Embroidered Βow-Tie Wearable Antenna for the 868 and 915 MHz ISM Bands
Abstract
:1. Introduction
2. Materials and Methods
2.1. SPK Fractal-Based Design and Embroidery Process
2.2. Modeling, Simulation and Measurements
3. Results
3.1. Experimental and Simulation Results in Free Space
3.2. Effect of the Human Body
3.3. Performance under Bent Conditions
3.4. Washing Tests
3.5. Radiation Characteristics
3.6. SAR Εstimation
3.7. Comparisons
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loss, C.; Gonçalves, R.; Lopes, C.; Pinho, P.; Salvado, R. Smart coat with a fully-embedded textile antenna for IoT applications. Sensors 2016, 16, 938. [Google Scholar] [CrossRef]
- Tsolis, A.; Whittow, W.G.; Alexandridis, A.A.; Vardaxoglou, J.C. Embroidery and related manufacturing techniques for wearable antennas: Challenges and opportunities. Electronics 2014, 3, 314–338. [Google Scholar] [CrossRef] [Green Version]
- Kiourti, A.; Volakis, J.L. Colorful textile antennas integrated into embroidered logos. J. Sens. Actuator Netw. 2015, 4, 371–377. [Google Scholar] [CrossRef]
- Lilja, J.; Salonen, P.; Kaija, T.; de Maagt, P. Design and manufacturing of robust textile antennas for harsh environments. IEEE Trans. Antennas Propag. 2012, 60, 4130–4140. [Google Scholar] [CrossRef]
- Zhang, S.; Whittow, W.; Seager, R.; Chauraya, A.; Vardaxoglou, Y. Non-uniform mesh for embroidered microstrip antennas. IET Microw. Antennas Propag. 2017, 11, 1086–1091. [Google Scholar] [CrossRef] [Green Version]
- Seager, R.; Zhang, S.; Chauraya, A.; Whittow, W.; Vardaxoglou, Y.; Acti, T.; Dias, T. Effect of the fabrication parameters on the performance of embroidered antennas. IET Microw. Antennas Propag. 2013, 7, 1174–1181. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Kiourti, A.; Sebastian, T.; Bayram, Y.; Volakis, J.L. Conformal load-bearing spiral antenna on conductive textile threads. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 230–233. [Google Scholar] [CrossRef]
- Paul, D.L.; Giddens, H.; Paterson, M.G.; Hilton, G.S.; McGeehan, J.P. Impact of body and clothing on a wearable textile dual band antenna at digital television and wireless communications bands. IEEE Trans. Antennas Propag. 2013, 61, 2188–2194. [Google Scholar] [CrossRef]
- Wang, Z.; Lee, L.Z.; Psychoudakis, D.; Volakis, J.L. Embroidered multiband body-worn antenna for GSM/PCS/WLAN communications. IEEE Trans. Antennas Propag. 2014, 62, 3321–3329. [Google Scholar] [CrossRef]
- Zhang, S.; Paraskevopoulos, A.; Luxey, C.; Pinto, J.; Whittow, W. Broad-band embroidered spiral antenna for off-body communications. IET Microw. Antennas Propag. 2016, 10, 1395–1401. [Google Scholar] [CrossRef] [Green Version]
- Paraskevopoulos, A.; de Sousa Fonseca, D.; Seager, R.D.; Whittow, W.; Alexandridis, A.A. Higher-mode textile patch antenna with embroidered vias for on-body communication. IET Microw. Antennas Propag. 2016, 10, 802–807. [Google Scholar] [CrossRef] [Green Version]
- Almohammed, B.; Ismail, A.; Sali, A. Electro-textile wearable antennas in wireless body area networks: Materials, antenna design, manufacturing techniques, and human body consideration—A review. Text. Res. J. 2021, 91, 646–663. [Google Scholar] [CrossRef]
