Testing Graph Robustness Indexes for EEG Analysis in Alzheimer’s Disease Diagnosis
Abstract
:1. Introduction
2. Related Works
3. Methods
- Section 3.1 aims to present a brief overview on the LORETA (Low Resolution Electromagnetic Tomography) family algorithms and the Lagged Linear Connectivity parameter.
- Section 3.2 is focused on presenting some selected indicators potentially able to describe the robustness degree (i.e., resilience) of graphs.
3.1. eLORETA Lagged Linear Connectivity Overview
Algorithm 1 eLORETA algorithm. |
Input: ; ; ; . |
1: Set > |
2: |
3: while > do |
4: |
5: for do |
6: |
7: end for |
8: end while |
9: |
3.2. The Examined Robustness Indexes
3.2.1. Connection Density Index
3.2.2. Randić Index
3.2.3. Kirchhoff Index
4. Experiments
4.1. Robustness Indexes’ Results
4.2. Analysis
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lenartowicz, A.; Poldrack, R. Brain Imaging; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Ke, Q.; Zhang, J.; Wei, W.; Damaševičius, R.; Woźniak, M. Adaptive independent subspace analysis of brain magnetic resonance imaging data. IEEE Access 2019, 7, 12252–12261. [Google Scholar] [CrossRef]
- Dauwels, J.; Vialatte, F.; Cichocki, A. Diagnosis of Alzheimer’s disease from EEG signals: Where are we standing? Curr. Alzheimer Res. 2010, 7, 487–505. [Google Scholar] [CrossRef] [Green Version]
- Labate, D.; La Foresta, F.; Palamara, I.; Morabito, G.; Bramanti, A.; Zhang, Z.; Morabito, F.C. EEG complexity modifications and altered compressibility in mild cognitive impairment and Alzheimer’s disease. In Recent Advances of Neural Network Models and Applications; Springer: Cham, Switzerland, 2014; pp. 163–173. [Google Scholar]
- Wang, G.; Ren, D. Effect of brain-to-skull conductivity ratio on EEG source localization accuracy. BioMed Res. Int. 2013, 2013, 459346. [Google Scholar] [CrossRef] [Green Version]
- Bastos, A.M.; Schoffelen, J.M. A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front. Syst. Neurosci. 2016, 9, 175. [Google Scholar] [CrossRef] [Green Version]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186. [Google Scholar] [CrossRef]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010, 52, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Hoory, S.; Linial, N.; Wigderson, A. Expander graphs and their applications. Bull. Am. Math. Soc. 2006, 43, 439–561. [Google Scholar] [CrossRef]
- Jeong, J. EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 2004, 115, 1490–1505. [Google Scholar] [CrossRef] [PubMed]
- König, T.; Prichep, L.; Dierks, T.; Hubl, D.; Wahlund, L.; John, E.; Jelic, V. Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 2005, 26, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Sankari, Z.; Adeli, H.; Adeli, A. Intrahemispheric, interhemispheric, and distal EEG coherence in Alzheimer’s disease. Clin. Neurophysiol. 2011, 122, 897–906. [Google Scholar] [CrossRef] [PubMed]
- Dattola, S.; Morabito, F.C.; Mammone, N.; La Foresta, F. Findings about LORETA Applied to High-Density EEG—A Review. Electronics 2020, 9, 660. [Google Scholar] [CrossRef] [Green Version]
- Pascual-Marqui, R.D. Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: Exact, zero error localization. arXiv 2007, arXiv:0710.3341. [Google Scholar]
- Pascual-Marqui, R.D. Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: Frequency decomposition. arXiv 2007, arXiv:0711.1455. [Google Scholar]
