Optimal Placement and Sizing of an Energy Storage System Using a Power Sensitivity Analysis in a Practical Stand-Alone Microgrid
Abstract
:1. Introduction
2. VMS Power Flow Analysis Based on Power Sensitivity Analysis
3. Proposed Algorithm for Optimal Placement and Sizing of ESS
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Bus No. | Bus Type | Voltage | Load | Generation | |||
---|---|---|---|---|---|---|---|
Mag. [pu] | Angle [rad] | P [MW] | Q [MVAR] | P [MW] | Q [MVAR] | ||
1 | S | 1 | 0.000 | 0 | 0 | 0.576 | 0.057 |
2 | PQ | 0.996 | −0.957 | 0 | 0 | 0.400 | 0.040 |
3 | PQ | 0.996 | 0.968 | 0 | 0 | 0 | 0 |
4 | PQ | 0.993 | 1.032 | 0 | 0 | 0 | 0 |
5 | PQ | 0.992 | 1.049 | 0.0928 | 0.0093 | 0.050 | 0.005 |
6 | PQ | 0.992 | 1.064 | 0 | 0 | 0 | 0 |
7 | PQ | 0.986 | 1.166 | 0.0224 | 0.0022 | 0 | 0 |
8 | PQ | 0.986 | 1.178 | 0.0320 | 0.0032 | 0 | 0 |
9 | PQ | 0.977 | 1.358 | 0.0384 | 0.0038 | 0 | 0 |
10 | PQ | 0.969 | 1.526 | 0 | 0 | 0 | 0 |
11 | PQ | 0.968 | 1.536 | 0.0096 | 0.0010 | 0 | 0 |
12 | PQ | 0.967 | 1.544 | 0.0960 | 0.0096 | 0 | 0 |
13 | PQ | 0.967 | 1.540 | 0 | 0 | 0 | 0 |
14 | PQ | 0.967 | 1.536 | 0.0608 | 0.0061 | 0 | 0 |
15 | PQ | 0.968 | 1.525 | 0 | 0 | 0 | 0 |
16 | PQ | 0.975 | 1.331 | 0.2144 | 0.0214 | 0.600 | 0.060 |
17 | PQ | 0.965 | 1.578 | 0.3232 | 0.0323 | 0 | 0 |
18 | PQ | 0.996 | 0.961 | 0 | 0 | 0 | 0 |
19 | PQ | 0.994 | 1.009 | 0 | 0 | 0 | 0 |
20 | PQ | 0.994 | 1.010 | 0.0224 | 0.0022 | 0 | 0 |
21 | PQ | 0.991 | 1.087 | 0 | 0 | 0 | 0 |
22 | PQ | 0.990 | 1.100 | 0.1520 | 0.0152 | 0.200 | 0.020 |
23 | PQ | 0.982 | 1.262 | 0.0288 | 0.0029 | 0 | 0 |
24 | PQ | 0.980 | 1.318 | 0.0416 | 0.0042 | 0 | 0 |
25 | VS | 0.963 | 1.6690 | 0 | 0 | changed | Changed |
26 | PQ | 0.962 | 1.694 | 0.0416 | 0.0042 | 0 | 0 |
27 | PQ | 0.961 | 1.721 | 0.1600 | 0.0160 | 0.050 | 0.005 |
28 | PQ | 0.961 | 1.723 | 0 | 0 | 0 | 0 |
29 | PQ | 0.960 | 1.743 | 0.0842 | 0.0084 | 0 | 0 |
30 | PQ | 0.961 | 1.720 | 0.0128 | 0.0013 | 0 | 0 |
31 | PQ | 0.961 | 1.718 | 0 | 0 | 0.050 | 0.005 |
32 | PQ | 0.960 | 1.725 | 0 | 0 | 0 | 0 |
33 | PQ | 0.959 | 1.746 | 0.0288 | 0.0029 | 0 | 0 |
34 | VS | 0.992 | 1.054 | 0.1018 | 0.0102 | changed | changed |
35 | PQ | 0.992 | 1.046 | 0.0688 | 0.0069 | 0 | 0 |
36 | PQ | 0.991 | 1.082 | 0 | 0 | 0 | 0 |
37 | PQ | 0.960 | 1.724 | 0.1440 | 0.0144 | 0 | 0 |
From Bus | To Bus | R [pu] | X [pu] | From Bus | To Bus | R [pu] | X [pu] |
---|---|---|---|---|---|---|---|
1 | 2 | 0.0092 | 2.7881 | 28 | 29 | 0.9442 | 0.4787 |
4 | 3 | 0.406 | 0.2058 | 30 | 31 | 0.17 | 0.0862 |
13 | 14 | 0.491 | 0.2489 | 31 | 32 | 4.7212 | 2.3934 |
14 | 15 | 0.491 | 0.2489 | 32 | 33 | 2.8327 | 1.436 |
17 | 15 | 0.661 | 0.3351 | 19 | 20 | 0.0189 | 0.0096 |
15 | 16 | 1.8885 | 0.9574 | 20 | 21 | 2.2662 | 1.1488 |
5 | 4 | 0.1888 | 0.0957 | 22 | 21 | 0.1511 | 0.0766 |
6 | 5 | 0.1888 | 0.0957 | 22 | 23 | 2.455 | 1.2446 |
