Electric Power Network Interconnection: A Review on Current Status, Future Prospects and Research Direction
Abstract
:1. Introduction
- Balancing mismatches in supply and demand: Connecting summer peak-demand regions with winter peak-demand regions. For example, regions of different time zones, getting large benefits by balancing seasonal and daily peak-load variability.
- Incorporating intermittent renewable power: Transmission interconnection is a tool to facilitate incorporation of variable renewable resources. The evolution of high and ultra-high voltage transmission technology opens up entirely new transportation corridors and interconnection possibilities.
- Accessing remote energy resources: Electricity utilization is concentrated in major cities having large energy demand. This large demand will not be fulfilled by the local energy resources. Even renewable energy sources such as wind, hydro, and solar are highly location-specific and these sites are often located in remote regions far away from the demand centres.
2. Global Energy Consumption Overview
3. Large Power Grid Interconnections
3.1. Renewable Energy and Its Integration
3.2. Global Large Power Interconnections
3.2.1. North America
3.2.2. Latin America
3.2.3. Africa
3.2.4. Europe
3.2.5. Northeast Asia
3.2.6. Indian Power Grids
4. Current Trends of Power Grid Interconnection Technologies
4.1. AC Synchronous Interconnections
- Working Principle
- Benefits
- Challenges
- Existing Projects
4.2. HVDC Interconnections
4.2.1. LCC-HVDC Technology
- Working Principle
- Benefits
- Challenges
- Existing Projects
4.2.2. VSC-HVDC Technology
Modular Multi-Level Converters
- Working Principle
- Benefits
- Challenges
- Existing Projects
HVDC Light System
- Working Principle
- Benefits
- Challenges
- Existing Projects
4.3. High Frequency AC Link
- Working Principle
- Benefits
- Challenges
- Existing Projects
4.4. Variable Frequency Transformer
- Working Principle
- Benefits
- Challenges
- Existing Projects
4.5. Flexible Asynchronous AC Link
- Working Principle
- Benefits
- Challenges
- Existing Projects
5. Comparative Analysis
6. Future Prospects of Intercontinental and International Grids
7. Research Directions in Power Grid Interconnections
7.1. Clean and Sustainable Energy
7.2. Smart Grid Developments
7.3. Development of UHV Transmission Systems
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
3T-1P | Three-Throw Single-Pole |
AC | Alternating Current |
AGC | Automatic Generation Control |
CIS | Commonwealth of Independent States |
DC | Direct Current |
EC | European Commission |
ESS | Energy Storage System |
EU | European Union |
FACTS | Flexible AC Transmission System |
FASAL | Flexible Asynchronous AC Link |
GEI | Global Energy Interconnection |
HVAC | High Voltage Alternating Current |
HVDC | High Voltage Direct Current |
IGBT | Insulated Gate Bipolar Transistors |
IGCT | Integrated Gate-Commutated Thyristor |
IoT | Internet of Things |
LCC | Line Commutated Converter |
LCOE | Levelized Cost of Electricity |
LTC | Load Tap-Changers |
MMC | Modular Multi-level Converter |
MO | Modulus Optimum |
MTDC | Multi-Terminal DC |
MTOE | Million Tonnes Oil Equivalent |
P | Real Power |
PI | Proportional Integral |
PST | Phase Shifting Transformer |
PV | Photo-Voltaic |
PWM | Pulse Width Modulation |
Q | Reactive Power |
RE | Renewable Energy |
RES | Renewable Energy Source |
RES-E | Renewable Energy based Electricity |
SIT | Series Injection Transformer |