- Dauwels, J.; Vialatte, F.; Musha, T.; Cichocki, A. A comparative study of synchrony measures for the early diagnosis of Alzheimer’s disease based on EEG. NeuroImage 2010, 49, 668–693. [Google Scholar] [CrossRef] [Green Version]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Micheloyannis, S.; Pachou, E.; Stam, C.J.; Breakspear, M.; Bitsios, P.; Vourkas, M.; Erimaki, S.; Zervakis, M. Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr. Res. 2006, 87, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Ferri, R.; Rundo, F.; Bruni, O.; Terzano, M.G.; Stam, C.J. Small-world network organization of functional connectivity of EEG slow-wave activity during sleep. Clin. Neurophysiol. 2007, 118, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Smit, D.J.; Stam, C.J.; Posthuma, D.; Boomsma, D.I.; De Geus, E.J. Heritability of “small-world” networks in the brain: A graph theoretical analysis of resting-state EEG functional connectivity. Hum. Brain Mapp. 2008, 29, 1368–1378. [Google Scholar] [CrossRef] [Green Version]
- Stam, C.J.; Jones, B.; Nolte, G.; Breakspear, M.; Scheltens, P. Small-world networks and functional connectivity in Alzheimer’s disease. Cereb. Cortex 2007, 17, 92–99. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Chen, Z.; Gong, G.; Evans, A. Neuronal networks in Alzheimer’s disease. Neuroscientist 2009, 15, 333–350. [Google Scholar]
- Wang, R.; Wang, J.; Yu, H.; Wei, X.; Yang, C.; Deng, B. Decreased coherence and functional connectivity of electroencephalograph in Alzheimer’s disease. Chaos Interdiscip. J. Nonlinear Sci. 2014, 24, 033136. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Zhang, Y.; Lin, L.; Zhou, Y.; Xu, C.; Jiang, T.; Alzheimer’s Disease Neuroimaging Initiative. Abnormal cortical networks in mild cognitive impairment and Alzheimer’s disease. PLoS Comput. Biol. 2010, 6, e1001006. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, Y.; Yan, H.; Bai, L.; Dai, R.; Wei, W.; Zhong, C.; Xue, T.; Wang, H.; Feng, Y.; et al. Altered topological patterns of brain networks in mild cognitive impairment and Alzheimer’s disease: A resting-state fMRI study. Psychiatry Res. Neuroimaging 2012, 202, 118–125. [Google Scholar] [CrossRef] [PubMed]
- La Foresta, F.; Morabito, F.C.; Marino, S.; Dattola, S. High-density EEG signal processing based on active-source reconstruction for brain network analysis in alzheimer’s disease. Electronics 2019, 8, 1031. [Google Scholar] [CrossRef] [Green Version]
- Xie, T.; He, Y. Mapping the Alzheimer’s brain with connectomics. Front. Psychiatry 2012, 2, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tijms, B.M.; Wink, A.M.; de Haan, W.; van der Flier, W.M.; Stam, C.J.; Scheltens, P.; Barkhof, F. Alzheimer’s disease: Connecting findings from graph theoretical studies of brain networks. Neurobiol. Aging 2013, 34, 2023–2036. [Google Scholar] [CrossRef]
- Rossini, P.M.; Di Iorio, R.; Vecchio, F.; Anfossi, M.; Babiloni, C.; Bozzali, M.; Bruni, A.C.; Cappa, S.F.; Escudero, J.; Fraga, F.J.; et al. Early diagnosis of Alzheimer’s disease: The role of biomarkers including advanced EEG signal analysis. Report from the IFCN-sponsored panel of experts. Clin. Neurophysiol. 2020, 131, 1287–1310. [Google Scholar] [CrossRef]
- Callaway, D.; Newman, M.; Strogatz, S.; Watts, D. Network robustness and fragility: Percolation on random graphs. Phys. Rev. Lett. 2000, 85, 5468. [Google Scholar] [CrossRef] [Green Version]
- Klau, G.W.; Weiskircher, R. Robustness and resilience. In Network Analysis; Springer: Berlin/Heidelberg, Germany, 2005; pp. 417–437. [Google Scholar]
- Wang, Z.; Nistor, M.S.; Pickl, S.W. Analysis of the definitions of resilience. IFAC-PapersOnLine 2017, 50, 10649–10657. [Google Scholar] [CrossRef]