6 | 7 | 1.2842 | 0.651 | 24 | 23 | 0.9442 | 0.4787 |
9 | 7 | 2.8327 | 1.436 | 24 | 25 | 6.9873 | 3.5422 |
7 | 8 | 1.5108 | 0.7659 | 26 | 25 | 0.5004 | 0.2537 |
10 | 9 | 2.8327 | 1.436 | 27 | 26 | 0.6515 | 0.3303 |
10 | 11 | 0.491 | 0.2489 | 2 | 18 | 0.0251 | 0.0284 |
12 | 11 | 0.491 | 0.2489 | 19 | 34 | 1.8885 | 0.9574 |
12 | 13 | 0.491 | 0.2489 | 35 | 4 | 0.1888 | 0.0957 |
2 | 3 | 0.0251 | 0.0284 | 36 | 35 | 0.661 | 0.3351 |
19 | 18 | 0.7554 | 0.3829 | 21 | 36 | 0.0944 | 0.0479 |
27 | 28 | 0.1511 | 0.0766 | 37 | 10 | 4.7212 | 2.3934 |
28 | 30 | 0.3588 | 0.1819 | 32 | 37 | 0.1888 | 0.0957 |
References
- Barik, A.; Das, D.; Latif, A.; Hussain, S.; Ustun, T. Optimal voltage–Frequency regulation in distributed sustainable energy-based hybrid microgrids with integrated resource planning. Energies 2021, 14, 2735. [Google Scholar] [CrossRef]
- Banerjee, B.; Islam, S.M. Reliability based optimum location of distributed generation. Int. J. Electr. Power Energy Syst. 2011, 33, 1470–1478. [Google Scholar] [CrossRef]
- Awad, A.S.A.; El-Fouly, T.H.M.; Salama, M.M.A. Optimal distributed generation allocation and load shedding for improving distribution system reliability. Electr. Power Comp. Syst. 2014, 42, 576–584. [Google Scholar] [CrossRef]
- Ammar, M.; Joós, G. A Short-term energy storage system for voltage quality improvement in distributed wind power. IEEE Trans. Energy Convers. 2014, 29, 997–10070. [Google Scholar] [CrossRef]
- Xie, H.; Teng, X.; Xu, Y.; Wang, Y. Optimal energy storage sizing for networked microgrids considering reliability and resilience. IEEE Access 2019, 7, 86336–86348. [Google Scholar] [CrossRef]
- Awad, A.S.A.; El-Fouly, T.H.M.; Salama, M.M.A. Optimal ESS allocation for benefit maximization in distribution networks. IEEE Trans. Smart Grid 2017, 8, 1668–1678. [Google Scholar] [CrossRef]
- Yang, H.; Choi, S.G. Deterministic system analysis to guarantee worst case performance for optimal ESS and PV sizing. IEEE Access 2019, 7, 98875–98892. [Google Scholar] [CrossRef]
- Wong, L.A.; Ramachandaramurthy, V.K.; Walker, S.L.; Ekanayake, J.B. Optimal placement and sizing of battery energy storage system considering the duck curve phenomenon. IEEE Access 2020, 8, 197236–197248. [Google Scholar] [CrossRef]
- Yang, Y.; Li, H.; Aichhorn, A.; Zheng, J.; Greenleaf, M. Sizing strategy of distributed battery storage system with high penetration of photovoltaic for voltage regulation and peak load shaving. IEEE Trans. Smart Grid 2014, 5, 982–991. [Google Scholar] [CrossRef]
- Ru, Y.; Kleissl, J.; Martinez, S. Storage size determination for grid-connected photovoltaic systems. IEEE Trans. Sustain. Energy 2013, 4, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Atwa, Y.M.; El-Saadany, E.F. Optimal allocation of ESS in distribution systems with a high penetration of wind energy. IEEE Trans. Power Syst. 2010, 25, 1815–1822. [Google Scholar] [CrossRef]
