Multiple Use SiPM Integrated Circuit (MUSIC) for Large Area and High Performance Sensors
Abstract
:1. Introduction
1.1. Applications of Radiation Detectors
1.2. SiPM Technology
1.3. Front End Electronics
- Current sensing with low input impedance. A current-mode input stage is preferable compared to a voltage-mode approach to sustain high event rates in high speed applications and obtain a fast response to optimize the time performance [42]. A low input impedance is desired in a current-mode implementation to maximize the peak current and thus improve the slew rate of the input signal [25,43].
- Shaping of the input signal. SiPM pulses typically have a long time constant associated with the recharge of the micro-cells. This may cause saturation or distortion because of pile up of pulses and thus causing baseline shifts [29]. This effect results in a reduction of the maximum event rate that an ASIC can handle without degradation. Pole-zero cancellation filters are used to shape the SiPM response [41].
- Pre-amplification to optimize the Signal to Noise Ratio (SNR). The input signal from the SiPM must be amplified to maximize the dynamic range and time performance [41]. Noise must be minimized while at the same time preserving the signal amplitude in order to optimize the SNR [19]. Note that, even if nominal gain of the SiPM is in the order of , only a fraction of the charge is used after applying a shaper to perform a tail cancellation.
- Combination (summation) of the signal of several SiPMs. Large detection areas have to be covered in some applications. Since the largest SiPM detection area is about 6 × 6 mm, smaller than the largest PMT, a solution when a large detection area is required is to add the signal of several SiPMs inside the ASIC [19,30]. Direct parallel connection of several SiPM devices has some drawbacks: extremely large capacitance (introducing limitations in speed and SNR) and difficult equalization of SiPM non-uniformities by over-voltage equalization. A dedicated ASIC adding the signals of several SiPMs covering the same area alleviate this drawback.
- Over-voltage equalization. The breakdown voltage of SiPMs suffers from process variability, although fabrication techniques have improved significantly. The different breakdown voltage of each SiPM is translated in gain non-uniformities when several of them are biased with the same power supply. This is particularly problematic when SiPM signals have to be added. Therefore, FE electronics should allow a DC adjustment of the input voltage connected to the anode or cathode of the SiPM (over-voltage equalization) [44,47].
1.4. Overview
2. Materials: MUSIC Architecture
2.1. Functional Modes
- Summation: The sum of the input signals is provided as a dual-gain output in differential mode using a high gain and a low gain current from the input readout circuit. The 8 channels contributing to the sum can be controlled individually.
- Individual analog readout: The SiPM response is provided as a single ended analog output per channel in voltage mode.
- Individual binary discriminated output: A non-linear Time-over-Threshold (ToT) response with a pulse width proportional to the input peak current (charge) is generated per channel. Each binary output is provided in single ended mode.
- Fast OR trigger: A trigger signal is provided by performing a logic OR operation between all discriminated channels. The rising edge of this signal indicates whether a valid event has occurred or not. For instance, a signal above dark count noise.
2.2. Input Current Stage
- Low input impedance of ≈32 in the bandwidth of interest.
- Anode connection for multi-channel common cathode SiPM arrays.
- Control of the SiPM bias voltage per channel by individual adjustment of the anode voltage (V). It is configured using an internal 9-bit DAC with 1 V full scale. This adjustment may be used to change the gain or the photon detection efficiency (PDE) of the SiPM, and thus equalize the gain in each channel.
- Large Gain Bandwidth (GBW) of more than 500 MHz.
- Low input referred noise for sensor capacitances between 10 pF to 10 nF: (1) series noise lower than 2 nV/sqrt(Hz); (2) parallel noise lower than 20 pA/sqrt(Hz).
- Low power consumption of about 5 mW/ch.
- Power down mode for each individual channel.