- Albert, R.; Jeong, H.; Barabasi, A. Error and attack tolerance of complex networks. Nature 2000, 406, 378–382. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Liu, E.; Liu, D.; Qu, X.; Ma, R.; Wang, P.; Liu, X. RSH: A link-addition strategy for capacity enhancement in scale-free networks. IEEE Commun. Lett. 2015, 19, 2110–2113. [Google Scholar] [CrossRef]
- Burt, R.S. Structural Holes: The Social Structure of Competition; Harvard University Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Zhang, D.; Sterbenz, J.P. Robustness analysis of mobile ad hoc networks using human mobility traces. In Proceedings of the 2015 11th International Conference on the Design of Reliable Communication Networks (DRCN), Kansas City, MO, USA, 24–27 March 2015; pp. 125–132. [Google Scholar]
- Wang, X.; Miao, S.; Tang, J. Vulnerability and resilience analysis of the air traffic control sector network in China. Sustainability 2020, 12, 3749. [Google Scholar] [CrossRef]
- Gao, Y.; Shi, J.; Wang, X.; Tan, Q.; Zhao, C.; Yin, Z. Topology Measurement and Analysis on Ethereum P2P Network. In Proceedings of the 2019 IEEE Symposium on Computers and Communications (ISCC), Barcelona, Spain, 30 June–3 July 2019; pp. 1–7. [Google Scholar]
- Chung, F. Spectral Graph Theory; American Mathematical Society: Providence, RI, USA, 1997; Volume 92. [Google Scholar]
- Tong, H.; Prakash, B.; Tsourakakis, C.; Eliassi-Rad, T.; Faloutsos, C.; Chau, D. On the vulnerability of large graphs. In Proceedings of the 2010 IEEE International Conference on Data Mining (ICDM 2010), Sydney, NSW, Australia, 13–17 December 2010; pp. 1091–1096. [Google Scholar]
- Long, T.L.; Eliassi-Rad, T.; Tong, H. MET: A fast algorithm for minimizing propagation in large graphs with small eigen-gaps. In Proceedings of the SIAM International Conference on Data Mining (SDM 2015), Vancouver, BC, Canada, 30 April–2 May 2015; pp. 694–702. [Google Scholar]
- Saha, S.; Adiga, A.; Prakash, B.; Vullikanti, A.; Kumar, S. Approximation algorithms for reducing the spectral radius to control epidemic spread. In Proceedings of the SIAM International Conference on Data Mining (SDM 2015), Vancouver, BC, Canada, 30 April–2 May 2015; pp. 568–576. [Google Scholar]
- Estrada, E. Network robustness to targeted attacks. The interplay of expansibility and degree distribution. Eur. Phys. J. B Condens. Matter Complex Syst. 2006, 52, 563–574. [Google Scholar] [CrossRef]
- Malliaros, F.; Megalooikonomou, V.; Faloutsos, C. Estimating robustness in large social graphs. Knowl. Inf. Syst. 2015, 45, 645–678. [Google Scholar] [CrossRef]
- Chan, H.; Akoglu, L.; Tong, H. Make it or break it: Manipulating robustness in large networks. In Proceedings of the SIAM International Conference on Data Mining (SDM 2014), Philadelphia, PA, USA, 24–26 April 2014; pp. 325–333. [Google Scholar]
- Chan, H.; Han, S.; Akoglu, L. Where graph topology matters: The robust subgraph problem. In Proceedings of the SIAM International Conference on Data Mining (SDM 2015), Vancouver, BC, Canada, 30 April–2 May 2015; pp. 10–18. [Google Scholar]
- Fiedler, M. Algebraic connectivity of graphs. Czechoslov. Math. J. 1973, 23, 298–305. [Google Scholar] [CrossRef]
- Jamakovic, A.; Van Mieghem, P. On the robustness of complex networks by using the algebraic connectivity. In Proceedings of the International Conference on Research in Networking, Singapore, 5–9 May 2008; pp. 183–194. [Google Scholar]
- Duan, F.; Huang, Z.; Sun, Z.; Zhang, Y.; Zhao, Q.; Cichocki, A.; Yang, Z.; Solé-Casals, J. Topological Network Analysis of Early Alzheimer’s Disease Based on Resting-State EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2164–2172. [Google Scholar] [CrossRef]
