MATRIX16: A 16-Channel Low-Power TDC ASIC with 8 ps Time Resolution
Abstract
:1. Introduction
1.1. TDC Working Principle
1.2. State-of-the-Art TDCs
- Flash: This consists of a clock delay line where each stage is sampled by a flip-flop controlled by the input hit edge. Flip-flop outputs are then encoded into a binary counter. The number of stages must be enough to cover, at least, a half period of the reference clock. This implementation is dead time free and suitable for applications with high conversion rates. However, TDC resolution is limited by the minimum delay element, which depends on the CMOS process technology. In [14], subdelay was achieved by interpolating consecutive delay stages with N resistors in between. In [15], an array of adjustable scaled load capacitors was used to achieve subdelay;
- Vernier: This aims to improve the TDC resolution beyond the minimum delay element. In this case, two delay lines oscillate at periods and , with an initial phase shift corresponding to the fine interpolation delay to be measured [16,17,18]. Thus, the faster delay line catches the slower one after periods, being the TDC resolution . The number of logic resources tends to be lower with respect to the Flash implementation, but the dead time () dramatically increases as scales down or the dynamic range increases. To expand the range without penalizing the resolution, Reference [19] proposed a taped 2D Vernier ring TDC, achieving a 1 ps timing resolution;
- Time Difference Amplification (TDA): The pulse corresponding to the time difference between the input hit edge and the reference clock (≤1 clock period) is amplified by an analog time stretcher, and hence, the resulting pulse can be converted with a lower resolution TDC [20]. The main challenges of this implementation are the linearity and dead time, which constrains the amplification factor.
1.3. TDC Implementation Choice
1.4. Overview
2. MATRIX TDC Design Overview
2.1. Building Blocks
- Edge Detector: This converts the edges (either rising or falling) of the input hit into narrow pulses;
- Resistive Interpolation Mesh Circuit (RIMC): This is an array of coupled ring oscillators;
- PLL: This provides a stable system clock and also generates the serializer output clock;
- Time Capture Matrix (TCM): This stores the state of the RIMC at every hit edge;
- Coarse Counter: This is a counter running at the system clock frequency. It provides the timestamp at every hit edge;
- Backend Readout: This is the the logic resources to encode, buffer, and transmit the acquired events;
- Serializer: This is an 8:1 serializer that allows up to 920 Mbps transfer rates.
2.2. Edge Detector
2.3. RIMC
2.4. PLL
2.5. Time Capture Matrix
2.6. Coarse Counter
2.7. Backend Readout
2.8. Serializer
3. Methods
3.1. Linearity Test
3.2. Jitter
4. Experimental Results
4.1. Linearity Test
4.2. Jitter
4.3. Power Consumption
5. Discussion
MATRIX16 (HP) | MATRIX16 (LP) | [15] | MATRIX4 [21] | [31] | [30] | [32] | [33] | |
---|---|---|---|---|---|---|---|---|
Process (nm) | 180 | 180 | 350 | 180 | 130 | 65 | 65 | 45 |
ToF+ToT | Yes | Yes | No | No | Yes | Yes | Yes | No |
LSB (ps) | 8.6 | 12.4 | 8.9 | 9.3 | 125 | 3 | 102 | 25 |
Resolution (ps) | 9.5 (8.0 ) | 20.9 (19.4 ) | 9.8 | 10.1 | 65.3 | 3.4 (1.3 ) | 95 | - |
Channels | 16 | 16 | 7 | 4 | 18 | 64 | 8 | 1 |
Power (mW/ch) | 9.1 | 5.0 | 12.1 | 11.3 | 3.4 | 20.3 | 28.8 | 16 |
FoM (fJ/conv) | 86 (73 ) | 102 (95 ) | 119 | 114 | 222 | 69 (26 ) | 2660 | - |
