A Survey on EEG Signal Processing Techniques and Machine Learning: Applications to the Neurofeedback of Autobiographical Memory Deficits in Schizophrenia
Abstract
:1. Introduction
2. Brain and EEG Signal Acquisition
3. EEG Signal Processing
4. Machine Learning Algorithms Employed in EEG Signal Classification
5. EEG Neurofeedback in Autobiographical Memory Analyses
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Meziani, A.; Djouani, K.; Medkour, T.; Chibani, A. A Lasso quantile periodogram based feature extraction for EEG-based motor imagery. J. Neurosci. Methods 2019, 328, 108434. [Google Scholar] [CrossRef]
- von Bunau, P.; Meinecke, F.C.; Scholler, S.; Muller, K.R. Finding stationary brain sources in EEG data. In Proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Buenos Aire, Argentina, 30 August–4 September 2010; pp. 2810–2813. [Google Scholar] [CrossRef]
- Feyissa, A.M.; Tatum, W.O. Adult EEG. Handb. Clin. Neurol. 2019, 160, 103–124. [Google Scholar] [CrossRef]
- Micoulaud-Franchi, J.A.; McGonigal, A.; Lopez, R.; Daudet, C.; Kotwas, I.; Bartolomei, F. Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice. Neurophysiol. Clin. 2015, 45, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Ahmadlou, M.; Adeli, H. Functional community analysis of brain: A new approach for EEG-based investigation of the brain pathology. Neuroimage 2011, 58, 401–408. [Google Scholar] [CrossRef]
- Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain computer interfaces, a review. Sensors 2012, 12, 121112–121179. [Google Scholar] [CrossRef] [PubMed]
- Huster, R.J.; Calhoun, V.D. Progress in EEG: Multi-subject Decomposition and Other Advanced Signal Processing Approaches. Brain Topogr. 2018, 31, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urigüen, J.A.; Garcia-Zapirain, B. EEG artifact removal-state-of-the-art and guidelines. J. Neural Eng. 2015, 12, 031001. [Google Scholar] [CrossRef]
- Jiang, X.; Bian, G.B.; Tian, Z. Removal of Artifacts from EEG Signals: A Review. Sensors 2019, 19, 987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ai, Q.; Chen, A.; Chen, K.; Liu, Q.; Zhou, T.; Xin, S.; Ji, Z. Feature extraction of four-class motor imagery EEG signals based on functional brain network. J. Neural Eng. 2019, 16, 026032. [Google Scholar] [CrossRef]
- Khademi, A.; Reiche, B.; DiGregorio, J.; Arezza, G.; Moody, A.R. Whole volume brain extraction for multi-centre, multi-disease FLAIR MRI datasets. Magn. Reson. Imaging 2020, 66, 116–130. [Google Scholar] [CrossRef] [Green Version]
- Hira, Z.M.; Gillies, D.F. A Review of feature selection and feature extraction methods applied on microarray data. Adv. Bioinform. 2015, 2015, 198363. [Google Scholar] [CrossRef]
- Ker, J.; Bai, Y.; Lee, H.Y.; Rao, J.; Wang, L. Automated brain histology classification using machine learning. J. Clin. Neurosci. 2019, 66, 239–245. [Google Scholar] [CrossRef]
- Craik, A.; He, Y.; Contreras-Vidal, J.L. Deep learning for electroencephalogram (EEG) classification tasks: A review. J. Neural Eng. 2019, 16, 031001. [Google Scholar] [CrossRef] [PubMed]
- Burgos, N.; Colliot, O. Machine learning for classification and prediction of brain diseases: Recent advances and upcoming challenges. Curr. Opin. Neurol. 2020, 33, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Calhoun, V.D.; Sui, J. Machine learning in major depression: From classification to treatment outcome prediction. CNS Neurosci. Ther. 2018, 24, 1037–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanegas, M.I.; Blangero, A.; Galvin, J.E.; Di Rocco, A.; Quartarone, A.; Ghilardi, M.F.; Kelly, S.P. Altered dynamics of visual contextual interactions in Parkinson’s disease. NPJ Parkinsons Dis. 2019, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Vanegas, M.I.; Ghilardi, M.F.; Kelly, S.P.; Blangero, A. Machine learning for EEG-based biomarkers in Parkinson’s disease. In Proceedings of the BIBM 2018: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM18), Madrid, Spain, 3–6 December 2018; pp. 2661–2665. [Google Scholar] [CrossRef]
- Casillo, S.M.; Luy, D.D.; Goldschmidt, E. A History of the Lobes of the Brain. World Neurosurg. 2020, 134, 353–360. [Google Scholar] [CrossRef]
- Caserta, M.T.; Bannon, Y.; Fernandez, F.; Giunta, B.; Schoenberg, M.R.; Tan, J. Normal brain aging clinical, immunological, neuropsychological, and neuroimaging features. Int. Rev. Neurobiol. 2009, 84, 1–19. [Google Scholar] [CrossRef]
- Hernández-Peón, R.; Sterman, M.B. Brain functions. Annu. Rev. Psychol. 1966, 17, 363–394. [Google Scholar] [CrossRef]
- Horn, A.; Ostwald, D.; Reisert, M.; Blankenburg, F. The structural-functional connectome and the default mode network of the human brain. Neuroimage 2014, 102, 142–151. [Google Scholar] [CrossRef]
- Wikipedia. File: Lobes of the Brain NL.svg. 2021. Available online: https://es.m.wikipedia.org/wiki/Archivo:Lobes_of_the_brain_NL.svg (accessed on 17 November 2021).
