Testbed for Experimental Characterization of Indoor Visible Light Communication Channels
Abstract
:1. Introduction
2. Indoor Visible Light Channel
3. Experimental Testbed
3.1. Mockup Description
3.2. Communication System
4. Simulation Results
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kavehrad, M. Sustainable energy-efficient wireless applications using light. IEEE Commun. Mag. 2010, 48, 66–73. [Google Scholar] [CrossRef]
- Chen, C.; Basnayaka, D.A.; Haas, H. Downlink performance of optical attocell networks. J. Lightwave Technol. 2016, 34, 137–156. [Google Scholar] [CrossRef]
- Pathak, P.H.; Feng, X.; Hu, P.; Mohapatra, P. Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Commun. Surv. Tutor. 2015, 17, 2047–2077. [Google Scholar] [CrossRef]
- Azhar, A.H.; Tran, T.-A.; O’Brien, D. A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications. IEEE Photon. Technol. Lett. 2013, 25, 171–174. [Google Scholar] [CrossRef]
- Bian, R.; Tavakkolnia, I.; Haas, H. 15.73 Gb/s visible light communication with offthe-shelf LEDs. J. Lightw. Technol. 2019, 37, 2418–2424. [Google Scholar] [CrossRef] [Green Version]
- González, O.; Guerra-Medina, M.F.; Martín, I.R.; Delgado, F.; Pérez-Jiménez, R. Adaptive WHTS-assisted SDMA-OFDM scheme for fair resource allocation in multi-user visible light communications. J. Opt. Commun. Netw. 2016, 8, 427–440. [Google Scholar] [CrossRef]
- Adnan-Qidan, A.; Morales-Céspedes, M.; García Armada, A. Load balancing in hybrid VLC and RF networks based on blind interference alignment. IEEE Access 2020, 8, 72512–72527. [Google Scholar] [CrossRef]
- Chen, C.; Yang, Y.; Deng, X.; Du, P.; Yang, H. Space division multiple access with distributed user grouping for multi-user MIMO-VLC systems. IEEE Open J. Commun. Soc. 2020, 1, 943–956. [Google Scholar] [CrossRef]
- Erog˘lu, Y.S.; Yapici, Y.; Güvenç, I. Impact of random receiver orientation on visible light communications channel. IEEE Trans. Commun. 2019, 67, 1313–1325. [Google Scholar] [CrossRef] [Green Version]
- Morales-Céspedes, M.; Genovés Guzmán, B.; Gil Jiménez, V.P. Lights and shadows: A comprehensive survey on cooperative and precoding schemes to overcome LOS blockage and interference in indoor VLC. Sensors 2021, 21, 861. [Google Scholar]
- Zhang, R.; Wang, J.; Wang, Z.; Xu, Z.; Zhao, C.; Hanzo, L. Visible light communications in heterogeneous networks: Paving the way for user-centric design. IEEE Wirel. Commun. 2016, 22, 8–16. [Google Scholar] [CrossRef]
- Obeed, M.; Salhab, A.M.; Alouini, M.-S.; Zummo, S.A. On optimizing VLC networks for downlink multi-user transmission: A survey. IEEE Commun. Surv. Tutor. 2019, 21, 2947–2976. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Park, H.; Barry, J.R. Indoor channel characteristics for visible light communications. IEEE Commun. Lett. 2011, 15, 217–219. [Google Scholar] [CrossRef]
- González, O.; Guerra Medina, M.F.; Martín, I.R. Multi-user visible light communications. In Advances in Optical Communication; Das, N., Ed.; IntechOpen: Rijeka, Croatia, 2014; pp. 35–63. Available online: https://www.intechopen.com/books/advances-in-optical-communication/multi-user-visible-light-communications (accessed on 6 June 2021).