- Gil, I.; Fernadez-Garcia, R. Wearable PIFA antenna implemented on jean substrate for wireless body area network. J. Electromagn. Waves Appl. 2017, 31, 1194–1204. [Google Scholar] [CrossRef]
- Anbalagan, A.; Sundarsingh, E.F.; Ramalingam, V.S. Design and experimental evaluation of a novel on-body textile antenna for unicat applications. Microw. Opt. Technol. Lett. 2020, 62, 789–799. [Google Scholar] [CrossRef]
- Mao, C.X.; Vital, D.; Werner, D.H.; Wu, Y.; Bhardwai, S. Dual-polarized embroidered textile armband antenna array with omnidirectional radiation for on-/off-body wearable applications. IEEE Trans. Antennas Propag. 2020, 68, 2575–2584. [Google Scholar] [CrossRef]
- Kioski, K.; Sydanheimo, L.; Rahmat-Samii, Y.; Ukkonen, L. Fundamental characteristics of electro-textiles in wearable UHF RFID patch antennas for body-centric sensing systems. IEEE Trans. Antennas Propag. 2014, 62, 6454–6462. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, L.; Pan, K.; Leng, T.; Li, Y.; Danoon, L.; Hu, Z. e-Textile embroidered wearable near-field communication RFID antennas. IET Microw. Antennas Propag. 2019, 13, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Abbas, B.; Khamas, S.K.; Ismail, A.; Sali, A. Fully embroidery designed electro-textile wearable tag antenna for WBAN application. Sensors 2019, 19, 2470. [Google Scholar] [CrossRef] [Green Version]
- Kiourti, A.; Lee, C.; Volakis, J.L. Fabrication of textile antennas and circuits with 0.1mm precision. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 151–153. [Google Scholar] [CrossRef]
- Liu, F.X.; Xu, Z.; Ranasinghe, D.C.; Fumeaux, C. Textile folded half-mode substrate-integrated cavity antenna. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1693–1697. [Google Scholar] [CrossRef]
- Alonso-Gonzalez, L.; Ver-Hoeye, S.; Fernadez-Garcia, M.; Vazquez-Antuna, C.; Las-Heras Andres, F. On the development of a novel mixed embroidered-woven slot antenna for wireless applications. IEEE Access 2019, 7, 9476–9489. [Google Scholar] [CrossRef]
- Moradi, B.; Fernandez-Garcia, R.; Gil, I. Wearable high-performance meander ring dipole antenna for electronic-textile applications. J. Text. Instit. 2020, 111, 178–182. [Google Scholar] [CrossRef]
- Zhong, J.; Lee, C.W.; Papantonis, D.; Kiourti, A.; Volakis, J.L. Body-worn 30:1 bandwidth tightly coupled dipole array on conductive textiles. IEEE Antennas Wirel. Propag. Lett. 2018, 7, 723–726. [Google Scholar] [CrossRef]
- Waqas, M.; Ahmed, Z.; Ihsan, M.B. Multiband Sierpinski fractal antenna. In Proceedings of the 2009 IEEE 13th International Multitopic Conference, Islamabad, Pakistan, 14–15 December 2009. [Google Scholar]
- Chowdary, P.S.R.; Prasad, A.M.; Rao, P.M.; Anguera, J. Design and performance study of Sierpinski fractal based patch antennas for multiband and miniaturization characteristics. Wirel. Pers. Commun. 2015, 83, 1713–1730. [Google Scholar] [CrossRef]
- Figueroa-Torres, C.A.; Medina-Monroy, J.L.; Lobato-Morales, H.; Chaves-Perez, R.A.; Calvillo-Tellez, A. A novel fractal antenna based on the Sierpinski structure for super wide-band applications. Microw. Opt. Technol. Lett. 2017, 59, 1148–1153. [Google Scholar] [CrossRef]
- Baliarda, C.P.; Romeu, J.; Pous, R.; Cardama, A. On the behavior of the Sierpinski multiband fractal antenna. IEEE Trans. Antennas Propag. 1998, 46, 517–524. [Google Scholar] [CrossRef] [Green Version]