Area (mm) | 4.57 | 4.57 | 8.88 | 4.2 | 3.72 | - | 0.3 | 0.36 |
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Harnew, N.; Bhasin, S.; Blake, T.; Brook, N.; Conneely, T.; Cussans, D.; van Dijk, M.; Forty, R.; Frei, C.; Gabriel, E.; et al. Status of the TORCH time-of-flight project. Nucl. Instrum. Methods Phys. Res. 2020, 952, 161692. [Google Scholar] [CrossRef]
- Vaquero, J.J.; Kinahan, P. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems. Ann. Rev. Biomed. Eng. 2015, 17, 385–414. [Google Scholar] [CrossRef] [Green Version]
- Pareige, C.; Lefebvre-Ulrikson, W.; Vurpillot, F.; Sauvage, X. Chapter Five—Time-of-Flight Mass Spectrometry and Composition Measurements. In Atom Probe Tomography; Lefebvre-Ulrikson, W., Vurpillot, F., Sauvage, X., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 123–154. [Google Scholar] [CrossRef]
- Padmanabhan, P.; Zhang, C.; Charbon, E. Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiDAR Applications. Sensors 2019, 19, 5464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S. Time Over Threshold as a measure of energy response of plastic scintillators used in the J-PET detector. Epj Web Conf. 2019, 199, 05014. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Schmall, J.; Judenhofer, M.; Di, K.; Yang, Y.; Cherry, S. A Time-Walk Correction Method for PET Detectors Based on Leading Edge Discriminators. IEEE Trans. Radiat. Plasma Med. Sci. 2017, 1, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Comerma, A.; Gascon, D.; Freixas, L.; Garrido, L.; Graciani, R.; Marin, J.; Martinez, G.; Perez, J.M.; Mendes, P.R.; Castilla, J.; et al. FlexToT-Current Mode ASIC for Readout of Common Cathode SiPM Arrays; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Sanchez, D.; Gomez, S.; Mauricio, J.; Freixas, L.; Sanuy, A.; Guixe, G.; Lopez, A.; Manera, R.; Marın, J.; Perez, J.M.; et al. HRFlexToT: A High Dynamic Range ASIC for Time-of-Flight Positron Emission Tomography. IEEE Trans. Radiat. Plasma Med. Sci. 2021. [Google Scholar] [CrossRef]
- Gundacker, S.; Turtos, R.M.; Kratochwil, N.; Pots, R.H.; Paganoni, M.; Lecoq, P.; Auffray, E. Experimental time resolution limits of modern SiPMs and TOF-PET detectors exploring different scintillators and Cherenkov emission. Phys. Med. Biol. 2020, 65, 25001. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C. A 3.9 ps Time-Interval RMS Precision Time-to-Digital Converter Using a Dual-Sampling Method in an UltraScale FPGA. IEEE Trans. Nucl. Sci. 2016, 63, 2617–2621. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, H.; Liu, Y. A 7.4 ps FPGA-Based TDC with a 1024-Unit Measurement Matrix. Sensors 2017, 17, 865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, X.; Wang, L.; Liu, D.; Zhao, Y.; Rong, X.; Du, J. A 1.15 ps Bin Size and 3.5 ps Single-Shot Preci-sion Time-to-Digital-Converter with On-Board Offset Correction in an FPGA. IEEE Trans. Nucl. Sci. 2017, 64, 2951–2957. [Google Scholar] [CrossRef]
- Tang, Y.; Townsend, T.; Deng, H.; Liu, Y.; Zhang, R.; Chen, J. A Highly-Linear FPGA-Based TDC and a Low-Power Multi-Channel Readout ASIC with a Shared SAR ADC for SiPM Detectors. IEEE Trans. Nucl. Sci. 2021, 1. [Google Scholar] [CrossRef]
- Perktold, L.; Christiansen, J. A multichannel time-to-digital converter ASIC with better than 3ps RMS time resolution. J. Instrum. 2014, 9, C01060. [Google Scholar] [CrossRef]