- Neuralink. 2016. Available online: https://neuralink.com (accessed on 17 November 2021).
- OpenBCI. 2014. Available online: https://openbci.com (accessed on 17 November 2021).
- Tobii. 2001. Available online: https://www.tobii.com (accessed on 17 November 2021).
- Koch, G.; Caltagirone, C. Non-invasive brain stimulation: From brain physiology to clinical opportunity. Neurosci. Lett. 2020, 719, 134496. [Google Scholar] [CrossRef]
- Nardone, R.; Höller, Y.; Leis, S.; Höller, P.; Thon, N.; Thomschewski, A.; Golaszewski, S.; Brigo, F.; Trinka, E. Invasive and non-invasive brain stimulation for treatment of neuropathic pain in patients with spinal cord injury: A review. J. Spinal Cord Med. 2014, 37, 19–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomons, C.D.; Shanmugasundaram, V. A review of transcranial electrical stimulation methods in stroke rehabilitation. Neurol. India 2019, 67, 417–423. [Google Scholar] [CrossRef]
- Biasiucci, A.; Franceschiello, B.; Murray, M.M. Electroencephalography. Curr. Biol. 2019, 29, R80–R85. [Google Scholar] [CrossRef] [Green Version]
- Berger, H. Über das elektroenkephalogramm des menschen. Eur. Arch. Psychiatry Clin. Neurosci. 1929, 87, 527–570. [Google Scholar] [CrossRef]
- Saeid, S.; Chambers, J.A. EEG Signal Processing; John Wiley & Sons: Chichester, UK, 2007. [Google Scholar] [CrossRef]
- Durongbhan, P.; Zhao, Y.; Chen, L.; Zis, P.; De Marco, M.; Unwin, Z.C.; Venneri, A.; He, X.; Li, S.; Zhao, Y.; et al. A Dementia Classification Framework Using Frequency and Time-Frequency Features Based on EEG Signals. IEEE Trans. Neural Syst. Rehabilit. Eng. 2019, 27, 826–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miwakeichi, F.; Martínez-Montes, E.; Valdés-Sosa, P.A.; Nishiyama, N.; Mizuhara, H.; Yamaguchi, Y. Decomposing EEG data into space-time-frequency components using Parallel Factor Analysis. Neuroimage 2004, 22, 1035–1045. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, G.; Zhang, X.; Yan, X.; Li, L.; Xu, C.; Yu, T.; Liu, C.; Zhu, Y.; Lin, Y.; et al. Time-frequency analysis of intracranial EEG in patients with myoclonic seizures. Brain Res. 2016, 1652, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Auboiroux, V.; Larzabal, C.; Langar, L.; Rohu, V.; Mishchenko, A.; Arizumi, N.; Labyt, E.; Benabid, A.L.; Aksenova, T. Space-Time-Frequency Multi-Sensor Analysis for Motor Cortex Localization Using Magnetoencephalography. Sensors 2020, 20, 2706. [Google Scholar] [CrossRef]
- Khoshnevis, S.A.; Sankar, R. Applications of higher order statistics in electroencephalography signal processing: A comprehensive survey. IEEE Rev. Biomed. Eng. 2020, 13, 169–183. [Google Scholar] [CrossRef]
- Olias, J.; Martín-Clemente, R.; Sarmiento-Vega, M.A.; Cruces, S. EEG signal processing in mi-BCI applications with improved covariance matrix estimators. IEEE Trans. Neural Syst. Rehabilit. Eng. 2019, 27, 895–904. [Google Scholar] [CrossRef]
- Massana, J.; Raya, O.; Gauchola, J.; Lopez, B. SignalEEG A practical tool for EEG signal data mining. Neuroinformatics 2021, 19, 567–583. [Google Scholar] [CrossRef]
- McIntosh, J.R.; Sajda, P. Estimation of phase in EEG rhythms for real-time applications. J. Neural Eng. 2020, 17, 034002. [Google Scholar] [CrossRef] [Green Version]
- Lv, H.; Tang, H. Machine Learning Methods and Their Application Research. In Proceedings of the 2nd International Symposium on Intelligence Information Processing and Trusted Computing, Wuhan, China, 22–23 October 2011; pp. 108–110. [Google Scholar] [CrossRef]
- Wang, H.; Ma, C.; Zhou, L. A Brief Review of Machine Learning and Its Application. In Proceedings of the International Conference on Information Engineering and Computer Science, Wuhan, China, 19–20 December 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Zuo, X.N. A machine learning window into brain waves. Neuroscience 2020, 436, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Najafzadeh, H.; Esmaeili, M.; Farhang, S.; Sarbaz, Y.; Rasta, S.H. Automatic classification of schizophrenia patients using resting-state EEG signals. Phys. Eng. Sci. Med. 2021, 44, 855–870. [Google Scholar] [CrossRef] [PubMed]
