A Dual-Mode InGaP/GaAs HBT Power Amplifier Using a Low-Loss Parallel Power-Combining Transformer with IMD3 Cancellation Method
Abstract
:1. Introduction
2. Low-Loss Dual-Mode Parallel Power-Combining Transformer
3. IMD3 Cancellation with Parallel Power-Combining Transformer
4. Measurement Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, F.; Wang, H.A. A high-power broadband multi-primary DAT-based doherty power amplifier for mm-wave 5G applications. IEEE J. Solid-State Circuits 2021, 56, 1668–1681. [Google Scholar] [CrossRef]
- Aoki, I.; Kee, S.D.; Rutledge, D.B. Hajimiri, Distributed active transformer—A new power-combining and impedance-transformation technique. IEEE Trans. Microw. Theory Tech. 2002, 50, 316–331. [Google Scholar] [CrossRef] [Green Version]
- Aoki, I.; Kee, S.D.; Rutledge, D.B.; Hajimiri, A. Fully integrated CMOS power amplifier design using the distributive active-transformer architecture. IEEE J. Solid-State Circuits 2002, 37, 371–383. [Google Scholar] [CrossRef] [Green Version]
- Kaymaksut, E.; Reynaert, P. Dual-mode CMOS Doherty LTE power amplifier with symmetric hybrid transformer. IEEE J. Solid-State Circuits 2015, 50, 1974–1987. [Google Scholar] [CrossRef]
- Liu, G.; Haldi, P.; Liu, T.-J.K.; Niknejad, A.M. Fully integrated CMOS power amplifier with efficiency enhancement at power back-off. IEEE J. Solid-State Circuits 2008, 43, 600–609. [Google Scholar] [CrossRef]
- Haldi, P.; Chowdhury, D.; Reynaert, P.; Liu, G.; Niknejad, A.M. A 5.8 GHz 1 V linear power amplifier using a novel on-chip transformer power combiner in standard 90 nm CMOS. IEEE J. Solid-State Circuits 2008, 43, 1054–1063. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, D.; Hull, C.D.; Degani, O.B.; Wang, Y.; Niknejad, A.M. A fully integrated dual-mode highly linear 2.4 GHz CMOS power amplifier for 4G WiMax applications. IEEE J. Solid-State Circuits 2009, 44, 3393–3402. [Google Scholar] [CrossRef]
- Kaymaksut, E.; Reynaert, P. Transformer-based uneven Doherty power amplifier in 90 nm CMOS for WLAN Applications. IEEE J. Solid-State Circuits 2012, 47, 1659–1671. [Google Scholar] [CrossRef]
- Jang, J.; Park, P.; Kim, H.; Hong, K. A CMOS RF power amplifier using an off-chip transmission line transformer with 62% PAE. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 385–387. [Google Scholar] [CrossRef]
- Choi, S.E.; Ahn, H.; Hur, J.; Kim, K.W.; Nam, I.; Choi, J.; Lee, O. A fully integrated compact outphasing CMOS power amplifier using a parallel-combining transformer with a tuning inductor method. Electronics 2020, 9, 257. [Google Scholar] [CrossRef] [Green Version]
- An, K.H.; Lee, O.; Kim, H.; Lee, D.H.; Han, J.; Yang, K.S.; Chang, J.J.; Woo, W.; Lee, C.-H.; Laskar, J. Power-combining transformer techniques for fully-integrated CMOS power amplifiers. IEEE J. Solid-State Circuits 2008, 43, 1064–1075. [Google Scholar] [CrossRef]
- An, K.H.; Lee, D.H.; Lee, O.; Kim, H.; Han, J.; Kim, W.; Lee, C.-H.; Kim, H.; Laskar, J. A 2.4 GHz fully integrated linear CMOS power amplifier with discrete power control. IEEE Microw. Wirel. Compon. Lett. 2009, 19, 479–481. [Google Scholar]
- Kim, J.; Yoon, Y.; Kim, H.; An, K.H.; Kim, W.; Kim, H.-W.; Lee, C.-H.; Kornegay, K.T. A linear multi-mode CMOS power amplifier with discrete resizing and concurrent power combining structure. IEEE J. Solid-State Circuits 2011, 46, 1034–1048. [Google Scholar]
- Ahn, H.; Choi, S.; Ryu, H.; Baek, S.; Nam, I.; Lee, O. 2.3-GHz HBT power amplifier with parallel-segmented on-chip autotransformer. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 1140–1142. [Google Scholar] [CrossRef]
- TDD Home eNode B (HeNB) Radio Frequency (RF) Requirements Analysis; Document 3GPP TS 36.922; The 3rd Generation Partnership Project Tech. Specification Group: Valbonne, France, 2014.