- Phillips, D.J.; McGlaughlin, A.; Ruth, D.; Jager, L.R.; Soldan, A.; Alzheimer’s Disease Neuroimaging Initiative. Graph theoretic analysis of structural connectivity across the spectrum of Alzheimer’s disease: The importance of graph creation methods. NeuroImage Clin. 2015, 7, 377–390. [Google Scholar] [CrossRef] [Green Version]
- Canuet, L.; Tellado, I.; Couceiro, V.; Fraile, C.; Fernandez-Novoa, L.; Ishii, R.; Takeda, M.; Cacabelos, R. Resting-state network disruption and APOE genotype in Alzheimer’s disease: A lagged functional connectivity study. PLoS ONE 2012, 7, e46289. [Google Scholar] [CrossRef]
- Hata, M.; Kazui, H.; Tanaka, T.; Ishii, R.; Canuet, L.; Pascual-Marqui, R.D.; Aoki, Y.; Ikeda, S.; Kanemoto, H.; Yoshiyama, K.; et al. Functional connectivity assessed by resting state EEG correlates with cognitive decline of Alzheimer’s disease–An eLORETA study. Clin. Neurophysiol. 2016, 127, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Babiloni, C.; Del Percio, C.; Lizio, R.; Noce, G.; Lopez, S.; Soricelli, A.; Ferri, R.; Pascarelli, M.T.; Catania, V.; Nobili, F.; et al. Functional cortical source connectivity of resting state electroencephalographic alpha rhythms shows similar abnormalities in patients with mild cognitive impairment due to Alzheimer’s and Parkinson’s diseases. Clin. Neurophysiol. 2018, 129, 766–782. [Google Scholar] [CrossRef]
- Pascual-Marqui, R.D.; Michel, C.M.; Lehmann, D. Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 1994, 18, 49–65. [Google Scholar] [CrossRef]
- Pascual-Marqui, R.D.; Lehmann, D.; Koukkou, M.; Kochi, K.; Anderer, P.; Saletu, B.; Tanaka, H.; Hirata, K.; John, E.R.; Prichep, L.; et al. Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 3768–3784. [Google Scholar] [CrossRef]
- Nunez, P.L.; Srinivasan, R.; Westdorp, A.F.; Wijesinghe, R.S.; Tucker, D.M.; Silberstein, R.B.; Cadusch, P.J. EEG coherency: I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr. Clin. Neurophysiol. 1997, 103, 499–515. [Google Scholar] [CrossRef]
- Randic, M. Characterization of molecular branching. J. Am. Chem. Soc. 1975, 97, 6609–6615. [Google Scholar] [CrossRef]
- Li, X.; Shi, Y. A survey on the Randic index. Commun. Math. Comput. Chem. 2008, 59, 127–156. [Google Scholar]
- Cavers, M. The Normalized Laplacian Matrix and the general Randic Indexes of Graphs. Ph.D. Thesis, University of Regina, Regina, SK, Canada, 2010. [Google Scholar]
- Peng, Y.; Li, J.; He, W. Estimating Robustness Through Kirchhoff Index in Mesh Graphs. IEEE Access 2020, 8, 111822–111828. [Google Scholar] [CrossRef]
- Klein, D.J.; Randić, M. Resistance distance. J. Math. Chem. 1993, 12, 81–95. [Google Scholar] [CrossRef]
- De Meo, P.; Messina, F.; Rosaci, D.; Sarné, G.M.L.; Vasilakos, A.V. Estimating graph robustness through the Randic index. IEEE Trans. Cybern. 2017, 48, 3232–3242. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Martínez, C.; Méndez-Bermúdez, J.; Rodríguez, J.M.; Sigarreta, J.M. Computational and analytical studies of the Randić index in Erdös–Rényi models. Appl. Math. Comput. 2020, 377, 125137. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.; Jahanbai, A.; Sheikholeslami, S. Relationships between Randic index and other topological indices. Commun. Comb. Optim. 2021, 6, 137–154. [Google Scholar]