SM | Sub-Modules |
SO | Symmetrical Optimum |
SPT | Shunt Phase Shifting Transformer |
SPV | Solar Photo-Voltaic |
UHV | Ultra High Voltage |
UN | United Nations |
UPFC | Unified Power Flow Controller |
VeSC | Vector Switching Converters |
VFT | Variable Frequency Transformer |
VSC | Voltage Source Converter |
WRIM | Wound Rotor Induction Machine |
References
- Miao, B.; Lin, J.; Li, H.; Liu, C.; Li, B.; Zhu, X.; Yang, J. Day-Ahead Energy Trading Strategy of Regional Integrated Energy System Considering Energy Cascade Utilization. IEEE Access 2020, 8, 138021–138035. [Google Scholar] [CrossRef]
- Deng, Y.Y.; Haigh, M.; Pouwels, W.; Ramaekers, L.; Brandsma, R.; Schimschar, S.; Grözinger, J.; de Jager, D. Quantifying a realistic, worldwide wind and solar electricity supply. Glob. Environ. Chang. 2015, 31, 239–252. [Google Scholar] [CrossRef] [Green Version]
- Denholm, P.; Margolis, R.M. Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems. Energy Policy 2007, 35, 2852–2861. [Google Scholar] [CrossRef]
- Ulbig, A.; Borsche, T.S.; Andersson, G. Impact of low rotational inertia on power system stability and operation. IFAC Proc. Vol. 2014, 47, 7290–7297. [Google Scholar] [CrossRef] [Green Version]
- Elavarasan, R.M.; Shafiullah, G.; Padmanaban, S.; Kumar, N.M.; Annam, A.; Vetrichelvan, A.M.; Mihet-Popa, L.; Holm-Nielsen, J.B. A comprehensive review on renewable energy development, challenges, and policies of leading Indian states with an international perspective. IEEE Access 2020, 8, 74432–74457. [Google Scholar] [CrossRef]
- Brinkerink, M.; Shivakumar, A. System dynamics within typical days of a high variable 2030 European power system. Energy Strateg. Rev. 2018, 22, 94–105. [Google Scholar] [CrossRef]
- Fuller, R.B.; Kuromiya, K. Critical Path; Macmillan: New York, NY, USA, 1981. [Google Scholar]
- Brinkerink, M.; Gallachóir, B.Ó.; Deane, P. A comprehensive review on the benefits and challenges of global power grids and intercontinental interconnectors. Renew. Sustain. Energy Rev. 2019, 107, 274–287. [Google Scholar] [CrossRef]
- Purvins, A.; Sereno, L.; Ardelean, M.; Covrig, C.F.; Efthimiadis, T.; Minnebo, P. Submarine power cable between Europe and North America: A techno-economic analysis. J. Clean. Prod. 2018, 186, 131–145. [Google Scholar] [CrossRef]
- Purvins, A.; Fulli, G.; Covrig, C.F.; Chaouachi, A.; Bompard, E.F.; Carpaneto, E.; Huang, T.; Pi, R.J.; Mutule, A.; Oleinikova, I.; et al. The Baltic Power System between East and West Interconnections: First Results from a Security Analysis and Insights for Future Work; European Union Joint Research Centre: Brussels, Belgium, 2016. [Google Scholar]
- Meisen, P.; Mohammadi, C. Cross-Border Interconnections on Every Continent; Global Energy Network Institute: San Diego, CA, USA, 2010. [Google Scholar]
- Zhang, X.P.; Mingyu, O.; Yanmin, S.; Xiaolu, L. Review of Middle East energy interconnection development. J. Mod. Power Syst. Clean Energy 2017, 5, 917–935. [Google Scholar] [CrossRef] [Green Version]
- Yun, W.C.; Zhang, Z.X. Electric power grid interconnection in Northeast Asia. Energy Policy 2006, 34, 2298–2309. [Google Scholar] [CrossRef] [Green Version]
- Ongsakul, W.; Teng, K.; Marichez, S.; Jiang, H. An innovation idea for energy transition towards sustainable and resilient societies: Global energy interconnection. Glob. Energy Interconnect. 2018, 1, 312–318. [Google Scholar]
- BP Statistical Review of World Energy; World Petroleum Congress: London, UK, 2019.
