Flickering-Free Distance-Independent Modulation Scheme for OCC
Abstract
:1. Introduction
2. Related Work
3. Theoretical Description of the Proposed Modulation
3.1. Statistical Measures in Digital Image Processing
3.2. Theoretical Fundamentals
- The signal frequency is a multiple of the camera’s frame rate.
- The signal frequency is perfectly uncoupled.
- The signal frequency is between the previous values.
3.3. Wake up Process
4. Modulation/Demodulation Scheme
- If the frequency is a multiple of the camera’s frame rate (), the consecutive frames are highly correlated. Therefore, as stated in Section 3.1, the PCC is close to one.
- If the frequency is perfectly uncoupled (), the consecutive frames are almost anti-correlated, therefore the PCC is almost minus one.
- For the frequencies between these two cases (), the resulting images of consecutive frames vary from highly correlated to almost anti-correlated in a quasi linear relation, in other words, the PCC is between minus one and one.
- Consecutive frames highly correlated (), when the frequency is a multiple of the camera’s frame rate ().
- Consecutive frames highly anti-correlated (), when the frequency is perfectly uncoupled ().
- Consecutive frames moderately correlated (), when the frequency is greater than but close to a multiple of the camera’s frame rate.
- Consecutive frames moderately anti-correlated (), when the frequency is lower than but close to the uncoupled frequency.
4.1. Frequency Multiplier’s Selection
4.2. Switching Frequencies’ Selection
4.3. Modulation’s Advantages
5. Methodology
5.1. Simulation Setup
5.2. Experimental Setup
- Short range: D < 20 m.
- Medium range: 20 < D < 60 m.
- Long range: D > 60 m.
6. Results
6.1. Simulation’s Results
6.2. Experimental Results
- Short range: D m, .
- Medium range: D m, .
- Long range: D m, .
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IEEE. IEEE Standard for Local and Metropolitan Area Networks–Part 15.7: Short-Range Optical Wireless Communications IEEE Std 802.15.7-2018; IEEE: New York, NY, USA, 2019; pp. 1–407. [Google Scholar] [CrossRef]
- Heile, R. Short-Range Wireless Optical Communication. Revision to IEEE Standard 802.15.7-2011, heile ed.; IEEE: Piscataway, NJ, USA, 2014. [Google Scholar]
- Huang, W.; Tian, P.; Xu, Z. Design and implementation of a real-time CIM-MIMO optical camera communication system. Opt. Express 2016, 24, 24567–24579. [Google Scholar] [CrossRef] [PubMed]
- Saha, N.; Ifthekhar, M.S.; Le, N.T.; Jang, Y.M. Survey on optical camera communications: Challenges and opportunities. IET Optoelectron. 2015, 9, 172–183. [Google Scholar] [CrossRef]
- Kumar, N. Smart and intelligent energy efficient public illumination system with ubiquitous communication for smart city. In Proceedings of the International Conference on Smart Structures and Systems-ICSSS’13, Chennai, India, 28–29 March 2013; pp. 152–157. [Google Scholar] [CrossRef]
- Kim, J.E.; Kim, J.W.; Park, Y.; Kim, K.D. Color-Space-Based Visual-MIMO for V2X Communication. Sensors 2016, 16, 591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.C.; Chow, C.W.; Wei, L.Y.; Liu, Y.; Yeh, C.H. Long distance non-line-of-sight (NLOS) visible light signal detection based on rolling-shutter-patterning of mobile-phone camera. Opt. Express 2017, 25, 10103–10108. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Burbano, P.; Guerra, V.; Rabadan, J.; Perez-Jimenez, R. Optical Camera Communication for Smart Cities. In Proceedings of the 2017 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Qingdao, China, 22–24 October 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Izuka, N. OCC Proposal of Scope of Standarization and Applications: IEEE Std 802.15 SG7, izuka ed.; IEEE: Piscataway, NJ, USA, 2014. [Google Scholar]
- Nguyen, T.; Le, N.T.; Jang, Y.M. Asynchronous scheme for unidirectional optical camera communications (OCC). In Proceedings of the 2014 Sixth International Conference on Ubiquitous and Future Networks (ICUFN), Shanghai, China, 8–11 July 2014; pp. 48–51. [Google Scholar] [CrossRef]
- Nguyen, T.; Hong, C.H.; Le, N.T.; Jang, Y.M. High-speed asynchronous Optical Camera Communication using LED and rolling shutter camera. In Proceedings of the 2015 Seventh International Conference on Ubiquitous and Future Networks, Sapporo, Japan, 7–10 July 2015; pp. 214–219. [Google Scholar] [CrossRef]