- Ellens, W.; Spieksma, F.; Van Mieghem, P.; Jamakovic, A.; Kooij, R. Effective graph resistance. Linear Algebra Its Appl. 2011, 435, 2491–2506. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.B.; Cao, J. The resistance distances of electrical networks based on Laplacian generalized inverse. Neurocomputing 2015, 167, 306–313. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, J.B.; Cao, J. Further results on resistance distance and Kirchhoff index in electric networks. Discret. Dyn. Nat. Soc. 2016, 2016, 4682527. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Liu, J.B.; Cao, J. The Laplacian polynomial and Kirchhoff index of graphs based on R-graphs. Neurocomputing 2016, 177, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Ellens, W. Effective Resistance and Other Graph Measures for Network Robustness. Master’s Thesis, Leiden University, Leiden, The Netherlands, 2011. [Google Scholar]
- Mammone, N.; Morabito, F.C. Independent component analysis and high-order statistics for automatic artifact rejection. In Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, Montreal, QC, Canada, 31 July–4 August 2005; Volume 4, pp. 2447–2452. [Google Scholar]
- Gibbons, J.; Chakraborti, S. Nonparametric Statistical Inference; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Vecchio, F.; Miraglia, F.; Marra, C.; Quaranta, D.; Vita, M.G.; Bramanti, P.; Rossini, P.M. Human brain networks in cognitive decline: A graph theoretical analysis of cortical connectivity from EEG data. J. Alzheimer’s Dis. 2014, 41, 113–127. [Google Scholar] [CrossRef]
- Vecchio, F.; Miraglia, F.; Curcio, G.; Altavilla, R.; Scrascia, F.; Giambattistelli, F.; Quattrocchi, C.C.; Bramanti, P.; Vernieri, F.; Rossini, P.M. Cortical brain connectivity evaluated by graph theory in dementia: A correlation study between functional and structural data. J. Alzheimer’s Dis. 2015, 45, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Vecchio, F.; Miraglia, F.; Quaranta, D.; Granata, G.; Romanello, R.; Marra, C.; Bramanti, P.; Rossini, P.M. Cortical connectivity and memory performance in cognitive decline: A study via graph theory from EEG data. Neuroscience 2016, 316, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Miraglia, F.; Vecchio, F.; Bramanti, P.; Rossini, P.M. EEG characteristics in “eyes-open” versus “eyes-closed” conditions: Small-world network architecture in healthy aging and age-related brain degeneration. Clin. Neurophysiol. 2016, 127, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Lasaponara, S.; Mauro, F.; Carducci, F.; Paoletti, P.; Tombini, M.; Quattrocchi, C.C.; Mallio, C.A.; Errante, Y.; Scarciolla, L.; Ben-Soussan, T.D. Increased alpha band functional connectivity following the Quadrato Motor Training: A longitudinal study. Front. Hum. Neurosci. 2017, 11, 282. [Google Scholar] [CrossRef] [Green Version]
- Ocejo, J.R.; Bukubiye, E.K. BTW: A New Distance Metric for Classification. In Distributed Computing and Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2012; pp. 701–708. [Google Scholar]
No. of CNT | 10 |
No. of MCI | 21 |
No. of AD | 9 |
HD-EEG acquisition system (256-channel) | HydroCel Geodesic Sensor Net |
Electrode impedance | <50 k |
Sampling rate | 250 Hz |
Band-pass filter process | 1–40 Hz |
Channels excluded for too many artifacts | 83 of 256 |
Analyzed EEG signal | 2 min |
Brain regions | 84 |
Threshold | Connected Nodes | ||
---|---|---|---|
CNT | MCI | AD | |
0 | 6972 | 6972 | 6972 |
0.05 | 6857 | 6848 | 6837 |
0.10 | 6342 | 6300 | 6255 |
0.15 | 5384 | 5315 | 5233 |
0.20 | 4264 | 4176 | 4084 |
0.25 | 3203 | 3112 | 3028 |
0.30 | 2309 | 2228 | 2162 |
0.35 | 1612 | 1548 | 1502 |
0.40 | 1098 | 1049 | 1020 |
0.45 | 730 | 697 | 680 |
0.50 | 476 | 454 | 445 |
0.55 | 304 | 292 | 288 |
0.60 | 189 | 184 | 183 |
0.65 | 117 | 115 | 113 |
0.70 | 71 | 70 | 69 |
0.75 | 42 | 42 | 42 |
0.80 | 24 | 24 | 25 |
0.85 | 13 | 14 | 14 |
0.90 | 7 | 8 | 8 |
0.95 | 4 | 4 | 4 |
1 | 0 | 0 | 0 |
Threshold | |||||||||
---|---|---|---|---|---|---|---|---|---|