- Rodrigue, J.P.; Comtois, C.; Slack, B. The Geography of Transport Systems; Routledge: New York, NY, USA, 2017. [Google Scholar]
- World Petroleum Congress. BP Energy Outlook; World Petroleum Congress: London, UK, 2019. [Google Scholar]
- Chen, G.; Zhou, X.; Chen, R. Variable Frequency Transformers for Large Scale Power Systems Interconnection: Theory and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Lee, J.Y.; Verayiah, R.; Ong, K.H.; Ramasamy, A.K.; Marsadek, M.B. Distributed Generation: A Review on Current Energy Status, Grid-Interconnected PQ Issues, and Implementation Constraints of DG in Malaysia. Energies 2020, 13, 6479. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strateg. Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Liu, Z. Global Energy Interconnection; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Killingtveit, A. Hydropower. In Managing Global Warming; Letcher, T.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; Chapter 8; pp. 265–315. [Google Scholar]
- Bana, P.R.; Panda, K.P.; Padmanaban, S.; Mihet-Popa, L.; Panda, G.; Wu, J. Closed-loop control and performance evaluation of reduced part count multilevel inverter interfacing grid-connected PV system. IEEE Access 2020, 8, 75691–75701. [Google Scholar] [CrossRef]
- Simões, M.G.; Roche, R.; Kyriakides, E.; Miraoui, A.; Blunier, B.; McBee, K.; Suryanarayanan, S.; Nguyen, P.; Ribeiro, P. Smart-grid technologies and progress in Europe and the USA. In Proceedings of the IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, 17–22 September 2011; pp. 383–390. [Google Scholar]
- National Research Council (NRC). Terrorism and the Electric Power Delivery System; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Ochoa, C.; Dyner, I.; Franco, C.J. Simulating power integration in Latin America to assess challenges, opportunities, and threats. Energy Policy 2013, 61, 267–273. [Google Scholar] [CrossRef]
- Colombia–Panama Energy Interconnection: An Update. Available online: https://epowercolombia.com/colombia-panama-energy-interconnection-an-update/ (accessed on 13 August 2021).
- Pupo-Roncallo, O.; Campillo, J.; Ingham, D.; Ma, L.; Pourkashanian, M. The role of energy storage and cross-border interconnections for increasing the flexibility of future power systems: The case of Colombia. Smart Energy 2021, 2, 100016. [Google Scholar] [CrossRef]
- Paez, D.; Ríos, M.A. Cost analysis of an mtdc for interconnection guajira-cerromatoso-panama. In Proceedings of the 2019 FISE-IEEE/CIGRE Conference—Living the Energy Transition (FISE/CIGRE), Medellin, Colombia, 4–6 December 2019. [Google Scholar]
- Saadi, N.; Miketa, A.; Howells, M. African Clean Energy Corridor: Regional integration to promote renewable energy fueled growth. Energy Res. Soc. Sci. 2015, 5, 130–132. [Google Scholar] [CrossRef]
- Wu, G.C.; Deshmukh, R.; Ndhlukula, K.; Radojicic, T.; Reilly-Moman, J.; Phadke, A.; Kammen, D.M.; Callaway, D.S. Strategic siting and regional grid interconnections key to low-carbon futures in African countries. Proc. Natl. Acad. Sci. USA 2017, 114, E3004–E3012. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Liu, Y.; Wu, J.; Xiao, J.; Hou, J.; Gao, J.; Zhong, L. Technical and economic demands of HVDC submarine cable technology for Global Energy Interconnection. Glob. Energy Interconnect. 2020, 3, 120–127. [Google Scholar] [CrossRef]
- Elliott, D. Emergence of European supergrids—Essay on strategy issues. Energy Strateg. Rev. 2013, 1, 171–173. [Google Scholar] [CrossRef]
- Voropai, N.; Podkovalnikov, S.; Chudinova, L.; Letova, K. Development of electric power cooperation in Northeast Asia. Glob. Energy Interconnect. 2019, 2, 1–6. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, G.; Guan, X.; Wang, Q.; He, W. A concept discussion on northeast Asia power grid interconnection. CSEE J. Power Energy Syst. 2016, 2, 87–93. [Google Scholar] [CrossRef]
- Roy, A.; Khaparde, S.; Pentayya, P.; Usha, S.; Abhyankar, A. Operating experience of regional interconnections in India. In Proceedings of the IEEE Power Engineering Society General Meeting, San Francisco, CA, USA, 16 June 2005; pp. 2528–2535. [Google Scholar]
- Patel, M.M.; Yadav, V.K. Design and operational constraints of NEA ±800 kV, 6000 MW UHVDC bipolar system. In Proceedings of the 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 21–22 April 2017; pp. 1–5. [Google Scholar]
- Government of India. Transmission Capacity Addition during 12th Plan (2012–17) in India; Power System Project Monitoring Division, Central Electricity Authority, Government of India: New Delhi, India, 2018.