- Danakis, C.; Afgani, M.; Povey, G.; Underwood, I.; Haas, H. Using a CMOS Camera Sensor for Visible Light Communication. In Proceedings of the 2012 IEEE Globecom Workshops, Anaheim, CA, USA, 3–7 December 2012; pp. 1244–1248. [Google Scholar] [CrossRef]
- Liang, K.; Chow, C.W.; Liu, Y. RGB visible light communication using mobile-phone camera and multi-input multi-output. Opt. Express 2016, 24, 9383–9388. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.W.; Chen, C.Y.; Chen, S.H. Visible light communication using mobile-phone camera with data rate higher than frame rate. Opt. Express 2015, 23, 26080–26085. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, N.; Lazik, P.; Rowe, A. Visual Light Landmarks for Mobile Devices. In Proceedings of the 13th International Symposium on Information Processing in Sensor Networks; IPSN ’14; IEEE Press: Piscataway, NJ, USA, 2014; pp. 249–260. [Google Scholar]
- Rajagopal, N.; Lazik, P.; Rowe, A. Hybrid Visible Light Communication for Cameras and Low-power Embedded Devices. In Proceedings of the 1st ACM MobiCom Workshop on Visible Light Communication Systems; VLCS ’14; ACM: New York, NY, USA, 2014; pp. 33–38. [Google Scholar] [CrossRef]
- Lee, H.Y.; Lin, H.M.; Wei, Y.L.; Wu, H.I.; Tsai, H.M.; Lin, K.C.J. RollingLight: Enabling Line-of-Sight Light-to-Camera Communications. In Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services; MobiSys ’15; ACM: New York, NY, USA, 2015; pp. 167–180. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.; Yuan, Q.; Qiao, Y.; Liao, K.; Yu, H. Digital image processing in led visible light communications using mobile phone camera. In Proceedings of the 2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC), Beijing, China, 23–25 September 2016; pp. 239–243. [Google Scholar] [CrossRef]
- Chen, S.H.; Chow, C.W. Color-Shift Keying and Code-Division Multiple-Access Transmission for RGB-LED Visible Light Communications Using Mobile Phone Camera. IEEE Photonics J. 2014, 6, 1–6. [Google Scholar] [CrossRef]
- Hu, P.; Pathak, P.H.; Feng, X.; Fu, H.; Mohapatra, P. Colorbars: Increasing Data Rate of LED-to-camera Communication Using Color Shift Keying. In Proceedings of the 11th ACM Conference on Emerging Networking Experiments and Technologies—CoNEXT15; ACM: New York, NY, USA, 2015; pp. 1–12. [Google Scholar] [CrossRef]
- Nguyen, T.; Le, N.T.; Jang, Y.M. Practical design of Screen-to-Camera based Optical Camera Communication. In Proceedings of the 2015 International Conference on Information Networking (ICOIN), Siem Reap, Cambodia, 12–14 January 2015; pp. 369–374. [Google Scholar] [CrossRef]
- Nguyen, T.; Le, N.T.; Jang, Y.M. Asynchronous Scheme for Optical Camera Communication-based Infrastructure-to-vehicle Communication. Int. J. Distrib. Sens. Netw. 2015, 11, 908139. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.W.; Wen, S.S.; Wang, X.L.; Liang, M.Z.; Li, M.Y.; Li, Q.C.; Liu, Y. Color-Shift Keying for Optical Camera Communication Using a Rolling Shutter Mode. IEEE Photonics J. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Z.; Zhang, J.; Huang, C.; Zhang, Q. Wearables Can Afford: Light-weight Indoor Positioning with Visible Light. In Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services; MobiSys ’15; ACM: New York, NY, USA, 2015; pp. 317–330. [Google Scholar] [CrossRef]
- Das, P.; Kim, B.Y.; Park, Y.; Kim, K.D. A New Color Space Based Constellation Diagram and Modulation Scheme for Color Independent VLC. Adv. Electr. Comput. Eng. 2012, 12, 11–18. [Google Scholar] [CrossRef]
- Das, P.; Kim, B.Y.; Park, Y.; Kim, K.D. Color-independent VLC based on a color space without sending target color information. Opt. Commun. 2013, 286, 69–73. [Google Scholar] [CrossRef]
- Roberts, R.D. Undersampled Frequency Shift ON-OFF keying (UFSOOK) for camera communications (CamCom). In Proceedings of the 2013 22nd Wireless and Optical Communication Conference, Chongqing, China, 16–18 May 2013; pp. 645–648. [Google Scholar] [CrossRef]