- Barros, C.; Silva, C.A.; Pinheiro, A.P. Advanced EEG-based learning approaches to predict schizophrenia: Promises and pitfalls. Artif. Intell. Med. 2021, 114, 102039. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, M.A.; Maghsoudi, A.; Mariño, I.P. An interpretable machine learning method for the detection of schizophrenia using EEG signals. Front. Syst. Neurosci. 2021, 15, 652662. [Google Scholar] [CrossRef]
- Mortaga, M.; Brenner, A.; Kutafina, E. Towards interpretable machine learning in EEG analysis. Stud. Health Technol. Inform. 2021, 283, 32–38. [Google Scholar] [CrossRef]
- Lourenço, C.S.d.S.; Tjepkema-Cloostermans, M.C.; van Putten, M.J.A.M. Machine learning for detection of interictal epileptiform discharges. Clin. Neurophysiol. 2021, 132, 1433–1443. [Google Scholar] [CrossRef]
- Gao, Z.; Dang, W.; Wang, X.; Hong, X.; Hou, L.; Ma, K.; Perc, M. Complex networks and deep learning for EEG signal analysis. Cogn. Neurodynamics 2021, 15, 369–388. [Google Scholar] [CrossRef]
- Aslan, Z.; Akin, M.A. Deep learning approach in automated detection of schizophrenia using scalogram images of EEG signals. Phys. Eng. Sci. Med. 2021, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ahmedt-Aristizabal, D.; Fernando, T.; Denman, S.; Robinson, J.E.; Sridharan, S.; Johnston, P.J.; Laurens, K.R.; Fookes, C. Identification of children at risk of schizophrenia via deep learning and EEG responses. IEEE J. Biomed. Health Inform. 2021, 25, 69–76. [Google Scholar] [CrossRef]
- Sun, J.; Cao, R.; Zhou, M.; Hussain, W.; Wang, B.; Xue, J.; Xiang, J. A hybrid deep neural network for classification of schizophrenia using EEG Data. Sci. Rep. 2021, 11, 4706. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wu, D.; Deng, Z.; Qian, P.; Wang, J.; Wang, G.; Chung, F.-L.; Choi, K.-S.; Wang, S. Seizure classification from EEG signals using transfer learning, semi-supervised learning and TSK fuzzy system. IEEE Trans. Neural Syst. Rehabilit. Eng. 2017, 25, 2270–2284. [Google Scholar] [CrossRef]
- Li, J.; Qiu, S.; Shen, Y.-Y.; Liu, C.-L.; He, H. Multisource transfer learning for cross-subject EEG emotion recognition. IEEE Trans. Cybern. 2019, 50, 3281–3293. [Google Scholar] [CrossRef]
- Wei, C.-S.; Lin, Y.-P.; Wang, Y.-T.; Jung, T.-P.; Bigdely-Shamlo, N.; Lin, C.-T. Selective transfer learning for EEG-based drowsiness detection. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Kowloon Tong, Hong Kong, 9–12 October 2015; pp. 3229–3232. [Google Scholar] [CrossRef]
- Raghu, S.; Sriraam, N.; Temel, Y.; Rao, S.V.; Kubben, P.L. EEG based multi-class seizure type classification using convolutional neural network and transfer learning. Neural Netw. 2020, 124, 202–212. [Google Scholar] [CrossRef]
- Luo, Y.; Lu, B.-L. EEG data augmentation for emotion recognition using a conditional Wasserstein GAN. In Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 2535–2538. [Google Scholar] [CrossRef]
- Bird, J.J.; Pritchard, M.; Fratini, A.; Ekárt, A.; Faria, D.R. Synthetic Biological Signals Machine-generated by GPT-2 improve the Classification of EEG and EMG through Data Augmentation. IEEE Robot. Autom. Lett. 2021, 6, 3498–3504. [Google Scholar] [CrossRef]
- Lashgari, E.; Liang, D.; Maoz, U. Data augmentation for deep-learning-based electroencephalography. J. Neurosci. Methods 2020, 346, 108885. [Google Scholar] [CrossRef]
- Fahimi, F.; Dosen, S.; Ang, K.K.; Mrachacz-Kersting, N.; Guan, C. Generative adversarial networks-based data augmentation for brain-computer interface. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4039–4051. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, K.; Qadir, J.; O’Brien, T.J.; Kuhlmann, L.; Razi, A. A Generative Model to Synthesize EEG Data for Epileptic Seizure Prediction. IEEE Trans. Neural Syst. Rehabilit. Eng. 2021, 29, 2322–2332. [Google Scholar] [CrossRef]
