Generator Design Considering Mover Action to Improve Energy Conversion Efficiency in a Free-Piston Engine Generator
Abstract
:1. Introduction
2. Features of FPEG
2.1. Structure of FPEG
2.2. Energy Flow of FPEG
2.3. Braking Thrust Control
2.4. Effect of ROD
3. System Construction Method
3.1. Effect of Mover Drive Frequency on Engine Efficiency
3.2. Effect of Mover Drive Stroke on Engine Efficiency
3.3. Relationship between the Mass and Movement of the Mover
3.4. FPEG Construction Procedure
4. Effect of Improving Energy Conversion Efficiency
4.1. Differences in Linear Generators for Each Procedure
4.2. Effectiveness of the Proposed Procedure
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Harischandrappa, N.; Bhat, A.K.S. A 10 kW ZVS Integrated Boost Dual Three-Phase Bridge DC–DC Resonant Converter for a Linear Generator-Based Wave-Energy System: Design and Simulation. Electronics 2019, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Rui, D.; Zhu, H.; Fu, W. Multi-Physical Coupling Field of a Permanent Magnet Linear Synchronous Generator for Wave Energy Conversion. IEEE Access 2021, 9, 85738–85747. [Google Scholar] [CrossRef]
- Chen, M.; Huang, L.; Hu, M.; Hu, B.; Ahmad, G. A Spiral Translator Permanent Magnet Transverse Flux Linear Generator Used in Direct-Drive Wave Energy Converter. IEEE Trans. Magn. 2021, 57, 8204705. [Google Scholar] [CrossRef]
- Friedrich, L.A.J.; Paulides, J.J.H.; Lomonova, E.A. Modeling and Optimization of a Tubular Generator for Vibration Energy Harvesting Application. IEEE Trans. Magn. 2017, 53, 8209804. [Google Scholar] [CrossRef]
- Lee, J.; Chun, Y.; Kim, J.; Park, B. An Energy-Harvesting System Using MPPT at Shock Absorber for Electric Vehicles. Energies 2021, 14, 2552. [Google Scholar] [CrossRef]
- Huang, L.; Liu, J.; Yu, H.; Qu, R.; Chen, H.; Fang, H. Winding Configuration and Performance Investigations of a Tubular Superconducting Flux-Switching Linear Generator. IEEE Trans. Appl. Supercond. 2015, 25, 5202505. [Google Scholar] [CrossRef]
- Oh, Y.J.; Park, J.S.; Hyon, B.J.; Lee, J. Novel Control Strategy of Wave Energy Converter Using Linear Permanent Magnet Synchronous Generator. IEEE Trans. Appl. Supercond. 2018, 28, 5204705. [Google Scholar] [CrossRef]
- Liu, C.; Yu, H.; Hu, M.; Liu, Q.; Zhou, S. Detent Force Reduction in Permanent Magnet Tubular Linear Generator for Direct-Driver Wave Energy Conversion. IEEE Trans. Magn. 2013, 49, 1913–1916. [Google Scholar] [CrossRef]
- Huang, W.; Yang, J. A Novel Piecewise Velocity Control Method Using Passivity-Based Controller for Wave Energy Conversion. IEEE Access 2020, 8, 59029–59043. [Google Scholar] [CrossRef]
- Xu, Z.; Chang, S. Prototype testing and analysis of a novel internal combustion linear generator integrated power system. Appl. Energy 2010, 87, 1342–1348. [Google Scholar] [CrossRef]
- Goto, S.; Moriya, K.; Kosaka, H.; Akita, T.; Hotta, Y.; Umeno, T.; Nakakita, K. Development of Free Piston Engine Linear Generator System Part 2—Investigation of Control System for Generator; SAE International: Warrendale, PA, USA, 2014. [Google Scholar]