2.3. Pole-Zero Cancellation (PZ Shaper)
2.4. Summation Circuit
2.5. Individual Readout
2.6. MUSIC Specifications
3. Methods
4. Experimental Test Results
4.1. Individual Analog Readout
4.2. Individual Binary Readout
4.3. Analog Summation Readout
5. Discussion and Applications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Renker, D.; Lorenz, E. Advances in solid state photon detectors. J. Instrum. 2009, 4, P04004. [Google Scholar] [CrossRef]
- Del Guerra, A.; Belcari, N.; Giuseppina Bisogni, M.; Corsi, F.; Foresta, M.; Guerra, P.; Marcatili, S.; Santos, A.; Sportelli, G. Silicon Photomultipliers (SiPM) as novel photodetectors for PET. Nucl. Instrum. Methods Phys. Res. Sect. A 2011, 648, S232–S235. [Google Scholar] [CrossRef] [Green Version]
- Picatoste, E.; Gascón, D.; Abelln, C.; Lefrançois, J.; Machefert, F.; Duarte, O.; Grauges, E.; Garrido, L.; Vilasis, X. Low noise front end ICECAL ASIC for the Upgrade of the LHCb Calorimeter. J. Instrum. 2012, 7, C01080. [Google Scholar] [CrossRef]
- Perennes, C.; Doro, M.; Corti, D.; Lessio, L.; Mallamaci, M.; Mariotti, M.; Rando, R.; Salmaso, I. Optical feasibility of an upgrade of the CTA LST camera to SiPM. Nucl. Instrum. Methods Phys. Res. Sect. A 2020, 984, 164485. [Google Scholar] [CrossRef]
- Guz, Y. The Phase 2 Upgrade of the LHCb Calorimeter system. J. Instrum. 2020, 15, C09046. [Google Scholar] [CrossRef]
- Jha, A.K.; van Dam, H.T.; Kupinski, M.A.; Clarkson, E. Simulating Silicon Photomultiplier Response to Scintillation Light. IEEE Trans. Nucl. Sci. 2013, 60, 336–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, F. Silicon photomultipliers in particle and nuclear physics. Nucl. Instrum. Methods Phys. Res. Sect. A 2019, 926, 85–100. [Google Scholar] [CrossRef]
- Mazorra, J.; Chanal, H.; Comerma, A.; Gascón, D.; Gómez, S.; Han, X.; Pillet, N.; Vandaele, R. PACIFIC: The readout ASIC for the SciFi Tracker of the upgraded LHCb detector. J. Instrum. 2016, 11, C02021. [Google Scholar] [CrossRef] [Green Version]
- de Cos, J.M.; Chanal, H.; Comerma Montells, A.; Gascón Fora, D.; Gómez Fernández, S.; Han, X.; Pillet, N.; Vandaelle, R. PACIFIC: SiPM readout ASIC for LHCb upgrade. Nucl. Instrum. Methods Phys. Res. Sect. A 2018, 912, 354–358. [Google Scholar] [CrossRef] [Green Version]
- Gundacker, S.; Acerbi, F.; Auffray, E.; Ferri, A.; Gola, A.; Nemallapudi, M.V.; Paternoster, G.; Piemonte, C.; Lecoq, P. State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs. J. Instrum. 2016, 11, P08008. [Google Scholar] [CrossRef]
- Korzenev, A.; Serra, N.; Mermod, P.; Gascon, D.; Sgalaberna, D.; Gomez, S.; Blondel, A.; Favre, Y.; Dätwyler, A.; Noah, E.; et al. Application of SiPM arrays for the readout of a scintillator based time-of-flight detector. In Proceedings of the EPS Conference on High Energy Physics, Venice, Italy, 5–12 July 2017. [Google Scholar]
- Cassina, L. Photodetectors and front-end electronics for the LHCb RICH upgrade. Nucl. Instrum. Methods Phys. Res. Sect. A 2016, 876, 217–220. [Google Scholar] [CrossRef] [Green Version]