- Jansson, J.P.; Mäntyniemi, A.; Kostamovaara, J. A multi-channel wide range time-to-digital converter with better than 9ps RMS precision for pulsed time-of-flight laser rangefinding. In Proceedings of the 2012 ESSCIRC (ESSCIRC), Bordeaux, France, 17–21 September 2012; pp. 273–276. [Google Scholar] [CrossRef]
- Dudek, P.; Szczepanski, S.; Hatfield, J. A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line. IEEE J. Solid-State Circuits 2000, 35, 240–247. [Google Scholar] [CrossRef]
- Nguyen, V.N.; Duong, D.N.; Chung, Y.; Lee, J.W. A Cyclic Vernier Two-Step TDC for High Input Range Time-of-Flight Sensor Using Startup Time Correction Technique. Sensors 2018, 18, 3948. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Deen, M.J.; Peng, H. A Low-Power Gateable Vernier Ring Oscillator Time-to-Digital Converter for Biomedical Imaging Applications. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Dai, F. A 14-Bit, 1-ps resolution, two-step ring and 2D Vernier TDC in 130nm CMOS technology. In Proceedings of the ESSCIRC 2017-43rd IEEE European Solid State Circuits Conference, Leuven, Belgium, 11–14 September 2017; pp. 143–146. [Google Scholar] [CrossRef]
- Abas, A.; Bystrov, A.; Kinniment, D.; Maevsky, O.; Russell, G.; Yakovlev, A. Time difference amplifier. Electron. Lett. 2002, 38, 1437–1438. [Google Scholar] [CrossRef] [Green Version]
- Mauricio, J.; Gascón, D.; Ciaglia, D.; Gómez, S.; Fernández, G.; Sanuy, A. MATRIX: A 15 ps resistive interpolation TDC ASIC based on a novel regular structure. J. Instrum. 2016, 11, C12047. [Google Scholar] [CrossRef] [Green Version]
- Mauricio, J.; Gascon, D. Resistive Interpolation Mesh Circuit for Time-to-Digital Converters. Patent WO/2017/134023, 10 August 2017. [Google Scholar]
- Gundacker, S.; Heering, A. The silicon photomultiplier: Fundamentals and applications of a modern solid-state photon detector. Phys. Med. Biol. 2020, 65, 17TR01. [Google Scholar] [CrossRef] [PubMed]
- Fischette, D. Practical Phase Practical Phase Locked Loop Locked Loop Design Design. 2004. Available online: https://www.eecis.udel.edu/~vsaxena/courses/ece518/Handouts/PLLTutorialISSCC2004.pdf (accessed on 8 June 2021).
- Bernstein, K.; Frank, D.J.; Gattiker, A.E.; Haensch, W.; Ji, B.L.; Nassif, S.R.; Nowak, E.J.; Pearson, D.J.; Rohrer, N.J. High-performance CMOS variability in the 65-nm regime and beyond. Ibm J. Res. Dev. 2006, 50, 433–449. [Google Scholar] [CrossRef]
- Swann, B.; Blalock, B.; Clonts, L.; Binkley, D.; Rochelle, J.; Breeding, E.; Baldwin, K. A 100-ps time-resolution CMOS time-to-digital converter for positron emission tomography imaging applications. IEEE J. Solid-State Circuits 2004, 39, 1839–1852. [Google Scholar] [CrossRef]
- Sacco, I.; Fischer, P.; Ritzert, M. PETA4: A multi-channel TDC/ADC ASIC for SiPM readout. J. Instrum. 2013, 8, 23–27. [Google Scholar] [CrossRef]
- Muntean, A.; Venialgo, E.; Ardelean, A.; Sachdeva, A.; Ripiccini, E.; Palubiak, D.; Jackson, C.; Charbon, E. Blumino: The first fully integrated analog SiPM with on-chip time conversion. IEEE Trans. Radiat. Plasma Med. Sci. 2020, 1. [Google Scholar] [CrossRef]
- Roy, N.; Nolet, F.; Dubois, F.; Mercier, M.O.; Fontaine, R.; Pratte, J.F. Low Power and Small Area, 6.9 ps RMS Time-to-Digital Converter for 3-D Digital SiPM. IEEE Trans. Radiat. Plasma Med. Sci. 2017, 1, 486–494. [Google Scholar] [CrossRef]
- Horstmann, M.; Christiansen, J.; Altruda, S.; Lumer-Klabbers, G.; Jeffrey, P. picoTDC: Pico-Second TDC for HEP. Available online: https://indico.cern.ch/event/755407/contributions/3130541/attachments/1738732/2827254/picoTDCPresentation.pdf (accessed on 8 June 2021).