- Bharti, S.; Dubey, S.P. No-load performance study of 1200 kV Indian UHVAC transmission system. High Volt. 2016, 1, 130–137. [Google Scholar] [CrossRef]
- Development of 1200 kV Ultra High Voltage (UHV) Power Transmission System. Available online: https://ieema.org/development-of-1200-kv-ultra-high-voltage-uhv-power-transmission-system/ (accessed on 13 January 2020).
- Rahman, S.; Khan, I.; Alkhammash, H.I.; Nadeem, M.F. A Comparison Review on Transmission Mode for Onshore Integration of Offshore Wind Farms: HVDC or HVAC. Electronics 2021, 10, 1489. [Google Scholar] [CrossRef]
- Kim, C.; Lee, S. Redundancy determination of HVDC MMC modules. Electronics 2015, 4, 526–537. [Google Scholar] [CrossRef] [Green Version]
- Kramer, A.; Ruff, J. Transformers for phase angle regulation considering the selection of on-load tap-changers. IEEE Trans. Power Deliv. 1998, 13, 518–525. [Google Scholar] [CrossRef]
- Faiz, J.; Siahkolah, B. Differences between conventional and electronic tap-changers and modifications of controller. IEEE Trans. Power Deliv. 2006, 21, 1342–1349. [Google Scholar] [CrossRef]
- Siddiqui, A.S.; Khan, S.; Ahsan, S.; Khan, M. Application of phase shifting transformer in Indian Network. In Proceedings of the 2012 International Conference on Green Technologies (ICGT), Trivandrum, India, 18–20 December 2012; pp. 186–191. [Google Scholar]
- Hingorani, N.G.; Gyugyi, L. FACTS Concept and General System Considerations. In Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems; IEEE: New York, NY, USA, 2000. [Google Scholar] [CrossRef] [Green Version]
- Imdadullah; Amrr, S.M.; Jamil Asghar, M.S.; Ashraf, I.; Meraj, M. A Comprehensive Review of Power Flow Controllers in Interconnected Power System Networks. IEEE Access 2020, 8, 18036–18063. [Google Scholar] [CrossRef]
- Chen, G.; Zhou, X. Digital simulation of variable frequency transformers for asynchronous interconnection in power system. In Proceedings of the 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific, Dalian, China, 18 August 2005. [Google Scholar]
- Djehaf, M.; Zidi, S.; Hadjeri, S.; Kobibi, Y.D.; Sliman, S. Steady-state and dynamic performance of asynchronous back-to-back VSC HVDC link. In Proceedings of the 2013 3rd International Conference on Electric Power and Energy Conversion Systems, Istanbul, Turkey, 2–4 October 2013. [Google Scholar]
- Yang, Z.; Li, M.; Lu, X.; Xiang, W.; Zuo, W.; Yao, L.; Lin, W.; Wen, J. Interconnection of VSC-HVDC and LCC-HVDC using DC–DC autotransformer. J. Eng. 2019, 2019, 5033–5037. [Google Scholar] [CrossRef]
- Flourentzou, N.; Agelidis, V.G.; Demetriades, G.D. VSC-based HVDC power transmission systems: An overview. IEEE Trans. Power Electron. 2009, 24, 592–602. [Google Scholar] [CrossRef]
- Kalair, A.; Abas, N.; Khan, N. Comparative study of HVAC and HVDC transmission systems. Renew. Sustain. Energy Rev. 2016, 59, 1653–1675. [Google Scholar] [CrossRef]