- Fiorini, M. The upgrade of the LHCb RICH detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 2020, 952, 161688. [Google Scholar] [CrossRef]
- Krennrich, F.; Akerlofb, C.W.; Buckley, J.H.; Buss, J.; Cawley, M.F.; Catanese, M.A.; Connaughton, V.; Fegan, D.J.; Finley, J.P.; Gaidos, J.A.; et al. Stereoscopic observations of gamma rays at the Whipple observatory. Astropart. Phys. 1998, 8, 213–221. [Google Scholar] [CrossRef]
- The CTA Consortium. Introducing the CTA concept. Astropart. Phys. 2013, 43, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Aharonian, F.A.; Hofmann, W.; Konopelko, A.K.; Völk, H.J. The potential of ground based arrays of imaging atmospheric Cherenkov telescopes. I. Determination of shower parameters. Astropart. Phys. 1997, 6, 343–368. [Google Scholar] [CrossRef]
- Lecoq, P. Pushing the Limits in Time-of-Flight PET Imaging. IEEE Trans. Radiat. Plasma Med. Sci. 2017, 1, 473–485. [Google Scholar] [CrossRef]
- Gundacker, S.; Martinez Turtos, R.; Kratochwil, N.; Pots, R.H.; Paganoni, M.; Lecoq, P.; Auffray, E. Experimental time resolution limits of modern SiPMs and TOF-PET detectors exploring different scintillators and Cherenkov emission. Phys. Med. Biol. 2020, 65, 25001. [Google Scholar] [CrossRef] [PubMed]
- Carminati, M.; Fiorini, C. Challenges for Microelectronics in Non-Invasive Medical Diagnostics. Sensors 2020, 20, 3636. [Google Scholar] [CrossRef] [PubMed]
- Guberman, D.; Paoletti, R.; Rugliancich, A.; Wunderlich, C.; Passeri, A. Large-Area SiPM Pixels (LASiPs): A cost-effective solution towards compact large SPECT cameras. Phys. Med. 2021, 82, 171–184. [Google Scholar] [CrossRef]
- Gascon, D.; Chanal, H.; Comerma, A.; Gomez, S.; Han, X.; Mazorra, J.; Mauricio, J.; Pillet, N.; Yengui, F.; Vandaele, R. PACIFIC: A 64-channel ASIC for scintillating fiber tracking in LHCb upgrade. J. Instrum. 2015, 10, C04030. [Google Scholar] [CrossRef]
- The CTA Consortium. Design concepts for the Cherenkov Telescope Array CTA: An advanced facility for ground-based high-energy gamma-ray astronomy. Exp. Astron. 2011, 32, 193–316. [Google Scholar] [CrossRef]
- Hammamatsu Photonics K.K. Electron Tube Division. Photomultipliers Tubes, Basics and Applications; Hammamatsu: Tokoyo, Japan, 2006. [Google Scholar]
- Saveliev, V.; Golovin, V. Silicon avalanche photodiodes on the base of metal-resistor-semiconductor (MRS) structures. Nucl. Instrum. Methods Phys. Res. Sect. A 2000, 442, 223–229. [Google Scholar] [CrossRef]
- Gundacker, S.; Heering, A. The silicon photomultiplier: Fundamentals and applications of a modern solid-state photon detector. Phys. Med. Biol. 2020, 65, 17–18. [Google Scholar] [CrossRef]
- Bisogni, M.G.; Morrocchi, M. Development of analog solid-state photo-detectors for Positron Emission Tomography. Nucl. Instrum. Methods Phys. Res. Sect. A 2016, 809, 140–148. [Google Scholar] [CrossRef]