- Giannitrapani, A.; Paoletti, S.; Vicino, A.; Zarrilli, D. Optimal Allocation of Energy Storage Systems for Voltage Control in LV Distribution Networks. IEEE Trans. Smart Grid 2017, 8, 2859–2870. [Google Scholar] [CrossRef]
- Bahramirad, S.; Reder, W.; Khodaei, A. Reliability-constrained optimal sizing of energy storage system in a microgrid. IEEE Trans. Smart Grid 2012, 3, 2056–2062. [Google Scholar] [CrossRef]
- Chen, S.X.; Gooi, H.B.; Wang, M.Q. Sizing of energy storage for microgrids. IEEE Trans. Smart Grid 2012, 3, 142–151. [Google Scholar] [CrossRef]
- Miranda, I.; Silva, N.; Leite, H. A holistic approach to the integration of battery energy storage systems in island electric grids with high wind penetration. IEEE Trans. Sustain. Energy 2015, 7, 775–785. [Google Scholar] [CrossRef]
- Pandzic, H.; Wang, Y.; Qiu, T.; Dvorkin, Y.; Kirschen, D.S. Near-optimal method for siting and sizing of distributed storage in a transmission network. IEEE Trans. Power Syst. 2015, 30, 2288–2300. [Google Scholar] [CrossRef]
- Fernández-Blanco, R.; Dvorkin, Y.; Xu, B.; Wang, Y.; Kirschen, D.S. Optimal energy storage siting and sizing: A WECC case study. IEEE Trans. Sustain. Energy 2017, 8, 733–743. [Google Scholar] [CrossRef]
- Ghofrani, M.; Arabali, A.; Etezadi-Amoli, M.; Fadali, M.S. A Framework for optimal placement of energy storage units within a power system with high wind penetration. IEEE Trans. Sustain. Energy 2013, 4, 434–442. [Google Scholar] [CrossRef]
- Carpinelli, G.; Celli, G.; Mocci, S.; Mottola, F.; Pilo, F.; Proto, D. Optimal integration of distributed energy storage devices in smart grids. IEEE Trans. Smart Grid 2013, 4, 985–995. [Google Scholar] [CrossRef]
- Salee, S.; Wirasanti, P. Optimal siting and sizing of battery energy storage systems for grid-supporting in electrical distribution network. In Proceedings of the 2018 International ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering, Chiang Rai, Thailand, 25–28 February 2018; pp. 100–105. [Google Scholar]
- Boonluk, P.; Siritaratiwat, A.; Fuangfoo, P.; Khunkitti, S. Optimal siting and sizing of battery energy storage systems for distribution network of distribution system operators. Batteries 2020, 6, 56. [Google Scholar] [CrossRef]
- Calderaro, V.; Galdi, V.; Graber, G.; Piccolo, A. Optimal siting and sizing of stationary supercapacitors in a metro network using PSO. In Proceedings of the 2015 IEEE International Conference on Industrial Technology, Seville, Spain, 17–19 March 2015; pp. 2680–2685. [Google Scholar]
- Saboori, H.; Hemmati, R. Maximizing DISCO profit in active distribution networks by optimal planning of energy storage systems and distributed generators. Renew. Sustain. Energy Rev. 2017, 71, 365–372. [Google Scholar] [CrossRef]
