. Haar wavelets method for solving Pocklington’s integral equation. Kybernetika 2004, 40, 491–500. [Google Scholar]
- Papakanellos, P.J.; Paschalidis, P.; Fikioris, G. On the extended thin wire kernel. IEEE Trans. Antennas Propag. 2016, 64, 3180–3184. [Google Scholar] [CrossRef]
- Paez-Rueda, C.I.; Bustamante-Miller, R. Novel Computational approach to solve convolutional integral equations: Method of sampling for one dimension. IyU 2019, 23, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.S.; Baginski, M.E. Thin-wire antenna design using a novel branching scheme and genetic algorithm optimization. IEEE Trans. Antennas Propag. 2019, 67, 2934–2941. [Google Scholar] [CrossRef]
- Kowalewski, J.; Mahler, T.; Reichardt, L.; Zwick, T. Shape memory alloy (sma)-based pattern-reconfigurable antenna. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1598–1601. [Google Scholar] [CrossRef]
- Chen, J.; Ludwig, J.; Lim, S. Design of a compact log-periodic dipole array using t-shaped top loadings. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1585–1588. [Google Scholar] [CrossRef]
- Kwak, S.I.; Kwon, J.H.; Yoon, Y.J. Experimental results of an e-field probe using variable resistors to improve performance. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1369–1372. [Google Scholar] [CrossRef]
- Kataja, J.; Nikoskinen, K. The Parametric Optimization of Wire Dipole Antennas. IEEE Trans. Antennas Propag. 2011, 59, 350–356. [Google Scholar] [CrossRef]
- Best, S.R. A discussion on the quality factor of impedance matched electrically small wire antennas. IEEE Trans. Antennas Propag. 2005, 53, 502–508. [Google Scholar] [CrossRef] [Green Version]
- Pisano, F.A.; Butler, C.M. Methods for modeling wire antennas loaded with shielded networks. IEEE Trans. Antennas Propag. 2004, 52, 961–968. [Google Scholar] [CrossRef]
- Ronglin, L.; Guangzheng, N.; Jihui, Y.; Zejia, J. A new numerical technique for calculating current distributions on curved wire antennas—parametric B-spline finite element method. IEEE Trans. Magn. 1996, 32, 906–909. [Google Scholar] [CrossRef]
- Rogers, S.D.; Butler, C.M. An efficient curved-wire integral equation solution technique. IEEE Trans. Antennas Propag. 2001, 49, 70–79. [Google Scholar] [CrossRef]
- Champagne, N.J.; Wilton, D.R.; Rockway, J.D. The Analysis of Thin Wires Using Higher Order Elements and Basis Functions. IEEE Trans. Antennas Propag. 2006, 54, 3815–3821. [Google Scholar] [CrossRef] [Green Version]
- Harrington, R.F. Matrix methods for field problems. Proc. IEEE 1967, 55, 136–149. [Google Scholar] [CrossRef] [Green Version]
- Dinkić, J.; Olćan, D.; Djordjević, A.; Zajić, A. Design and Optimization of Nonuniform Helical Antennas With Linearly Varying Geometrical Parameters. IEEE Access 2019, 7, 136855–136866. [Google Scholar] [CrossRef]
- Zaharis, Z.D.; Gravas, I.P.; Yioultsis, T.V.; Lazaridis, P.I.; Glover, I.A.; Skeberis, C.; Xenos, T.D. Exponential Log-Periodic Antenna Design Using Improved Particle Swarm Optimization With Velocity Mutation. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef]
- Richmond, J.H. Digital computer solutions of the rigorous equations for scattering problems. Proc. IEEE 1965, 53, 796–804. [Google Scholar] [CrossRef]
- Theile, G. Wire Antennas. In Computer Techniques in Electromagnetics; Mittra, R., Ed.; Pergamon: New York, NY, USA, 1973; pp. 7–93. [Google Scholar]
- Balanis, C. Advanced Engineering Electromagnetics; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Overfelt, P.L. An exact method of integration for vector potentials of thin dipole antennas. IEEE Trans. Antennas Propag. 1987, 35, 442–444. [Google Scholar] [CrossRef]
- Imbriale, W.A.; Ingerson, P. On numerical convergence of moment solutions of moderately thick wire antennas using sinusoidal basis functions. IEEE Trans. Antennas Propag. 1973, 21, 363–366. [Google Scholar] [CrossRef]
- Pearson, L.W. A separation of the logarithmic singularity in the exact kernel of the cylindrical antenna integral equation. IEEE Trans. Antennas Propag. 1975, 23, 256–258. [Google Scholar] [CrossRef]
- Wang, W.-X. The exact kernel for cylindrical antenna. IEEE Trans. Antennas Propag. 1991, 39, 434–435. [Google Scholar] [CrossRef]
- Werner, D.H. An exact formulation for the vector potential of a cylindrical antenna with uniformly distributed current and arbitrary radius. IEEE Trans. Antennas Propag. 1993, 41, 1009–1018. [Google Scholar] [CrossRef]