- Eckert, P.; Schultz-Coulon, H.C.; Shen, W.; Stamen, R.; Tadday, A. Characterisation studies of silicon photomultipliers. Nucl. Instrum. Methods Phys. Res. Sect. A 2010, 620, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Otte, A.N. SiPM’s a very brief review. In Proceedings of the International Conference on New Photo-Detectors, Troitsk, Russia, 6–9 July 2015. [Google Scholar] [CrossRef] [Green Version]
- Acerbi, F.; Gundacker, S. Understanding and simulating SiPMs. Nucl. Instrum. Methods Phys. Res. Sect. A 2019, 926, 16–35. [Google Scholar] [CrossRef]
- Sánchez, D.; Gómez, S.; Fernández-Tenllado, J.M.; Ballabriga, R.; Michael, C.; Gascón, D. Multimodal Simulation of Large Area Silicon Photomultipliers for Time Resolution Optimization. Nucl. Instrum. Methods Phys. Res. Sect. A 2021, 1001, 165247. [Google Scholar] [CrossRef]
- Cova, S.; Ghioni, M.; Lacaita, A.; Samori, C.; Zappa, F. Avalanche photodiodes and quenching circuits for single-photon detection. Appl. Opt. 1996, 35, 1956. [Google Scholar] [CrossRef]
- Otte, N. The Silicon Photomultiplier—A new device for High Energy Physics, Astroparticle Physics, Industrial and Medical Applications. In Proceedings of the SNIC symposium (SLAC), Stanford, CA, USA, 3–6 April 2006; pp. 1–9. [Google Scholar]
- Buzhan, P.; Dolgoshein, B.; Filatov, L.; Ilyin, A.; Kantzerov, V.; Kaplin, V.; Karakash, A.; Kayumov, F.; Klemin, S.; Popova, E.; et al. Silicon photomultiplier and its possible applications. Nucl. Instrum. Methods Phys. Res. Sect. A 2003, 504, 48–52. [Google Scholar] [CrossRef]
- Seifert, S.; Van Dam, H.T.; Huizenga, J.; Vinke, R.; Dendooven, P.; Löhner, H.; Schaart, D.R. Simulation of silicon photomultiplier signals. IEEE Trans. Nucl. Sci. 2009, 56, 3726–3733. [Google Scholar] [CrossRef] [Green Version]
- Marano, D.; Belluso, M.; Bonanno, G.; Billotta, S.; Grillo, A.; Garozzo, S.; Romeo, G.; Catalano, O.; La Rosa, G.; Sottile, G.; et al. Silicon photomultipliers electrical model extensive analytical analysis. IEEE Trans. Nucl. Sci. 2014, 61, 23–34. [Google Scholar] [CrossRef]
- Rando, R.; Corti, D.; Dazzi, F.; De Angelis, A.; Dettlaff, A.; Dorner, D.; Fink, D.; Fouque, N.; Grundner, F.; Haberer, W.; et al. Silicon Photomultiplier Research and Development Studies for the Large Size Telescope of the Cherenkov Telescope Array. In Proceedings of the 34th International Cosmic Ray Conference (ICRC 2015), The Hague, The Netherlands, 30 July–6 August 2015. [Google Scholar] [CrossRef] [Green Version]
- Piemonte, C. A new Silicon Photomultiplier structure for blue light detection. Nucl. Instrum. Methods Phys. Res. Sect. A 2006, 568, 224–232. [Google Scholar] [CrossRef]
- Biteau, J.; Chinn, D.; Dang, D.; Doyle, K.; Johnson, C.A.; Williams, D.A. Performance of Silicon Photomultipliers for the Dual-Mirror Medium-Sized Telescopes of the Cherenkov Telescope Array. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands, 30 July–6 August 2015. [Google Scholar] [CrossRef] [Green Version]
- Hammamatsu Photonics K.K. S13360 Series—MPPCs for Precision Measurement. Available online: https://www.hamamatsu.com/resources/pdf/ssd/s13360_series_kapd1052e.pdf (accessed on 1 March 2021).