CNT | MCI | AD | CNT | MCI | AD | CNT | MCI | AD | |
0 | 1.000 | 1.000 | 1.000 | 0.504 | 0.483 | 0.472 | 0.248 | 0.245 | 0.241 |
0.05 | 0.984 | 0.982 | 0.981 | 0.502 | 0.482 | 0.470 | 0.247 | 0.244 | 0.240 |
0.1 | 0.910 | 0.904 | 0.897 | 0.481 | 0.461 | 0.448 | 0.239 | 0.235 | 0.230 |
0.15 | 0.772 | 0.762 | 0.751 | 0.418 | 0.398 | 0.387 | 0.213 | 0.209 | 0.202 |
0.2 | 0.612 | 0.599 | 0.586 | 0.324 | 0.305 | 0.297 | 0.170 | 0.167 | 0.157 |
0.25 | 0.459 | 0.446 | 0.434 | 0.224 | 0.210 | 0.205 | 0.118 | 0.117 | 0.107 |
0.30 | 0.331 | 0.320 | 0.310 | 0.141 | 0.131 | 0.128 | 0.068 | 0.069 | 0.063 |
0.35 | 0.231 | 0.222 | 0.215 | 0.082 | 0.076 | 0.075 | 0.029 | 0.032 | 0.029 |
0.40 | 0.157 | 0.151 | 0.146 | 0.045 | 0.041 | 0.041 | 0.010 | 0.010 | 0.011 |
0.45 | 0.105 | 0.100 | 0.097 | 0.023 | 0.021 | 0.021 | 0.001 | 0.002 | 0.002 |
0.50 | 0.068 | 0.065 | 0.064 | 0.011 | 0.010 | 0.010 | 0.000 | 0.000 | 0.000 |
0.55 | 0.044 | 0.042 | 0.041 | 0.005 | 0.005 | 0.005 | 0.000 | 0.000 | 0.000 |
0.60 | 0.027 | 0.026 | 0.026 | 0.002 | 0.002 | 0.002 | 0.000 | 0.000 | 0.000 |
0.65 | 0.017 | 0.016 | 0.016 | 0.001 | 0.001 | 0.001 | 0.000 | - | 0.000 |
0.70 | 0.010 | 0.010 | 0.010 | 0.000 | 0.000 | 0.000 | - | - | - |
0.80 | 0.003 | 0.003 | 0.004 | 0.000 | 0.000 | 0.000 | - | - | - |
0.85 | 0.002 | 0.002 | 0.002 | 0.000 | 0.000 | 0.000 | - | - | - |
0.90 | 0.001 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | - | - | - |
0.95 | 0.001 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | - | - | - |
1.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | - | - | - |
Threshold | p-Value | p-Value | p-Value | |||
---|---|---|---|---|---|---|
CNT-MCI | CNT-AD | CNT-MCI | CNT-AD | CNT-MCI | CNT-AD | |
0 | - | - | 0.1084 | 0.0181 * | 0.2542 | 0.0237 * |
0.05 | 0.7203 | 0.0141 * | 0.1083 | 0.0179 * | 0.2616 | 0.0242 * |
0.1 | 0.2999 | 0.0248 * | 0.1086 | 0.0184 * | 0.2925 | 0.0263 * |
0.15 | 0.2474 | 0.0205 * | 0.1029 | 0.0177 * | 0.4139 | 0.0260 * |
0.2 | 0.1693 | 0.150 * | 0.0832 | 0.0168 * | 0.6168 | 0.0288 * |
0.25 | 0.1254 | 0.0129 * | 0.0686 | 0.0156 * | 0.8268 | 0.0382 * |
Threshold | ||||||
---|---|---|---|---|---|---|
MCI | AD | MCI | AD | MCI | AD | |
0 | 1.000 | 1.000 | 0.961 | 0.936 | 0.986 | 0.971 |
0.05 | 0.999 | 0.997 | 0.961 | 0.936 | 0.986 | 0.970 |
0.1 | 0.993 | 0.986 | 0.958 | 0.932 | 0.984 | 0.964 |
0.15 | 0.987 | 0.972 | 0.953 | 0.925 | 0.981 | 0.948 |
0.2 | 0.979 | 0.958 | 0.944 | 0.918 | 0.983 | 0.928 |
0.25 | 0.972 | 0.945 | 0.935 | 0.912 | 0.991 | 0.906 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dattola, S.; Mammone, N.; Morabito, F.C.; Rosaci, D.; Sarné, G.M.L.; La Foresta, F. Testing Graph Robustness Indexes for EEG Analysis in Alzheimer’s Disease Diagnosis. Electronics 2021, 10, 1440. https://doi.org/10.3390/electronics10121440
Dattola S, Mammone N, Morabito FC, Rosaci D, Sarné GML, La Foresta F. Testing Graph Robustness Indexes for EEG Analysis in Alzheimer’s Disease Diagnosis. Electronics. 2021; 10(12):1440. https://doi.org/10.3390/electronics10121440
Chicago/Turabian StyleDattola, Serena, Nadia Mammone, Francesco Carlo Morabito, Domenico Rosaci, Giuseppe Maria Luigi Sarné, and Fabio La Foresta. 2021. "Testing Graph Robustness Indexes for EEG Analysis in Alzheimer’s Disease Diagnosis" Electronics 10, no. 12: 1440. https://doi.org/10.3390/electronics10121440
APA StyleDattola, S., Mammone, N., Morabito, F. C., Rosaci, D., Sarné, G. M. L., & La Foresta, F. (2021). Testing Graph Robustness Indexes for EEG Analysis in Alzheimer’s Disease Diagnosis. Electronics, 10(12), 1440. https://doi.org/10.3390/electronics10121440