- Brekken, T.K.A.; Yokochi, A.; Jouanne, A.V.; Yen, Z.Z.; Hapke, H.M.; Halamay, D.A. Optimal energy storage sizing and control for wind power applications. IEEE Trans. Sustain. Energy 2010, 2, 69–77. [Google Scholar] [CrossRef]
- Zhao, S.; Blaabjerg, F.; Wang, H. An overview of artificial intelligence applications for power electronics. IEEE Trans. Power Electron. 2021, 36, 4633–4658. [Google Scholar] [CrossRef]
- Seyedmahmoudian, M.; Horan, B.; Soon, T.K.; Rahmani, R.; Oo, A.M.T.; Mekhilef, S.; Stojcevski, A. State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems—A review. Renew. Sustain. Energy Rev. 2016, 64, 435–455. [Google Scholar] [CrossRef]
- Karimi, Y.; Oraee, H.; Guerrero, J.M. Decentralized method for load sharing and power management in a hybrid single/three phase-islanded microgrid consisting of hybrid source PV/battery units. IEEE Trans. Power Electron. 2017, 32, 6135–6144. [Google Scholar] [CrossRef] [Green Version]
- Saadat, H. Power System Analysis; McGraw-Hill: New York, NY, USA, 2004; pp. 232–240. [Google Scholar]
Type of Approach | Reference | Optimized Variable | Method | Objective Function | Amount of Computation |
---|---|---|---|---|---|
Analytical | Proposed algorithm | Placement, Sizing | Self-defined algorithm | High contribution to voltage stability with lower sizing of ESS | |
[9] | Sizing | Battery cost-benefit analysis | Minimize annual cost | ||
[10] | Sizing | Self-defined algorithm | Minimize net power purchase cost and battery loss | , | |
[11] | Placement, Sizing | Cost-benefit analysis | Minimize spilled wind power and annual electricity cost | ||
[12] | Placement, Sizing | Self-defined two-step algorithm | Minimizing total cost of ESS and network losses | ||
Mathematical optimization | [13] | Sizing | Mixed-integer Programming (MIP) | Minimize installation cost of ESS and operating cost of MG | |
[14] | Sizing | Mixed-integer linear programming (MILP) | Minimize the total cost; maximize the total benefit | ||
[15] | Placement, Sizing | MILP | Minimize operational cost | ||
[16] | Placement, Sizing | MILP | Minimize the sum of the generation cost | ||
[17] | Placement, Sizing | Stochastic MILP | Minimize operating cost and installation cost of ESS | ||
Artificial intelligence | [18] | Placement | Genetic algorithm (GA) | Minimize hourly social cost | Depending on parameters of GA |
[19] | Placement, Sizing | GA and sequential quadratic programming | Minimize whole cost | Depending on parameters of GA | |
[20] | Placement, Sizing | GA | Minimize voltage deviation and power loss | Depending on parameters of GA | |
[21] | Placement, Sizing | GA and particle swarm optimization (PSO) | Minimize cost related to power system stability | Depending on parameters of GA and termination criteria/ Depending on parameters of PSO and maximum iteration | |