- Gola, A.; Acerbi, F.; Capasso, M.; Marcante, M.; Mazzi, A.; Paternoster, G.; Piemonte, C.; Regazzoni, V.; Zorzi, N. NUV-Sensitive Silicon Photomultiplier Technologies Developed at Fondazione Bruno Kessler. Sensors 2019, 19, 308. [Google Scholar] [CrossRef] [Green Version]
- Rivetti, A. CMOS: Front-End Electronics for Radiation Sensors; CRC Press: Boca Raton, FL, USA, 2015; pp. 1–683. [Google Scholar] [CrossRef]
- Ciciriello, F.; Corsi, F.; Licciulli, F.; Marzocca, C.; Matarrese, G. Time performance of voltage-mode vs current-mode readouts for SiPM’s. In Proceedings of the 2015 6th IEEE International Workshop on Advances in Sensors and Interfaces, IWASI 2015, Gallipoli, Italy, 18–19 June 2015; pp. 249–253. [Google Scholar] [CrossRef]
- Fernandez-Tenllado, J.M.; Ballabriga, R.; Campbell, M.; Gascon, D.; Gomez, S.; Mauricio, J. Optimal design of single-photon sensor front-end electronics for fast-timing applications. In Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2019, Manchester, UK, 26 October–2 November 2019. [Google Scholar] [CrossRef]
- Fleury, J.; Callier, S.; De La Taille, C.; Seguin, N.; Thienpont, D.; Dulucq, F.; Ahmad, S.; Martin, G. Petiroc and Citiroc: Front-end ASICs for SiPM read-out and ToF applications. J. Instrum. 2014, 9, C01049. [Google Scholar] [CrossRef]
- Nadig, V.; Weissler, B.; Radermacher, H.; Schulz, V.; Schug, D. Investigation of the Power Consumption of the PETsys TOFPET2 ASIC. IEEE Trans. Radiat. Plasma Med. Sci. 2020, 4, 378–388. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, D.; Gomez, S.; Mauricio, J.; Freixas, L.; Sanuy, A.; Guixe, G.; Lopez, A.; Manera, R.; Marın, J.; Perez, J.M.; et al. HRFlexToT: A High Dynamic Range ASIC for Time-of-Flight Positron Emission Tomography. IEEE Trans. Radiat. Plasma Med. Sci. 2021. [Google Scholar] [CrossRef]
- Chen, H.; Briggl, K.; Fischer, P.; Gil, A.; Harion, T.; Munwes, Y.; Ritzert, M.; Schimansky, D.; Schultz-Coulon, H.C.; Shen, W.; et al. A dedicated readout ASIC for Time-of-Flight Positron Emission Tomography using Silicon Photomultiplier (SiPM). In Proceedings of the 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2014, Seattle, WA, USA, 8–15 November 2016. [Google Scholar] [CrossRef]
- Garutti, E. Silicon Photomultipliers for High Energy Physics Detectors. J. Instrum. 2011, 6, C10003. [Google Scholar] [CrossRef]
- Sanuy, A.; Gascon, D.; Paredes, M.; Garrido, L.; Ribó, M.; Sieiro, J. Wideband (500 MHz) 16 bit dynamic range current mode PreAmplifier for the CTA cameras (PACTA). J. Instrum. 2012, 7, C01100. [Google Scholar] [CrossRef] [Green Version]
- Anghinolfi, F.; Jarron, P.; Martemiyanov, A.N.; Usenko, E.; Wenninger, H.; Williams, M.C.S.; Zichichid, A. NINO: An ultra-fast and low-power front-end amplifier/discriminator ASIC designed for the multigap resistive plate chamber. Nucl. Instrum. Methods Phys. Res. Sect. A 2004, 533, 183–187. [Google Scholar] [CrossRef]
- Gundacker, S.; Auffray, E.; Frisch, B.; Jarron, P.; Knapitsch, A.; Meyer, T.; Pizzichemi, M.; Lecoq, P. Time of flight positron emission tomography towards 100ps resolution with L(Y)SO: An experimental and theoretical analysis. J. Instrum. 2013, 8. [Google Scholar] [CrossRef]
- Weeroc. Available online: https://www.weeroc.com/products/see-catalogue (accessed on 1 March 2021).
- Gomez, S.; Gascon, D.; Fernández, G.; Sanuy, A.; Mauricio, J.; Graciani, R.; Sanchez, D. MUSIC: An 8 channel readout ASIC for SiPM arrays. In Proceedings of the SPIE 9899, Optical Sensing and Detection IV, Brussels, Belgium, 3–7 April 2016; Volume 9899. [Google Scholar]
- Gascon, D.; Gomez, S.; Mauricio, J. EP3356903: Summation for Multi-Channel Photomultiplier Array Signals. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017055477 (accessed on 1 March 2021).