- Yan, H.; Xu, Z.; Lu, J.; Liu, D.; Jiang, X. A Reciprocating Motion Control Strategy of Single-Cylinder Free-Piston Engine Generator. Electronics 2020, 9, 245. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Xu, Z.; Yang, L.; Liu, L. Electromagnetic Loss Analysis of a Linear Motor System Designed for a Free-Piston Engine Generator. Electronics 2020, 9, 621. [Google Scholar] [CrossRef] [Green Version]
- Jia, B.; Mikalsen, R.; Smallbone, A.; Roskilly, A.P. A study and comparison of frictional losses in free-piston engine and crankshaft engines. Appl. Ther. Eng. 2018, 140, 217–224. [Google Scholar] [CrossRef]
- Sato, M.; Nirei, M.; Yamanaka, Y.; Murata, H.; Bu, Y.; Mizuno, T. Operation Range of Generation Braking Force to Achieve High Efficiency Considering Combustion in a Free-Piston Engine Linear Generator System. IEEJ J. Ind. Appl. 2018, 7, 343–350. [Google Scholar] [CrossRef]
- Lu, J.; Xu, Z.; Liu, L. Compression Ratio Control of an Opposed-Piston Free-Piston Engine Generator Based on Artificial Neural Networks. IEEE Access 2020, 8, 107865–107875. [Google Scholar] [CrossRef]
- Wang, J.; Howe, D. Tubular modular permanent-magnet machines equipped with quasi-Halbach magnetized magnets-part I: Magnetic field distribution, EMF, and thrust force. IEEE Trans. Magn. 2005, 41, 2470–2478. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Pérez, L.C.; Albajez, J.A.; Torralba, M.; Yagüe-Fabra, J.A. Vector Control Strategy for Halbach Linear Motor Implemented in a Commercial Control Hardware. Electronics 2018, 7, 232. [Google Scholar] [CrossRef] [Green Version]
- Kosaka, H.; Akita, T.; Moriya, K.; Goto, S.; Hotta, Y.; Umeno, T.; Nakakita, K. Development of Free Piston Engine Linear Generator System Part 1—Investigation of Fundamental Characteristics; SAE Technical Papers 2014-01-1203; SAE International: Warrendale, PA, USA, 2014. [Google Scholar]
- Wang, J.; West, M.; Howe, D.; Zelaya-De La Parra, H.; Arshad, W.M. Design and Experimental Verification of a Linear Permanent Magnet Generator for a Free-Piston Energy Converter. IEEE Trans. Energy Convers. 2007, 22, 299–306. [Google Scholar] [CrossRef]
- Sato, M.; Nirei, M.; Yamanaka, Y.; Bu, Y.; Mizuno, T. High Power Density by Combining of a Double Stator and an Opposite-magnets Linear Generator in a Dual-type Free-piston Engine Generator. Int. J. Appl. Electromagn. Mech. 2021, 65, 355–370. [Google Scholar] [CrossRef]
- Yamanaka, Y.; Nirei, M.; Sato, M.; Murata, H.; Bu, Y.; Mizuno, T. Design of a Linear Synchronous Generator and Examination of the Driving Range for a Free-Piston Engine Linear Generator System. IEEJ J. Ind. Appl. 2018, 7, 351–357. [Google Scholar] [CrossRef] [Green Version]
- Moriya, K.; Goto, S.; Akita, T.; Kosaka, H.; Hotta, Y.; Nakakita, K. Development of Free Piston Engine Linear Generator System Part 3—Novel Control Method of Linear Generator for to Improve Efficiency and Stability; SAE Technical Papers 2016-01-0685; SAE International: Warrendale, PA, USA, 2016. [Google Scholar]
- Sato, M.; Goto, T.; Zheng, J.; Irie, S. Resonant Combustion Start Considering Potential Energy of Free-Piston Engine Generator. Energies 2020, 13, 5754. [Google Scholar] [CrossRef]
- Sato, M.; Naganuma, K.; Nirei, M.; Yamanaka, Y.; Suzuki, T.; Goto, T.; Bu, Y.; Mizuno, T. Improving the Constant-Volume Degree of Combustion Considering Generatable Range at Low-speed in a Free-Piston Engine Linear Generator System. IEEJ Trans. Electr. Electron. Eng. 2019, 14, 1703–1710. [Google Scholar] [CrossRef]