- Shu, T.; Lin, X.; Peng, S.; Du, X.; Chen, H.; Li, F.; Tang, J.; Li, W. Probabilistic power flow analysis for hybrid HVAC and LCC-VSC HVDC system. IEEE Access 2019, 7, 142038–142052. [Google Scholar] [CrossRef]
- Mirsaeidi, S.; Dong, X.; Tzelepis, D.; Said, D.M.; Dyśko, A.; Booth, C. A predictive control strategy for mitigation of commutation failure in LCC–based HVDC systems. IEEE Trans. Power Electron. 2019, 34, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Imdadullah; Rahman, H.; Asghar, M.S.J. A Flexible Asynchronous AC Link for Two Area Power System Networks. IEEE Trans. Power Deliv. 2019, 34, 2039–2049. [Google Scholar] [CrossRef]
- Sood, V.K. HVDC Transmission. In Power Electronics Handbook, 4th ed.; Rashid, M.H., Ed.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 847–884. [Google Scholar] [CrossRef]
- Oni, O.E.; Davidson, I.E.; Mbangula, K.N.I. A review of LCC-HVDC and VSC-HVDC technologies and applications. In Proceedings of the IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 7–10 June 2016. [Google Scholar] [CrossRef]
- Musau, M.P.; Odero, N.A.; Wekesa, C.W. Multi objective dynamic economic dispatch with renewable energy and HVDC transmission lines. In Proceedings of the IEEE PES PowerAfrica, Livingstone, Zambia, 28 June–3 July 2016; pp. 112–117. [Google Scholar]
- Sanz, I.M.; Chaudhuri, B.; Strbac, G.; Hussain, K.; Bayfield, C.; Adapa, R. Corrective control through Western HVDC link in future Great Britain transmission system. In Proceedings of the IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015. [Google Scholar]
- Xue, Z.F.; Cheng, S.Y.; He, M.; Zhong, Q.; Huang, W.J.; Lu, B.C. Conductor Schemes for ±800 kV UHVDC Transmission Line of Nuozhadu-Guangdong. High Volt. Eng. 2009, 35, 2344–2349. [Google Scholar]
- Raza, A.; Liu, Y.; Rouzbehi, K.; Jamil, M.; Gilani, S.O.; Dianguo, X.; Williams, B.W. Power dispatch and voltage control in multiterminal HVDC systems: A flexible approach. IEEE Access 2017, 5, 24608–24616. [Google Scholar] [CrossRef] [Green Version]
- Xue, A.; Zhang, J.; Zhang, L.; Sun, Y.; Cui, J.; Wang, J. Transient frequency stability emergency control for the power system interconnected with offshore wind power through VSC-HVDC. IEEE Access 2020, 8, 53133–53140. [Google Scholar] [CrossRef]
- Saeedifard, M.; Iravani, R. Dynamic performance of a modular multilevel back-to-back HVDC system. IEEE Trans. Power Deliv. 2010, 25, 2903–2912. [Google Scholar] [CrossRef]
- Castro, L.M.; Acha, E. On the provision of frequency regulation in low inertia AC grids using HVDC systems. IEEE Trans. Smart Grid 2016, 7, 2680–2690. [Google Scholar] [CrossRef]
- Li, G.; Pi, J.; Zheng, L.; Chen, L.; Dong, Y.; Ge, R. Simulation Analysis on Case of Bipolar Blocking in ±500 kV EHVDC Power Transmission Line From Tuanlin to Fengjing. Power Syst. Technol. 2014, 38, 877–881. [Google Scholar]