- Chithra.; Krishnapura, N. A Flexible 18-Channel Multi-Hit Time-to-Digital Converter for Trigger-Based Data Acquisition Systems. IEEE Trans. Circuits Syst. Regul. Pap. 2020, 67, 1892–1901. [Google Scholar] [CrossRef]
- Marino, N.; Baronti, F.; Fanucci, L.; Saponara, S.; Roncella, R.; Bisogni, M.G.; Del Guerra, A. A Multichannel and Compact Time to Digital Converter for Time of Flight Positron Emission Tomography. IEEE Trans. Nucl. Sci. 2015, 62, 814–823. [Google Scholar] [CrossRef]
- Ur Rehman, S.; Khafaji, M.M.; Carta, C.; Ellinger, F. A 16 mW 250 ps Double-Hit-Resolution Input-Sampled Time-to-Digital Converter in 45-nm CMOS. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 562–566. [Google Scholar] [CrossRef]
Profile | VDD_FB | VDD_X | RIMC Freq | Fine LSB (Typ) |
---|---|---|---|---|
ULP | 1.6 V | 1.2 V | 600 MHz | 13.2 ps |
LP | 1.8 V | 1.5 V | 640 MHz | 12.4 ps |
TYP | 1.8 V | 1.8 V | 800 MHz | 9.9 ps |
HP | 1.8 V | 1.8 V | 920 MHz | 8.6 ps |
Profile | (mW) | (mW) | (mW) | (mW) | (mW/ch) |
---|---|---|---|---|---|
ULP | 12.3 | 9.9 | 26.3 | 46.5 | 2.9 |
LP | 17.6 | 12.8 | 50.0 | 80.4 | 5.0 |
TYP | 20.4 | 15.4 | 94.7 | 130.5 | 8.2 |
HP | 22.2 | 17.5 | 106.4 | 146.0 | 9.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mauricio, J.; Freixas, L.; Sanuy, A.; Gómez, S.; Manera, R.; Marín, J.; Pérez, J.M.; Picatoste, E.; Rato, P.; Sánchez, D.; et al. MATRIX16: A 16-Channel Low-Power TDC ASIC with 8 ps Time Resolution. Electronics 2021, 10, 1816. https://doi.org/10.3390/electronics10151816
Mauricio J, Freixas L, Sanuy A, Gómez S, Manera R, Marín J, Pérez JM, Picatoste E, Rato P, Sánchez D, et al. MATRIX16: A 16-Channel Low-Power TDC ASIC with 8 ps Time Resolution. Electronics. 2021; 10(15):1816. https://doi.org/10.3390/electronics10151816
Chicago/Turabian StyleMauricio, Joan, Lluís Freixas, Andreu Sanuy, Sergio Gómez, Rafel Manera, Jesús Marín, Jose M. Pérez, Eduardo Picatoste, Pedro Rato, David Sánchez, and et al. 2021. "MATRIX16: A 16-Channel Low-Power TDC ASIC with 8 ps Time Resolution" Electronics 10, no. 15: 1816. https://doi.org/10.3390/electronics10151816
APA StyleMauricio, J., Freixas, L., Sanuy, A., Gómez, S., Manera, R., Marín, J., Pérez, J. M., Picatoste, E., Rato, P., Sánchez, D., Sanmukh, A., Vela, O., & Gascon, D. (2021). MATRIX16: A 16-Channel Low-Power TDC ASIC with 8 ps Time Resolution. Electronics, 10(15), 1816. https://doi.org/10.3390/electronics10151816