- Werner, D.H.; Werner, D.H.; Huffman, J.A.; Ferraro, A.J.; Breakall, J.K. An exact solution of the generalized exponential integral and its application to moment method formulations. IEEE Trans. Antennas Propag. 1993, 41, 1716–1719. [Google Scholar] [CrossRef]
- Park, S.-O.; Balanis, C.A. Efficient kernel calculation of cylindrical antennas. IEEE Trans. Antennas Propag. 1995, 41, 1328–1331. [Google Scholar] [CrossRef]
- Werner, D.H. A method of moments approach for the efficient and accurate modeling of moderately thick cylindrical wire antennas. IEEE Trans. Antennas Propag. 1998, 46, 373–382. [Google Scholar] [CrossRef]
- Lim, C.-P.; Li, L.-W.; Li, E.-P. Fast full-wave analysis of a cylindrical antenna using a single integral with an exact kernel. IEEE Antennas Wirel. Propag. Lett. 2002, 1, 43–45. [Google Scholar]
- Wilton, D.; Champagne, N. Evaluation and integration of the thin wire kernel. IEEE Trans. Antennas Propag. 2006, 54, 1200–1206. [Google Scholar] [CrossRef]
- Fink, P.; Wilton, D.; Khayat, M. Simple and efficient numerical evaluation of near-hypersingular integrals. IEEE Antennas Wirel. Propag. Lett. 2008, 7, 469–472. [Google Scholar] [CrossRef] [Green Version]
- Khayat, M.; Wilton, D.; Fink, P. An improved transformation and optimized sampling scheme for the numerical evaluation of singular and near-singular potentials. IEEE Antennas Wirel. Propag. Lett. 2008, 7, 377–380. [Google Scholar] [CrossRef] [Green Version]
- Botha, M.M. A family of augmented duffy transformations for nearsingularity cancellation quadrature. IEEE Trans. Antennas Propag. 2013, 61, 3123–3134. [Google Scholar] [CrossRef]
- Werner, D.; Werner, P.; Breakall, J. Some computational aspects of Pocklington’s electric field integral equation for thin wires. IEEE Trans. Antennas Propag. 1994, 42, 561–563. [Google Scholar] [CrossRef]
- Karwowski, A. Closed-form approximation to the bounded part of the exact kernel of a cylindrical antenna integral equation. Microwaves 1988, 135, 210–212. [Google Scholar] [CrossRef]
- Werner, D.; Huffman, J.; Werner, P. Techniques for evaluating the uniform current vector potential at the isolated singularity of the cylindrical wire kernel. IEEE Trans. Antennas Propag. 1994, 42, 1549–1553. [Google Scholar] [CrossRef]
- Jalloul, A.M.A.; Young, J.L. Singularity evaluation of the straight-wire mixed-potential integral equation in the method of moments procedure. IEEE Trans. Antennas Propag. 2011, 59, 172–179. [Google Scholar] [CrossRef]
- Resende, U.C.; Moreira, M.V.; Afonso, M.M. Evaluation of singular integral equation in mom analysis of arbitrary thin wire structures. IEEE Trans. Magn. 2014, 50, 457–460. [Google Scholar] [CrossRef]
- Paez-Rueda, C.I.; Bustamante-Miller, R. A new approximate closed solution for small dipole antenna with method of moments. IEEE Trans. Latin Am. 2016, 14, 1562–1569. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Homsup, N.; Mittra, R. A numerically efficient technique for handling Ill-conditioned MoM matrices. In Proceedings of the IEEE Applied Electromagnetics Conference (AEMC), Aurangabad, India, 19–22 December 2017; pp. 131–140. [Google Scholar]
- Szentpáli, B.; Réti, I.; Molnár, F.; Farkasvölgyi, J.; Kazi, K.; Mirk, Z.; Sonkoly, A.; Horváth, Z. Isotropic Broadband E-Field Probe. Hindawi Publ. Corp. Act. Passiv. Electron. Comp. 2008, 816969. [Google Scholar] [CrossRef] [Green Version]
- Shampine, L.F. Vectorized Adaptive Quadrature in MATLAB®. J. Comp. Appl. Math. 2016, 211, 131–140. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paez-Rueda, C.-I.; Fajardo, A.; Pérez, M.; Perilla, G. Closed-Form Expressions for Numerical Evaluation of Self-Impedance Terms Involved on Wire Antenna Analysis by the Method of Moments. Electronics 2021, 10, 1316. https://doi.org/10.3390/electronics10111316
Paez-Rueda C-I, Fajardo A, Pérez M, Perilla G. Closed-Form Expressions for Numerical Evaluation of Self-Impedance Terms Involved on Wire Antenna Analysis by the Method of Moments. Electronics. 2021; 10(11):1316. https://doi.org/10.3390/electronics10111316
Chicago/Turabian StylePaez-Rueda, Carlos-Ivan, Arturo Fajardo, Manuel Pérez, and Gabriel Perilla. 2021. "Closed-Form Expressions for Numerical Evaluation of Self-Impedance Terms Involved on Wire Antenna Analysis by the Method of Moments" Electronics 10, no. 11: 1316. https://doi.org/10.3390/electronics10111316
APA StylePaez-Rueda, C. -I., Fajardo, A., Pérez, M., & Perilla, G. (2021). Closed-Form Expressions for Numerical Evaluation of Self-Impedance Terms Involved on Wire Antenna Analysis by the Method of Moments. Electronics, 10(11), 1316. https://doi.org/10.3390/electronics10111316