- Ramirez-Angulo, J.; Carvajal, R.G.; Torralba, A. Low Supply Voltage High-Performance CMOS Current Mirror With Low Input and Output Voltage Requirements. IEEE Trans. Circuits Syst. Express Briefs 2004, 51, 124–129. [Google Scholar] [CrossRef]
- Laker, K.R.; Sansen, W.M.C. Design of Analog Integrated Circuits and Systems; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Park, S.M.; Toumazou, C. Low noise current-mode CMOS transimpedance amplifier for giga-bit optical communication. In Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187), ISCAS’98, Monterey, CA, USA, 31 May–3 June 1998; Volume 1, pp. 293–296. [Google Scholar] [CrossRef]
- Sansen, W.M.C. Analog Design Essentials, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 859. [Google Scholar]
- Menninga, H.; Favi, C.; Fishburn, M.W.; Charbon, E. A multi-channel, 10ps resolution, FPGA-based TDC with 300MS/s throughput for open-source PET applications. In Proceedings of the 2011 IEEE Nuclear Science Symposium Conference Record, Valencia, Spain, 23–29 October 2011; pp. 1515–1522. [Google Scholar] [CrossRef] [Green Version]
- Betancourt, C.; Blondel, A.; Brundler, R.; Dätwyler, A.; Favre, Y.; Gascon, D.; Gomez, S.; Korzenev, A.; Mermod, P.; Noah, E.; et al. Application of large area SiPMs for the readout of a plastic scintillator based timing detector. J. Instrum. 2017, 12, P11023. [Google Scholar] [CrossRef] [Green Version]
- Berti, A.; Chiavassa, A.; Corti, D.; Depaoli, D.; Di Pierro, F.; Lessio, L.; Mallamaci, M.; Mariotti, M.; Perennes, C.; Rando, R.; et al. Development and test of a SiPM cluster for a SiPM version of the Cherenkov Telescope Array LST camera. Nucl. Instrum. Methods Phys. Res. Sect. A 2020, 982, 164373. [Google Scholar] [CrossRef]
- Otte, A.N.; Gazda, E.; Judd, E.; Krizmanic, J.F.; Kutzenzov, E.; Matamala, O.R.; Reardon, P.J.; Wiencke, L. Development of a Cherenkov Telescope for the Detection of Ultrahigh Energy Neutrinos with EUSO-SPB2 and POEMMA. arXiv 2019, arXiv:1907.08728. [Google Scholar]
- Daniel, M.K.; White, R.J.; Berge, D.; Buckley, J.; Chadwick, P.M.; Cotter, G.; Funk, S.; Greenshaw, T.; Hidaka, N.; Hinton, J.; et al. A Compact High Energy Camera for the Cherenkov Telescope Array. arXiv 2013, arXiv:1307.2807. [Google Scholar]
- Ehlert, M.; Hollnagel, A.; Korol, I.; Korzenev, A.; Lacker, H.; Mermod, P.; Schliwinski, J.; Shihora, L.; Venkova, P.; Wurm, M. Proof-of-principle measurements with a liquid-scintillator detector using wavelength-shifting optical modules. J. Instrum. 2019, 14, P03021. [Google Scholar] [CrossRef] [Green Version]
- Venturini, G.G. Characterization of a wide dynamic-range, radiation-tolerant charge-digitizer asic for monitoring of beam losses. In Proceedings of the International Beam Instrumentation Conference (IBIC), Tsukuba, Japan, 1–4 October 2012; Available online: https://accelconf.web.cern.ch/IBIC2012/papers/mopa12.pdf (accessed on 1 March 2021).
- ALBA Synchrotron. Available online: https://www.cells.es/es/ (accessed on 1 March 2021).