- Baek, S.; Ahn, H.; Nam, I.; Ryu, N.; Lee, H.D.; Park, B.; Lee, O. A linear InGaP/GaAs HBT power amplifier using parallel-combined transistors with IMD3 cancellation. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 921–923. [Google Scholar] [CrossRef]
- El-Charniti, O.; Kerhervé, E.; Bégueret, J.-B. Modeling and characterization of on-chip transformers for silicon RFIC. IEEE Trans. Microw. Theory Tech. 2007, 55, 607–615. [Google Scholar] [CrossRef]
- Oka, T.; Hasegawa, M.; Hirata, M.; Amano, Y.; Ishimaru, Y.; Kawamura, H.; Sakunoi, K. A high-power low-distortion GaAs HBT power amplifier for mobile terminals used in broadband wireless applications. IEEE J. Solid-State Circuits 2007, 42, 2123–2127. [Google Scholar] [CrossRef]
- Noh, Y.S.; Park, C.S. PCS/W-CDMA dual-band MMIC power amplifier with a newly proposed linearizing bias circuit. IEEE J. Solid-State Circuits 2002, 37, 1096–1099. [Google Scholar]
- Yoshimasu, T.; Akagi, M.; Tanba, N.; Hara, S. An HBT MMIC power amplifier with an integrated diode linearizer for low-voltage portable phone applications. IEEE J. Solid-State Circuits 1998, 33, 1290–1296. [Google Scholar] [CrossRef]
- Ahn, H.; Oh, K.; Nam, I.; Lee, O. Highly Efficient HBT Power Amplifier Using High-Q Single- and Two-Winding Transformers with IMD3 Cancellation IEEE Access to Be Published. Available online: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9450832 (accessed on 10 June 2021).
- Skyworks Solutions, Inc. Available online: https://www.skyworksinc.com (accessed on 10 June 2021).
- NXP Semiconductors Inc. Available online: https://www.nxp.com (accessed on 10 June 2021).
Ref. | Power-Combining Transformer (Size: mm2) | Tech. | Freq. (GHz) | PSAT. (dBm) | Gain (dB) | Peak PAE (%) |
---|---|---|---|---|---|---|
[9] | SCT (5.1 mm × 2.4 mm) | CMOS | 0.875 | 31.7 | 30.3 | 62 |
This work | Dual-mode PCT (2.2 mm × 2.2 mm) | HBT | 0.91 | 33.8 (HP) 22.5 (LP) | 34.6 (HP) 18.9(LP) | 54.5 (HP) 15.4 (LP) |
Output Features | Freq. (GHz) | PSAT. (dBm) | Gain (dB) | Peak PAE (%) | Signal | Pout (dBm) @ −42 dBc ACLR | PAE (Current) @ Pout | |
---|---|---|---|---|---|---|---|---|
[22] | LC Matching | 0.85 | 34.5 * | 31.8 * | N/A | WCDMA 64DPCH | 26.0 * | (540 mA) @ 25 dBm |
[23] | LC Matching | 0.9 | N/A | 31.7 | N/A | 10-MHz LTE TM1.1 | 19.8 * | 14.0% * @ 19.8 dBm |
[21] | Single- & Two-Winding Transformer | 0.91 | 33.3 | 34.3 | 61.3 | 10-MHz 64QAM (7.8 dB PAPR) | 26.0 | 26.8% (297 mA) @ 26.0 dBm |
[14] | On-chip Transformer | 2.3 | 31.0 | 26.0 | 27.6 | 10-MHz LTE (7.3 dB PAPR) | 18.1 * | 4.7% * @ 18.1 dBm |
This work | Dual-Mode PCT | 0.91 | 33.8 (HP) 22.5 (LP) | 34.6 (HP) 18.9 (LP) | 54.5 (HP) 15.4 (LP) | 10-MHz 64QAM (7.8 dB PAPR) | 25.2 (HP) 10.4 (LP) | 20.1% (322 mA) @25.2 dBm (HP) 143 mA (HP)/75 mA (LP) @10.4 dBm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, K.; Ahn, H.; Nam, I.; Lee, H.D.; Park, B.; Lee, O. A Dual-Mode InGaP/GaAs HBT Power Amplifier Using a Low-Loss Parallel Power-Combining Transformer with IMD3 Cancellation Method. Electronics 2021, 10, 1612. https://doi.org/10.3390/electronics10141612
Oh K, Ahn H, Nam I, Lee HD, Park B, Lee O. A Dual-Mode InGaP/GaAs HBT Power Amplifier Using a Low-Loss Parallel Power-Combining Transformer with IMD3 Cancellation Method. Electronics. 2021; 10(14):1612. https://doi.org/10.3390/electronics10141612
Chicago/Turabian StyleOh, Kyutaek, Hyunjin Ahn, Ilku Nam, Hui Dong Lee, Bonghyuk Park, and Ockgoo Lee. 2021. "A Dual-Mode InGaP/GaAs HBT Power Amplifier Using a Low-Loss Parallel Power-Combining Transformer with IMD3 Cancellation Method" Electronics 10, no. 14: 1612. https://doi.org/10.3390/electronics10141612
APA StyleOh, K., Ahn, H., Nam, I., Lee, H. D., Park, B., & Lee, O. (2021). A Dual-Mode InGaP/GaAs HBT Power Amplifier Using a Low-Loss Parallel Power-Combining Transformer with IMD3 Cancellation Method. Electronics, 10(14), 1612. https://doi.org/10.3390/electronics10141612