- Pascual, D.; Amirshahi, A.; Aminifar, A.; Atienza, D.; Ryvlin, P.; Wattenhofer, R. EpilepsyGAN: Synthetic epileptic brain activities with privacy preservation. IEEE Trans. Biomed. Eng. 2021, 68, 2435–2446. [Google Scholar] [CrossRef]
- Herdman, A.T. SimMEEG software for simulating event-related MEG and EEG data with underlying functional connectivity. J. Neurosci. Methods 2021, 350, 109017. [Google Scholar] [CrossRef]
- Alhudhaif, A. A novel multi-class imbalanced EEG signals classification based on the adaptive synthetic sampling (ADASYN) approach. PeerJ Comput. Sci. 2021, 7, e523. [Google Scholar] [CrossRef] [PubMed]
- Berna, F.; Potheegadoo, J.; Aouadi, I.; Ricarte, J.J.; Allé, M.C.; Coutelle, R.; Boyer, L.; Cuervo-Lombard, C.V.; Danion, J.M. A Meta-Analysis of Autobiographical Memory Studies in Schizophrenia Spectrum Disorder. Schizophr. Bull. 2016, 42, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Ricarte, J.J.; Hernández, J.V.; Latorre, J.M.; Danion, J.M.; Berna, F. Rumination and autobiographical memory impairment in patients with schizophrenia. Schizophr. Res. 2014, 160, 163–168. [Google Scholar] [CrossRef]
- Barry, T.J.; Chiu, C.P.Y.; Raes, F.; Ricarte, J.J.; Lau, H. The Neurobiology of Reduced Autobiographical Memory Specificity. Trends Cogn. Sci. 2018, 22, 1038–1049. [Google Scholar] [CrossRef]
- Conway, M.A.; Pleydell-Pearce, C.W.; Whitecross, S.E. The Neuroanatomy of Autobiographical Memory: A Slow Cortical Potential Study of Autobiographical Memory Retrieval. J. Mem. Lang. 2001, 45, 493–524. [Google Scholar] [CrossRef] [Green Version]
- Knyazev, G.G.; Savostyanov, A.N.; Bocharov, A.V.; Dorosheva, E.A.; Tamozhnikov, S.S.; Saprigyn, A.E. Oscillatory correlates of autobiographical memory. Int. J. Psychophysiol. 2015, 95, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Rozengurt, R.; Shtoots, L.; Sheriff, A.; Sadka, O.; Levy, D.A. Enhancing early consolidation of human episodic memory by theta EEG neurofeedback. Neurobiol. Learn. Mem. 2017, 145, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Imperatori, C.; Brunetti, R.; Farina, B.; Speranza, A.M.; Losurdo, A.; Testani, E.; Contardi, A.; Marca, G.D. Modification of EEG power spectra and EEG connectivity in autobiographical memory: A sLORETA study. Cogn. Process. 2014, 15, 351–361. [Google Scholar] [CrossRef]
- Knyazev, G.G.; Savostyanov, A.N.; Bocharov, A.V.; Kuznetsova, V.B. Depressive symptoms and autobiographical memory: A pilot electroencephalography (EEG) study. J. Clin. Exp. Neuropsychol. 2017, 39, 242–256. [Google Scholar] [CrossRef] [PubMed]
- Ros, L.; Latorre, J.M.; Aguilar, J.; Ricarte, J.J.; Castillo, A.; Catena, A.; Fuentes, L.J. Differences in brain activation between the retrieval of specific and categoric autobiographical memories: An EEG study. Psicologica 2017, 38, 347–363. [Google Scholar] [CrossRef]
Recording Technique | Specific Methods |
---|---|
Electrical recordings |
|
Magnetic recordings |
|
Neuroimaging recordings |
|
Brain stimulations |
|
Filer Type | Expected Improvement |
---|---|
High-pass | Removes DC (0 Hz) and very low frequency interferences (<0.5 Hz) |
Low-pass | Removes high frequency interferences (>50–70 Hz) |
Notch | Removes 50/60 Hz interference |
Domain of Analysis | Feature Extraction Method | Feature |
---|---|---|
Time |
|
|
Frequency |
|
|
Time-Frequency |
|
|
Spatial-Time-Frequency |
|
|
Machine Learning | Deep Learning | |
---|---|---|
Data format | Structured data | Unstructured data |
Database size | Manageable database | Over a million data points |
Training | A human trainer is needed | The system learns on its own |
Algorithm | Variable algorithm | Neural network of algorithms |
Application | Simple routine tasks | Complex tasks |