- Hu, C.; Ma, Y.; Yu, J.; Zhao, L. Dynamic Surface Backstepping Control for Voltage Source Converter-High Voltage Direct Current Transmission Grid Side Converter Systems. Electronics 2020, 9, 333. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Redfern, M.A. The advantages and disadvantages of using HVDC to interconnect AC networks. In Proceedings of the 45th International Universities Power Engineering Conference UPEC2010, Cardiff, UK, 31 August–3 September 2010. [Google Scholar]
- Alassi, A.; Bañales, S.; Ellabban, O.; Adam, G.; MacIver, C. HVDC transmission: Technology review, market trends and future outlook. Renew. Sustain. Energy Rev. 2019, 112, 530–554. [Google Scholar] [CrossRef]
- Hannan, M.; Hussin, I.; Ker, P.J.; Hoque, M.M.; Lipu, M.H.; Hussain, A.; Rahman, M.A.; Faizal, C.; Blaabjerg, F. Advanced control strategies of VSC based HVDC transmission system: Issues and potential recommendations. IEEE Access 2018, 6, 78352–78369. [Google Scholar] [CrossRef]
- Ladoux, P.; Serbia, N.; Carroll, E.I. On the potential of IGCTs in HVDC. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 780–793. [Google Scholar] [CrossRef]
- Perez, M.A.; Bernet, S.; Rodriguez, J.; Kouro, S.; Lizana, R. Circuit topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE Trans. Power Electron. 2015, 30, 4–17. [Google Scholar] [CrossRef]
- Siemens AG. HVDC PLUS—The Decisive Step Ahead; Technical report; Siemens AG: Erlangen, Germany, 2016. [Google Scholar]
- Rao, H. Architecture of Nan’ao multi-terminal VSC-HVDC system and its multi-functional control. CSEE J. Power Energy Syst. 2015, 1, 9–18. [Google Scholar] [CrossRef]
- Pipelzadeh, Y.; Chaudhuri, B.; Green, T.C.; Wu, Y.; Pang, H.; Cao, J. Modelling and dynamic operation of the Zhoushan DC grid: Worlds first five-terminal VSC-HVDC project. In Proceedings of the International High Voltage Direct Current Conference, Seoul, Korea, 18–22 October 2015. [Google Scholar]
- NS Energy. Zhangbei VSC-HVDC Power Transmission Project. 2021. Available online: https://www.nsenergybusiness.com/projects/zhangbei-vsc-hvdc-power-transmission-project/ (accessed on 21 March 2021).
- Zhang, Y.; Wang, S.; Liu, T.; Zhang, S.; Lu, Q. A traveling-wave-based protection scheme for the bipolar voltage source converter based high voltage direct current (VSC-HVDC) transmission lines in renewable energy integration. Energy 2021, 216, 119312. [Google Scholar] [CrossRef]
- Tourgoutian, B.; Alefragkis, A. Design considerations for the COBRAcable HVDC interconnector. In Proceedings of the IET International Conference on Resilience of Transmission and Distribution Networks (RTDN), Birmingham, UK, 26–28 September 2017. [Google Scholar] [CrossRef]
- OffShoreEnergy. Siemens Secures Order for COBRA HVDC Link. 2021. Available online: https://www.offshore-energy.biz/siemens-secures-order-for-cobra-hvdc-link/ (accessed on 31 March 2021).
- NS Energy. North Sea Link Interconnector Project. 2021. Available online: https://www.nsenergybusiness.com/projects/north-sea-link-interconnector-project/ (accessed on 1 April 2021).