- Uysal, M.; Miramirkhani, F.; Narmanlioglu, O.; Baykas, T.; Panayirci, E. IEEE 802.15.7r1 reference channel models for visible light communications. IEEE Commun. Mag. 2017, 55, 212–217. [Google Scholar] [CrossRef]
- Hussein, A.T.; Alresheedi, M.T.; Elmirghani, J.M.H. Fast and efficient adaptation techniques for visible light communication systems. J. Opt. Commun. Netw. 2016, 8, 382–397. [Google Scholar] [CrossRef]
- Haas, H.; Yin, L.; Chen, C.; Videv, S.; Parol, D.; Poves, E.; Alshaer, H.; Islim, M.S. Introduction to indoor networking concepts and challenges in LiFi. J. Opt. Commun. Netw. 2020, 12, A190–A203. [Google Scholar] [CrossRef]
- Kahn, J.M.; Barry, J.R. Wireless infrared communications. Proc. IEEE 1997, 85, 265–298. [Google Scholar] [CrossRef] [Green Version]
- Lomba, C.R.; Valadas, R.T.; de Oliveira Duarte, A.M. Experimental characterisation and modelling of the reflection of infrared signals on indoor surfaces. IEEE Proc. Optoelectron. 1998, 145, 191–197. [Google Scholar] [CrossRef] [Green Version]
- López-Hernández, F.J.; Pérez-Jiménez, R.; Santamaría, A. Monte Carlo calculation of impulse response on diffuse IR wireless indoor channels. Electron. Lett. 1998, 34, 1260–1262. [Google Scholar] [CrossRef]
- González, O.; Rodríguez, S.; Pérez-Jiménez, R.; Mendoza, B.R.; Ayala, A. Error analysis of the simulated impulse response on indoor wireless optical channels using a Monte Carlo based ray-tracing algorithm. IEEE Trans. Commun. 2005, 53, 124–130. [Google Scholar] [CrossRef]
- Barry, J.R.; Kahn, J.M.; Krause, W.J.; Lee, E.A.; Messerschmitt, D.G. Simulation of multipath impulse response for wireless optical channels. IEEE J. Sel. Areas Commun. 1993, 11, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Grubor, J.; Randel, S.; Langer, K.-D.; Walewskik, J.W. Broadband information broadcasting using LED-based interior lighting. J. Lightwave Technol. 2008, 26, 3883–3892. [Google Scholar] [CrossRef] [Green Version]
- Khalid, A.M.; Cossu, G.; Corsini, R.; Choudhury, P.; Ciaramella, E. 1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation. IEEE Photon. J. 2012, 4, 1465–1473. [Google Scholar] [CrossRef] [Green Version]
- Tsonev, D.; Hyunchae, C.; Rajbhandari, S.; McKendry, J.J.D.; Videv, S.; Gu, E.; Haji, M.; Watson, S.; Kelly, A.E.; Faulkner, G.; et al. A 3-Gb/s single-LED OFDM-based wireless VLC link using a Gallium Nitride μLED. IEEE Photon. Tecnol. Lett. 2014, 26, 637–640. [Google Scholar] [CrossRef]
- Ma, S.; Yang, R.; Li, H.; Dong, Z.-L.; Gu, H.; Li, S. Achievable rate with closed-form for SISO channel and broadcast channel in visible light communication networks. J. Lightwave Technol. 2017, 35, 2778–2787. [Google Scholar] [CrossRef]
- Grobe, L.; Paraskevopoulos, A.; Hilt, J.; Schulz, D.; Lassak, F.; Hartlieb, F.; Kottke, C.; Jungnickel, V.; Langer, K.-D. High-speed visible light communication systems. IEEE Commun. Mag. 2013, 51, 60–66. [Google Scholar] [CrossRef]
- Shao, S.; Khreishah, A.; Ayyash, M.; Rahaim, M.B.; Elgala, H.; Jungnickel, V.; Schulz, D.; Little, T.D.C.; Hilt, J.; Freund, R. Design and analysis of a visible-light-communication enhanced WiFi system. J. Opt. Commun. Netw. 2015, 7, 960–973. [Google Scholar] [CrossRef]
- González, O.; Pérez-Jiménez, R.; Rodríguez, S.; Rabadán, J.; Ayala, A. OFDM over indoor wireless optical channel. IEEE Proc. Optoelectron. 2005, 152, 199–204. [Google Scholar] [CrossRef]
- Boyd, S. Multitone signals with low crest factor. IEEE Trans. Circuits Syst. 1986, 33, 1018–1022. [Google Scholar] [CrossRef]