- Li, Q.; Xiao, J.; Huang, Z. Simulation of a Two-Stroke Free-Piston Engine for Electrical Power Generation. Energy Fuels 2008, 22, 3443–3449. [Google Scholar] [CrossRef]
- Jia, B.; Mikalsen, R.; Smallbone, A.; Zuo, Z.; Feng, H.; Paul, R.A. Piston motion control of a free-piston engine generator: A new approach using cascade control. Appl. Energy 2016, 179, 1166–1175. [Google Scholar] [CrossRef] [Green Version]
- Irie, S.; Zheng, J.; Sato, M.; Mizuno, T.; Nishimura, F.; Naganuma, K. Loss-Reduction Effect of Varying the Mover Motion in a Dual-Sided Free-Piston Engine Generator System. In Proceedings of the 13th International Symposium on Linear Drives for Industry Applications (LDIA), Wuhan, China, 1–3 July 2021. [Google Scholar]
- Stanley, R.; Taraza, D.; Henein, N.; Bryzik, W. A Simplified Friction Model of the Piston Ring Assembly; SAE Technical Paper 1999-01-0974; SAE International: Warrendale, PA, USA, 1999. [Google Scholar] [CrossRef]
Item | Procedure I | Procedure II |
---|---|---|
Dimensions of stator (mm) | 195 × 338 | |
Radial thickness of stator ts (mm) | 31.5 | |
Depth of slot ds (mm) | 23 | |
Width of slot ws (mm) | 3 | |
Width of teeth wt (mm) | 8.0 | |
Number of slots | 30 | |
Armature core material | 20HX1200 (Nippon Steel Corporation, Tokyo, Japan) | |
Dimensions of mover (mm) | 130 × 165 | 130 × 99 |
Number of poles | 5 | 3 |
Width of magnet wm (mm) | 8.25 | |
Thickness of magnet tm (mm) | 10.5 | 8.25 |
Thickness of back yoke tb (mm) | 4.5 | 3.5 |
Air gap (mm) | 1 | |
Mover bake yoke material | 20HX1200 (Nippon Steel Corporation, Tokyo, Japan) | |
Permanent magnet material | NEOMAX-42AH (Hitachi Metals, Ltd., Tokyo, Japan) | |
Resistance of armature coil Ra (mW/Phase) | 40.1 | |
Inductance of armature coil La (mH/Phase) | 0.68 | |
Thrust constant Kf (N/A) | 27.9 | 16.9 |
Mass of mover m (kg) | 7.21 | 3.68 |
Item | Procedure I | Procedure II |
---|---|---|
Mover action frequency (Hz) | 22.0 | 14.7 |
Engine efficiency ηen (%) | 35.5 | 34.4 |
Generation efficiency ηge (%) | 93.6 | 94.0 |
Energy conversion efficiency ηen (%) | 33.2 | 32.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, M.; Irie, S.; Zheng, J.; Mizuno, T.; Nishimura, F.; Naganuma, K. Generator Design Considering Mover Action to Improve Energy Conversion Efficiency in a Free-Piston Engine Generator. Electronics 2021, 10, 2142. https://doi.org/10.3390/electronics10172142
Sato M, Irie S, Zheng J, Mizuno T, Nishimura F, Naganuma K. Generator Design Considering Mover Action to Improve Energy Conversion Efficiency in a Free-Piston Engine Generator. Electronics. 2021; 10(17):2142. https://doi.org/10.3390/electronics10172142
Chicago/Turabian StyleSato, Mitsuhide, Shoma Irie, Jianping Zheng, Tsutomu Mizuno, Fumiya Nishimura, and Kaname Naganuma. 2021. "Generator Design Considering Mover Action to Improve Energy Conversion Efficiency in a Free-Piston Engine Generator" Electronics 10, no. 17: 2142. https://doi.org/10.3390/electronics10172142
APA StyleSato, M., Irie, S., Zheng, J., Mizuno, T., Nishimura, F., & Naganuma, K. (2021). Generator Design Considering Mover Action to Improve Energy Conversion Efficiency in a Free-Piston Engine Generator. Electronics, 10(17), 2142. https://doi.org/10.3390/electronics10172142