- Ryndzionek, R.; Sienkiewicz, Ł. Evolution of the HVDC Link Connecting Offshore Wind Farms to Onshore Power Systems. Energies 2020, 13, 1914. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Song, Q.; An, F.; Zhao, B.; Yu, Z.; Zeng, R. Review on DC transmission systems for integrating large-scale offshore wind farms. Energy Convers. Econ. 2021, 2. [Google Scholar] [CrossRef]
- Kirby, N. Current Trends in DC: Voltage-Source Converters. IEEE Power Energy Mag. 2019, 17, 32–37. [Google Scholar] [CrossRef]
- Sennewald, T.; Linke, F.; Sass, F.; Westermann, D. Curative Actions by embedded bipolar HVDC-interconnections. In Proceedings of the International ETG-Congress and ETG Symposium, VDE, Esslingen, Germany, 8–9 May 2019. [Google Scholar]
- Weimers, L. HVDC Light: A New Technology for a Better Environment. IEEE Power Eng. Rev. 1998, 18, 19–20. [Google Scholar] [CrossRef]
- Faisal, S.F.; Beig, A.R.; Thomas, S. Time domain particle swarm optimization of PI controllers for bidirectional VSC HVDC light system. Energies 2020, 13, 866. [Google Scholar] [CrossRef] [Green Version]
- Yin, B.; Oruganti, R.; Panda, S.K.; Bhat, A.K. A simple single-input–single-output (SISO) model for a three-phase PWM rectifier. IEEE Trans. Power Electron. 2009, 24, 620–631. [Google Scholar] [CrossRef]
- Suul, J.A.; Molinas, M.; Norum, L.; Undeland, T. Tuning of control loops for grid connected voltage source converters. In Proceedings of the IEEE 2nd International Power and Energy Conference, Johor Bahru, Malaysia, 1–3 December 2008; pp. 797–802. [Google Scholar]
- Guo, Z.; Wu, R.; Yang, Y.; Zha, S.; Cui, X.; Li, D.; Peng, Z.; Liang, Y.; Liang, Z.; Hu, H.; et al. Application of HVDC light system in offshore oil platform. In Proceedings of the IEEE International Conference on Electrical Machines and Systems, Beijing, China, 20–23 August 2011. [Google Scholar] [CrossRef]
- Hitachi ABB. HVDC Light® (VSC). 2021. Available online: https://www.hitachiabb-powergrids.com/offering/product-and-system/hvdc/hvdc-light (accessed on 3 April 2021).
- Mancilla-David, F.; Venkataramanan, G. A pulse width modulated AC link unified power flow controller. In Proceedings of the IEEE Power Engineering Society General Meeting, San Francisco, CA, USA, 16 June 2005; pp. 1314–1321. [Google Scholar]
- Mancilla-David, F. AC link vector switching converters for power flow control and power quality: A Review. In Proceedings of the 41st North American Power Symposium, Starkville, MS, USA, 4–6 October 2009. [Google Scholar]
- Mancilla-David, F.; Venkataramanan, G. Realisation of an ac link unified power flow controller. IET Gener. Transm. Distrib. 2012, 6, 294–302. [Google Scholar] [CrossRef]
- Barragán-Villarejo, M.; Marano-Marcolini, A.; Maza-Ortega, J.M.; Gómez-Expósito, A. Steady-state model for the three-leg shunt-series ac-link power flow controller. IET Gener. Transm. Distrib. 2015, 9, 2534–2543. [Google Scholar] [CrossRef]
- Barragan-Villarejo, M.; Venkataramanan, G.; Mancilla-David, F.; Maza-Ortega, J.; Gómez-Expósito, A. Dynamic modelling and control of a shunt-series power flow controller based on AC-link. IET Gener. Transm. Distrib. 2012, 6, 792–802. [Google Scholar] [CrossRef]
- Li, C.; Deng, Y.; Lv, Z.; Li, W.; He, X.; Wang, Y. Virtual quadrature source-based sinusoidal modulation applied to high-frequency link converter enabling arbitrary direct AC-AC power conversion. IEEE Trans. Power Electron. 2014, 29, 4195–4208. [Google Scholar] [CrossRef]