Category | Algorithm | Main Characteristics |
---|---|---|
Supervised/ Regression | Linear Regression | Statistical modelling technique that describes a continuous output as a linear function of one or more input variables. Simple to interpret and easy to train. |
Non-Linear Regression | Statistical modelling technique that describes a continuous output as a non-linear function of one or more input variables. Simple to interpret and easy to train. | |
Gaussian Regression | Non-parametric models that predict the value of a continuous output variable. | |
Regression Trees | Predicts output responses by following the decisions in the tree, from the root down to a leaf node. A tree consists of ramification conditions where the value of a predictor is compared to a trained weight. The number of branches and the values of weights are determined in the training process | |
Supervised/ Classification | Support Vector Machines (SVM) | Classifies data by finding the linear decision boundary (hyperplane) that divides all data points of one class from those of the other class. If the data is not linearly separable, a loss function is employed to penalize points on the erroneous side of the hyperplane |
Logistic Regression | Predicts the probability of a response belonging to a binary class (yes or no). Because of its simplicity, it is commonly used as a starting point for binary classification problems | |
Decision Trees | Decision trees are similar to regression trees, but they are adjusted to be able to predict discrete responses | |
Naïve Bayes | A naïve Bayes classifier assumes that the presence of a particular feature in a class is unrelated to the presence of any other feature. It classifies new data based on the highest probability of its belonging to a particular class | |
Discriminant Analysis | Classifies data by finding linear combinations of features, where the training involves finding the parameters for a Gaussian distribution for each class | |
k Nearest Neighbor (kNN) | Categorizes objects based on the classes of their nearest neighbours in the data set. Distance metrics, such as Euclidean, cosine, and Chebychev, are used to find the nearest neighbor | |
Unsupervised/ Clustering | k-Means | Divides data into k number of mutually exclusive clusters, where points are included in the clusters depending on the distance from that point to the cluster’s centre |
k-Medoids | Similar to k-means, but with the requirement that the cluster centres coincide with points in the data | |
Hierarchical Clustering | Produces nested sets of clusters by analysing similarities between pairs of points and grouping objects into a binary, hierarchical tree | |
Self-Organizing Map | Neural network-based clustering that transforms a dataset into a topology that keeps a 2D map distribution | |
Fuzzy c-Means | Partition-based clustering employed when data points may belong to more than one cluster | |
Gaussian Mixture | Partition-based clustering where data points come from different multivariate normal distributions with certain probabilities | |
Unsupervised/ Dimensionality Reduction | Principal Component Analysis | Finds the directions of maximum variance in high-dimensional dataset and projects this data into a new subspace with the same or fewer dimensions than the original one |
Factor analysis | Identifies underlying correlations between variables in data set to provide a representation in terms of a smaller number of factors | |
Independent Component Analysis | Identifies independent features in data set to reduce dimensionality. While principal component analysis maximizes variance, independent component analysis assumes that the features are mixtures of independent sources | |
Random Projection | Reduces the number of dimensions of our data set by multiplying it to a random matrix. Which will project the dataset into a new subspace of features | |