- Le, N.T.; Nguyen, T.; Jang, Y.M. Frequency shift on-off keying for optical camera communication. In Proceedings of the 2014 Sixth International Conference on Ubiquitous and Future Networks (ICUFN), Shanghai, China, 8–11 July 2014; pp. 22–25. [Google Scholar] [CrossRef]
- Chow, C.W.; Shiu, R.J.; Liu, Y.C.; Liu, Y.; Yeh, C.H. Non-flickering 100 m RGB visible light communication transmission based on a CMOS image sensor. Opt. Express 2018, 26, 7079–7084. [Google Scholar] [CrossRef] [PubMed]
- Atta, M.A.; Bermak, A. A 160 m visible light communication link using hybrid undersampled phase-frequency shift on-off keying and CMOS image sensor. Opt. Express 2019, 27, 2478–2487. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Ghassemlooy, Z.; Minh, H.L.; Tang, X.; Tsai, H.M. Undersampled phase shift ON-OFF keying for camera communication. In Proceedings of the 2014 Sixth International Conference on Wireless Communications and Signal Processing (WCSP), Hefei, China, 23–25 October 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, N.; Cheng, J.; Holzman, J.F. Undersampled differential phase shift on-off keying for optical camera communications with phase error detection. In Proceedings of the 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; pp. 916–921. [Google Scholar] [CrossRef] [Green Version]
- Luo, P.; Ghassemlooy, Z.; Minh, H.L.; Tsai, H.M.; Tang, X. Undersampled-PAM with subcarrier modulation for camera communications. In Proceedings of the 2015 Opto-Electronics and Communications Conference (OECC), Shanghai, China, 28 June–2 July 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Luo, P.; Zhang, M.; Ghassemlooy, Z.; Minh, H.L.; Tsai, H.M.; Tang, X.; Png, L.C.; Han, D. Experimental Demonstration of RGB LED-Based Optical Camera Communications. IEEE Photonics J. 2015, 7, 1–12. [Google Scholar] [CrossRef]
- Luo, P.; Zhang, M.; Ghassemlooy, Z.; Minh, H.L.; Tsai, H.M.; Tang, X.; Han, D. Experimental Demonstration of a 1024-QAM Optical Camera Communication System. IEEE Photonics Technol. Lett. 2016, 28, 139–142. [Google Scholar] [CrossRef]
- Luo, P.; Jiang, T.; Haigh, P.A.; Ghassemlooy, Z.; Zvanovec, S. Undersampled Pulse Width Modulation for Optical Camera Communications. In Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Amano, Y.; Kamakura, K.; Yamazato, T. Alamouti-type coding for visible light communication based on direct detection using image sensor. In Proceedings of the 2013 IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, USA, 9–13 December 2013; pp. 2430–2435. [Google Scholar] [CrossRef]
- Simon, M.; Vilnrotter, V. Alamouti-type space-time coding for free-space optical communication with direct detection. IEEE Trans. Wirel. Commun. 2005, 4, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Ebihara, K.; Kamakura, K.; Yamazato, T. Layered Transmission of Space-Time Coded Signals for Image-Sensor-Based Visible Light Communications. J. Light. Technol. 2015, 33, 4193–4206. [Google Scholar] [CrossRef]
- Masuda, K.; Kamakura, K.; Yamazato, T. Spatial modulation in layered space-time coding for image-sensor-based Visible Light Communication. In Proceedings of the 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 4–8 September 2016; pp. 1–6. [Google Scholar] [CrossRef]
State | ||||||
---|---|---|---|---|---|---|
Waiting | 223.87 | 4.22 | 252.52 | 4.26 | 168.95 | 4.66 |
Transmitting | 208.39 | 18.76 | 231.43 | 27.28 | 120.74 | 55.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chavez-Burbano, P.; Rabadan, J.; Guerra, V.; Perez-Jimenez, R. Flickering-Free Distance-Independent Modulation Scheme for OCC. Electronics 2021, 10, 1103. https://doi.org/10.3390/electronics10091103
Chavez-Burbano P, Rabadan J, Guerra V, Perez-Jimenez R. Flickering-Free Distance-Independent Modulation Scheme for OCC. Electronics. 2021; 10(9):1103. https://doi.org/10.3390/electronics10091103
Chicago/Turabian StyleChavez-Burbano, Patricia, Jose Rabadan, Victor Guerra, and Rafael Perez-Jimenez. 2021. "Flickering-Free Distance-Independent Modulation Scheme for OCC" Electronics 10, no. 9: 1103. https://doi.org/10.3390/electronics10091103
APA StyleChavez-Burbano, P., Rabadan, J., Guerra, V., & Perez-Jimenez, R. (2021). Flickering-Free Distance-Independent Modulation Scheme for OCC. Electronics, 10(9), 1103. https://doi.org/10.3390/electronics10091103