[22] | Placement, Sizing | PSO | Minimize whole cost | Depending on parameters of PSO and maximum iteration | |
[23] | Placement, Sizing | PSO | Maximize profit of distribution company | Depending on parameters of PSO and maximum iteration | |
[24] | Sizing | Artificial neural network (ANN) | Minimize cost related to ESS | Depending on parameters of ANN including training big data |
Bus No. | Load | Bus No. | Load | Bus No. | Load | |||
---|---|---|---|---|---|---|---|---|
p (kW) | Q (kvar) | p (kW) | Q (kvar) | p (kW) | Q (kvar) | |||
5 | 92.8 | 9.28 | 16 | 214.4 | 21.44 | 27 | 160 | 16 |
7 | 22.4 | 2.24 | 17 | 323.2 | 32.32 | 29 | 84.16 | 8.416 |
8 | 32 | 3.2 | 20 | 22.4 | 2.24 | 30 | 12.8 | 1.28 |
9 | 38.4 | 3.84 | 22 | 152 | 15.2 | 33 | 28.8 | 2.88 |
11 | 9.6 | 0.96 | 23 | 28.8 | 2.88 | 34 | 101.76 | 10.176 |
12 | 96 | 9.6 | 24 | 41.6 | 4.16 | 35 | 68.8 | 6.88 |
14 | 60.8 | 6.08 | 26 | 41.6 | 4.16 | 37 | 144 | 14.4 |
Bus No. | Priority | Recommendation | |||
---|---|---|---|---|---|
25 | 1.125109 | 0.176325 | 6.380866 | 1 | High |
29 | 1.040074 | 0.163066 | 6.378225 | 2 | High |
21 | 2.031802 | 0.319182 | 6.365647 | 3 | High |
36 | 2.038183 | 0.321272 | 6.344102 | 4 | High |
7 | 1.842448 | 0.324621 | 5.675684 | 15 | Medium |
23 | 1.537929 | 0.297081 | 5.176805 | 16 | Medium |
33 | 0.872171 | 0.168544 | 5.174735 | 17 | Medium |
24 | 1.424432 | 0.275621 | 5.168085 | 18 | Medium |
14 | 1.30429 | 0.324699 | 4.016922 | 27 | Low |
15 | 1.277116 | 0.324909 | 3.930692 | 28 | Low |
17 | 1.222718 | 0.3232 | 3.783163 | 29 | Low |
34 | 1.570997 | 0.451432 | 3.48003 | 30 | Low |
Without ESS | With ESS at Bus 25 (Optimal Placement) | With ESS at Bus 34 (Comparison Case) | |
---|---|---|---|
ΔVRMSE | 0.0753 | 0.0505 | 0.0731 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Yoon, K.; Lee, S.H.; Park, J.-W. Optimal Placement and Sizing of an Energy Storage System Using a Power Sensitivity Analysis in a Practical Stand-Alone Microgrid. Electronics 2021, 10, 1598. https://doi.org/10.3390/electronics10131598
Kim D, Yoon K, Lee SH, Park J-W. Optimal Placement and Sizing of an Energy Storage System Using a Power Sensitivity Analysis in a Practical Stand-Alone Microgrid. Electronics. 2021; 10(13):1598. https://doi.org/10.3390/electronics10131598
Chicago/Turabian StyleKim, Dongmin, Kipo Yoon, Soo Hyoung Lee, and Jung-Wook Park. 2021. "Optimal Placement and Sizing of an Energy Storage System Using a Power Sensitivity Analysis in a Practical Stand-Alone Microgrid" Electronics 10, no. 13: 1598. https://doi.org/10.3390/electronics10131598
APA StyleKim, D., Yoon, K., Lee, S. H., & Park, J. -W. (2021). Optimal Placement and Sizing of an Energy Storage System Using a Power Sensitivity Analysis in a Practical Stand-Alone Microgrid. Electronics, 10(13), 1598. https://doi.org/10.3390/electronics10131598