- Kaur, J.; Singh, S.; Kansal, A. Multiband behaviour of Sierpinski fractal antenna. Res. J. Inf. Technol. 2011, 3, 3–43. [Google Scholar] [CrossRef] [Green Version]
- Pavec, M.; Kapetanakis, T.N.; Ioannidou, M.P.; Nikolopoulos, C.D.; Baklezos, A.T.; Soukup, R.; Blecha, T.; Hamacek, A.; Vardiambasis, I.O. Implementation of an all-textile bow-tie antenna for the 868 MHz ISM band. In Proceedings of the 2020 International Symposium on Electromagnetic Compatibility (EMC Europe 2020), Rome, Italy, 23–25 September 2020. [Google Scholar]
- Pavec, M.; Navratil, J.; Soukup, R.; Hamacek, A. A bowtie antenna prepared by aerosol jet and embroidering technology. In Proceedings of the 41st International Spring Seminar on Electronics Technology (ISSE), Zlatibor, Serbia, 16–20 May 2018; pp. 1–4. [Google Scholar]
- Blecha, T.; Hamacek, A.; Hotmar, M.; Kaspar, P.; Pilikova, M.; Reboun, J.; Soukup, R.; Svecar, F.; Tichy, M. Sewing thread for integration of electronic elements into fabrics. Patent CZ28603 U1, 18 May 2015. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design, 4th ed.; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreuccetti, D.; Fossi, R.; Petrucci, C. An Internet Resource for the Calculation of the Dielectric Properties of Body Tissues in the Frequency Range 10 Hz–100 GHz; IFAC-CNR: Florence, Italy, 1997. [Google Scholar]
- IEC/IEEE International Standard. Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body from Wireless Communications Devices, 30 MHz to 6 GHz—Part 1: General Requirements for Using the Finite-Difference Time-Domain (FDTD) Method for SAR Calculations; IEC/IEEE 62704-1:2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–86. [Google Scholar]
- IEEE-SA Standards Board. IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields with Respect to Human Exposure to Such Fields, 100 kHz 300 GHz; IEEE Std C95.3-2002 (Revision of IEEE Std C95.3-1991), no. 4; IEEE: Piscataway, NJ, USA, 2002; pp. 1–126. [Google Scholar]
Antenna Prototype | S1L | S1M | S1Ha | S1Hb | S2H | B1Ha | B1Hb | Nominal | Simulated |
---|---|---|---|---|---|---|---|---|---|
Thread material | S | S | S | S | S | B | B | - | S/B |
Stitch pattern | Low | Medium | High | High | High | High | High | - | High |
Conductive side | 1 | 1 | 1 | 1 | 2 | 1 | 1 | - | 1 |
L0 (mm) | 48.03 | 47.78 | 48.54 | 44.57 | 48.24 | 45.91 | 49.77 | 50 | 48 |
L1 (mm) | 22.29 | 21.91 | 21.41 | 19.98 | 22.22 | 21.36 | 23.89 | 23 | 24 |
L2 (mm) | 10.37 | 9.74 | 9.12 | 9.10 | 9.99 | 9.23 | 10.26 | 10 | 12 |
wg (mm) | 2.79 | 2.81 | 3.03 | 3.88 | 3.07 | 1.90 | 3.13 | 2.1 | 2.2 |
θt (deg) | 60.66 | 61.53 | 58.27 | 56.38 | 58.33 | 61.98 | 62.44 | 60 | 60 |
Antenna Prototype | S1L | S1M | S1Ha | S1Hb | S2H | B1Ha | B1Hb | S-Simulated | B-Simulated |
---|---|---|---|---|---|---|---|---|---|
fc (MHz) | 963.2 | 949.1 | 957.2 | 975 | 970.2 | 961.4 | 860 | 918.3 | 912.4 |
S11 (dB) @ fc | −18.7 | −15.4 | −16.1 | −16.0 | −21.9 | −22.7 | −23 | −14.5 | −15.4 |
VSWR @ fc | 1.26 | 1.41 | 1.37 | 1.35 | 1.20 | 1.17 | 1.16 | 1.46 | 1.41 |
f1 (MHz) | 868 | 861 | 841 | 900 | 910 | 800 | 740 | 863 | 855 |
f2 (MHz) | 1027 | 998 | 1007 | 1019 | 1048 | 1028 | 977 | 982 | 974 |
−10 dB BW (MHz) | 159 | 137 | 166 | 119 | 138 | 228 | 237 | 119 | 119 |