- González, O.; Pérez-Jiménez, R.; Rodríguez, S.; Rabadán, J.; Ayala, A. Adaptive OFDM system for communications over the indoor wireless optical channel. IEEE Proc. Optoelectron. 2006, 153, 139–144. [Google Scholar] [CrossRef]
- Bykhovsky, D.; Arnon, S. An experimental comparison of different bit-and-power-allocation algorithms for DCO-OFDM. J. Lightw. Technol. 2014, 32, 1559–1564. [Google Scholar] [CrossRef]
- Park, B.; Cheon, H.; Kang, C.; Hong, D. A novel timing estimation method for OFDM systems. IEEE Commun. Lett. 2003, 7, 239–241. [Google Scholar] [CrossRef]
- Guerra Medina, M.F.; González, O.; Martín, I.R.; Rodríguez, S. Timing synchronization for OFDM-based visible light communication system. In Proceedings of the IEEE Wireless Telecommunications Symposium, London, UK, 18–20 April 2016; pp. 1–4. [Google Scholar]
- Liu, Y.; Qin, Z.; Elkashlan, M.; Ding, Z.; Nallanathan, A.; Hanzo, L. Nonorthogonal multiple access for 5G and beyond. Proc. IEEE 2017, 105, 2347–2381. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value | ||
---|---|---|---|
Room size (length × width × height): | |||
Number of LED arrays (lamps): | 4 () | ||
Number of LEDs per array: | 25 () | ||
Dimensions of each LED array: | |||
Positions of LED arrays | array 1: (, , ) | ||
(central point) (x, y, z) [m]: | array 2: (, , ) | ||
array 3: (, , ) | |||
array 4: (, , ) | |||
LED Lambertian order (n): | 1 | ||
Power of a single LED (): | 400 mW | ||
Total LED lamp power (P): | 10 W | ||
Receiver plane height: | m | ||
Total detector physical area (A): | cm | ||
Surface materials parameters [13]: | m | ||
Ceiling: | 1 | - | |
Floor: | 1 | - | |
Walls (plaster): | 1 | - | |
Windows (glass): | 0 | 280 | |
Windows dimensions (width × height): |
Parameter | Value | |
---|---|---|
Room size (length × width × height): | ||
Number of LED arrays (lamps): | 4 () | |
Number of LEDs per array: | 9 () | |
Dimensions of each LED array: | ||
Positions of LED arrays | array 1: (15, 15, 30) | |
(central point) (x, y, z) [cm]: | array 2: (45, 15, 30) | |
array 3: (15, 45, 30) | ||
array 4: (45, 45, 30) | ||
LED Lambertian order (n): | 1 | |
Total LED lamp power (P): | 250 mW | |
Receiver plane height: | 0 cm | |
Total detector physical area (A): | cm | |
Windows dimensions (width × height): |
Parameter | Value |
---|---|
Total number of subcarriers (): | 64 |
Number of information subcarriers (): | 63 |
Maximum number of bits per subcarrier (): | 8 (256-QAM) |
Target bit error rate (): | |
Modulation bandwidth (): | 10 MHz |
Cyclic prefix extension (): | 4 |
OFDM symbol period (): | 6.6 s |
Number of training sequences (): | 20 |
Number of random-data symbols (): | 2500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fortes, M.; González, O. Testbed for Experimental Characterization of Indoor Visible Light Communication Channels. Electronics 2021, 10, 1365. https://doi.org/10.3390/electronics10111365
Fortes M, González O. Testbed for Experimental Characterization of Indoor Visible Light Communication Channels. Electronics. 2021; 10(11):1365. https://doi.org/10.3390/electronics10111365
Chicago/Turabian StyleFortes, Miqueas, and Oswaldo González. 2021. "Testbed for Experimental Characterization of Indoor Visible Light Communication Channels" Electronics 10, no. 11: 1365. https://doi.org/10.3390/electronics10111365
APA StyleFortes, M., & González, O. (2021). Testbed for Experimental Characterization of Indoor Visible Light Communication Channels. Electronics, 10(11), 1365. https://doi.org/10.3390/electronics10111365