Reinforcement/ Model-Free/ Value-Based | Q-Learning | Follows the policy that perform actions to obtain the highest possible reward, maximizing thus the value of Q (derived from the Bellman equation) |
Deep Q Neural Network (DQN) | Is used in big space environments, where neural network approximates the Q-values for each action and state | |
State-Action-Reward-State-Action (SARSA) | Interacts with the environment and updates the policy based on taken actions. The Q-value for a state-action is updated by an error | |
Reinforcement/ Model-Free/ Policy-Based | Policy Gradient | Instead of learning a value function providing information about the expected sum of rewards given a state and an action, it learns directly the policy function that maps state-to-action (select actions without using a value function). Optimizes the policy function without worrying about a value function |
Reinforcement/ Model-Based | Learn/Given Model | Incorporates a model of the environment that influences how the agent’s overall policy is determined. Model may be known or learned. Model-based tends to emphasize planning, whereas model-free tends to emphasize learning |
Deep Learning/ Recurrent Neural Networks | Long Short-Term Memory (LSTM) | Can accomplish learning of long-term series data avoiding dependency problem. It can process not only single data points (such as images), but also complete sequences of data (such as speech) |
Side-Output Residual Network (SRN) | Process sequential inputs and outputs. Used for static functional mapping | |
Gated Recurrent Unit (GRU) | Newer generation of recurrent neural networks. Employs two vectors (update gate and reset gate) to decide the information sent to the output |
Paper | Processing Domain/Feature/Machine Learning | Conclusions Obtained |
---|---|---|
[65] | Time domain/statistics of signal power (mean)/not applied |
|
[66] | Time domain/statistics of signal power (mean, ANOVAs)/Not applied |
|
[67] | Not applied (review)/not applied (review)/not applied (review) |
|
[68] | Time domain/statistics of signal power (mean, ANOVAs)/not applied |
|
[69] | Frequency and space-time-frequency domain/band power and statistics of signal power (mean)/K-means |
|
[70] | Frequency domain/band power/not applied |
|
[71] | Frequency and space-time-frequency domain/band power and statistics of signal power (mean)/not applied |
|
[72] | Time-frequency domain/band power) and statistics of signal power (mean)/not applied |
|
[73] | Time domain/statistics of signal power (mean and standard deviations)/not applied |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luján, M.Á.; Jimeno, M.V.; Mateo Sotos, J.; Ricarte, J.J.; Borja, A.L. A Survey on EEG Signal Processing Techniques and Machine Learning: Applications to the Neurofeedback of Autobiographical Memory Deficits in Schizophrenia. Electronics 2021, 10, 3037. https://doi.org/10.3390/electronics10233037
Luján MÁ, Jimeno MV, Mateo Sotos J, Ricarte JJ, Borja AL. A Survey on EEG Signal Processing Techniques and Machine Learning: Applications to the Neurofeedback of Autobiographical Memory Deficits in Schizophrenia. Electronics. 2021; 10(23):3037. https://doi.org/10.3390/electronics10233037
Chicago/Turabian StyleLuján, Miguel Ángel, María Verónica Jimeno, Jorge Mateo Sotos, Jorge Javier Ricarte, and Alejandro L. Borja. 2021. "A Survey on EEG Signal Processing Techniques and Machine Learning: Applications to the Neurofeedback of Autobiographical Memory Deficits in Schizophrenia" Electronics 10, no. 23: 3037. https://doi.org/10.3390/electronics10233037
APA StyleLuján, M. Á., Jimeno, M. V., Mateo Sotos, J., Ricarte, J. J., & Borja, A. L. (2021). A Survey on EEG Signal Processing Techniques and Machine Learning: Applications to the Neurofeedback of Autobiographical Memory Deficits in Schizophrenia. Electronics, 10(23), 3037. https://doi.org/10.3390/electronics10233037