−10 dB BW (%) | 16.5 | 14.4 | 17.3 | 12.2 | 14.2 | 23.7 | 27.6 | 12.9 | 13.1 |
Washing Cycle | 0 | 1 | 2 | 3 | 5 | 10 |
---|---|---|---|---|---|---|
fc (MHz) | 860 | 842 | 845 | 892 | 903 | 911 |
S11 (dB) @ fc | −23 | −19 | −16 | −16 | −18 | −15 |
VSWR @ fc | 1.16 | 1.27 | 1.38 | 1.38 | 1.30 | 1.44 |
f1 (MHz) | 740 | 735 | 730 | 719 | 731 | 840 |
f2 (MHz) | 977 | 977 | 946 | 977 | 979 | 987 |
−10 dB BW (MHz) | 237 | 242 | 216 | 258 | 248 | 147 |
Antenna Prototype | S1M | S1Ha | S1L | S2H | B1Ha | S-Simulation | B-Simulation |
---|---|---|---|---|---|---|---|
Gain (dBi) | 2.37 | 1.92 | 2.58 | 3.51 | 1.2 | 1.83 | 1.21 |
Directivity (dB) | 6.23 | 6.02 | 6.02 | 5.68 | 5.44 | 1.99 | 1.90 |
Efficiency | 41.1% | 38.9% | 45.2% | 60.7% | 37.7% | 96,5% | 85,2% |
Tissue Type | σ (S/m) | εr | tanδ | Density (kg/m3) | Thickness (mm) |
---|---|---|---|---|---|
Dry skin | 0.86 | 41.6 | 0.426 | 1100 | 1.5 |
Fat | 0.05 | 5.5 | 0.190 | 900 | 13 |
Muscle | 0.93 | 55.1 | 0.350 | 1080 | 20 |
Cortical bone | 0.14 | 12.5 | 0.231 | 2000 | 3.5 |
Reference | Antenna | fc | −10 dB BW | min S11 (dB) | Gain (dBi) | Efficiency (%) | Dimensions | SAR over 10 g (W/kg) |
---|---|---|---|---|---|---|---|---|
[3] | Logo shaped | 2.4 GHz | - | −17 | 3 | - | 37.4 × 24.4 mm2 | - |
[11] | Textile patch | 2.4 GHz (2.44 body) | 6.3% | −23.1 (−22 body) | 1 | 55 (40 body) | 5 × 5 cm2 | - |
[13] | Planar inverted-F PIFA BT-JGJ | 2.42 GHz (2.32 body) | 6.2% | −11 | 2.49 (1.98 body) | 82.2 (29.1 body) | 50 × 16 mm2 | 0.97 (peak value) |
[14] | 4-layer patch | 2.45 GHz | 20.4% | −28 | 7.11 | 67.03 | 58 × 63 mm2 | 0.01 |
[18] | Textile tag | 915 MHz | - | −24 | −1 (body) | - | 72 × 20 mm2 | - |
[20] | Folded half-mode cavity | 2.425 GHz | 4.1% | −28 | 7.1 | 85 | 82.8 × 41.4 mm2 | - |
[22] | Meander ring dipole | 325 MHz | 6.2% | −18 | 1.5 | 49 | 342 mm (diameter) | - |
This work | SPK fractal bow-tie silver thread-S1Ha | 957.2 MHz | 17.3% (50.7% body) | −16.1 | 1.92 | 39 | 88 × 50 mm2 | 0.025 (with air gap) 0.029 (without air gap) |
SPK fractal bow-tie brass thread-B1Ha | 961.4 MHz | 23.7% (47.4% body) | −22.7 | 1.2 | 38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapetanakis, T.N.; Pavec, M.; Ioannidou, M.P.; Nikolopoulos, C.D.; Baklezos, A.T.; Soukup, R.; Vardiambasis, I.O. Embroidered Βow-Tie Wearable Antenna for the 868 and 915 MHz ISM Bands. Electronics 2021, 10, 1983. https://doi.org/10.3390/electronics10161983
Kapetanakis TN, Pavec M, Ioannidou MP, Nikolopoulos CD, Baklezos AT, Soukup R, Vardiambasis IO. Embroidered Βow-Tie Wearable Antenna for the 868 and 915 MHz ISM Bands. Electronics. 2021; 10(16):1983. https://doi.org/10.3390/electronics10161983
Chicago/Turabian StyleKapetanakis, Theodoros N., Martin Pavec, Melina P. Ioannidou, Christos D. Nikolopoulos, Anargyros T. Baklezos, Radek Soukup, and Ioannis O. Vardiambasis. 2021. "Embroidered Βow-Tie Wearable Antenna for the 868 and 915 MHz ISM Bands" Electronics 10, no. 16: 1983. https://doi.org/10.3390/electronics10161983
APA StyleKapetanakis, T. N., Pavec, M., Ioannidou, M. P., Nikolopoulos, C. D., Baklezos, A. T., Soukup, R., & Vardiambasis, I. O. (2021). Embroidered Βow-Tie Wearable Antenna for the 868 and 915 MHz ISM Bands. Electronics, 10(16), 1983. https://doi.org/10.3390/electronics10161983