- Gallo, G.; Lo Presti, D.; Bonanno, D.L.; Bonanno, G.; La Rocca, P.; Reito, S.; Riggi, F.; Romeo, G. Proof-of-Principle of a Cherenkov-Tag Detector Prototype. Sensors 2020, 20, 3437. [Google Scholar] [CrossRef]
- Riggi, F.; Bonanno, D.L.; Bongiovanni, D.; Gallo, G.; La Rocca, P.; Leonora, E.; Longhitano, F.; Lo Presti, D.; Randazzo, N.; Parasole, O.; et al. The Muon Portal Project: Commissioning of the full detector and first results. Nucl. Instrum. Methods Phys. Res. Sect. A 2018, 912, 16–19. [Google Scholar] [CrossRef]
- Lee, S.J.; Chen, Y.; Lodder, B.; Sabatini, B.L. Monitoring Behaviorally Induced Biochemical Changes Using Fluorescence Lifetime Photometry. Front. Neurosci. 2019, 13, 766. [Google Scholar] [CrossRef] [Green Version]
- De Angelis, N.; Heller, M.; Montaruli, T. Studies of Readout Electronics and Optical Elements for a Gamma-Ray Telescope; Technical Report; Université de Genève: Genève, Switzerland, 2018. [Google Scholar]
- Guberman, D.; Paoletti, R. Silicon photomultipliers in Very High Energy gamma-ray astrophysics. J. Instrum. 2020, 15. [Google Scholar] [CrossRef]
- Gomez, S.; Sanchez, D.; Gascon, D.; Cela, J.M.; Freixas, L.; Graciani, R.; Manera, R.; Marin, J.; Mauricio, J.; Navarrete, J.J.; et al. A High Dynamic Range ASIC for Time of Flight PET with pixelated and monolithic crystals. In Proceedings of the 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2019, Manchester, UK, 26 October–2 November 2019. [Google Scholar] [CrossRef]
- Gómez, S.; Sanmukh, A.; Gascón, D.; Sánchez, D.; Mauricio, J.; Graciani, R.; Manera, R.; Garrido, L.; Fernández-Varea, J.M.; Cela, J.M.; et al. A High Dynamic Range ASIC for Time of Flight PET with monolithic crystals. Proc. Sci. 2018, 343, 17–21. [Google Scholar] [CrossRef]
Performance | Summation | Individual Analog | Individual Binary |
---|---|---|---|
Gain | HG:690 /315 | 480 /180 | 1 k |
LG:90 /45 | |||
GBW | 500 MHz | 150 MHz | >500 MHz |
Dyn. Range | >15 bits | >10 bits | ToT |
Output | Differential (×2) | Single Ended | CMOS |
SNR ( = 1 nF) | >5 | >5 | - |
Comp Noise | - | - | <1 LSB |
Power | 25 mW/ch | 30 mW/ch | 15 mW/ch |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez, S.; Sánchez, D.; Mauricio, J.; Picatoste, E.; Sanuy, A.; Sanmukh, A.; Ribó, M.; Gascón, D. Multiple Use SiPM Integrated Circuit (MUSIC) for Large Area and High Performance Sensors. Electronics 2021, 10, 961. https://doi.org/10.3390/electronics10080961
Gómez S, Sánchez D, Mauricio J, Picatoste E, Sanuy A, Sanmukh A, Ribó M, Gascón D. Multiple Use SiPM Integrated Circuit (MUSIC) for Large Area and High Performance Sensors. Electronics. 2021; 10(8):961. https://doi.org/10.3390/electronics10080961
Chicago/Turabian StyleGómez, Sergio, David Sánchez, Joan Mauricio, Eduardo Picatoste, Andreu Sanuy, Anand Sanmukh, Marc Ribó, and David Gascón. 2021. "Multiple Use SiPM Integrated Circuit (MUSIC) for Large Area and High Performance Sensors" Electronics 10, no. 8: 961. https://doi.org/10.3390/electronics10080961
APA StyleGómez, S., Sánchez, D., Mauricio, J., Picatoste, E., Sanuy, A., Sanmukh, A., Ribó, M., & Gascón, D. (2021). Multiple Use SiPM Integrated Circuit (MUSIC) for Large Area and High Performance Sensors. Electronics, 10(8), 961. https://doi.org/10.3390/electronics10080961