- Dusseault, M.; Gagnon, J.; Galibois, D.; Granger, M.; McNabb, D.; Nadeau, D.; Primeau, J.; Fiset, S.; Larsen, E.; Drobniak, G.; et al. First VFT Application and Commissioning; Canada Power: Toronto, ON, Canada, 2004; pp. 28–30. [Google Scholar]
- Piwko, R.; Larsen, E.; Wegner, C. Variable frequency transformer—A new alternative for asynchronous power transfer. In Proceedings of the IEEE Power Engineering Society Inaugural Conference and Exposition in Africa, Durban, South Africa, 11–15 July 2005; pp. 393–398. [Google Scholar]
- Khan, M.M.; Imdadullah; Nebhen, J.; Rahman, H. Research on Variable Frequency Transformer: A Smart Power Transmission Technology. IEEE Access 2021, 9, 105588–105605. [Google Scholar] [CrossRef]
- Marken, P.; Roedel, J.; Nadeau, D.; Wallace, D.; Mongeau, H. VFT maintenance and operating performance. In Proceedings of the IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008. [Google Scholar] [CrossRef]
- Asghar, M.J.; Imdadullah. A Flexible Asynchronous AC Link (FASAL) System. Indian Patent 296524, 4 May 2018. [Google Scholar]
- Imdadullah; Amrr, S.M.; Iqbal, A.; Jamil Asghar, M. Comprehensive performance analysis of flexible asynchronous AC link under various unbalanced grid voltage conditions. Energy Rep. 2021, 7, 750–761. [Google Scholar] [CrossRef]
- Imdadullah; Asghar, M.S.J. Bidirectional Power Transmission and Grid Interconnections Using Flexible Asynchronous AC Transmission Link. In Proceedings of the IEEE International Conference on Computing, Power and Communication Technologies (GUCON), New Delhi, India, 27–28 September 2019; pp. 224–229. [Google Scholar]
- Imdadullah; Asghar, M.S.J. Performance Evaluation of Doubly Fed Induction Machine Used in Flexible Asynchronous AC Link for Power Flow Control Applications. In Proceedings of the 2019 International Conference on Electrical, Electronics and Computer Engineering (UPCON), Aligarh, India, 8–10 November 2019. [Google Scholar] [CrossRef]
- Imdadullah; Beig, A.R.; Asghar, M.S.J. Performance Evaluation and Reliability of Flexible Asynchronous AC Link and LCC-HVDC Link Under Fault Conditions. IEEE Access 2020, 8, 120562–120574. [Google Scholar] [CrossRef]
- Bahrman, M.P.; Johnson, B.K. The ABCs of HVDC transmission technologies. IEEE Power Energy Mag. 2007, 5, 32–44. [Google Scholar] [CrossRef]
- Martínez-Anido, C.B.; L’Abbate, A.; Migliavacca, G.; Calisti, R.; Soranno, M.; Fulli, G.; Alecu, C.; De Vries, L. Effects of North-African electricity import on the European and the Italian power systems: A techno-economic analysis. Electr. Power Syst. Res. 2013, 96, 119–132. [Google Scholar] [CrossRef]
- Sanchis, G. e-Highway2050: Europe’s Future Secure and Sustainable Electricity Infrastructure: Project Results; European Union: Brussels, Belgium, 2015. [Google Scholar]
- Pleßmann, G.; Blechinger, P. Outlook on South-East European power system until 2050: Least-cost decarbonization pathway meeting EU mitigation targets. Energy 2017, 137, 1041–1053. [Google Scholar] [CrossRef]
- Mikhalap, S.; Trashchenkov, S.; Vasilyeva, V. Study of Overhead Power Line Corridors on the Territory of Pskov Region (Russia) Based on Satellite Sounding Data. In Proceedings of the 12th International Scientific and Practical Conference, Rezekne, Latvia, 20–22 June 2019; Volume I; pp. 164–167. [Google Scholar]
- Shi, X.; Yao, L.; Jiang, H. Regional power connectivity in Southeast Asia: The role of regional cooperation. Glob. Energy Interconnect. 2019, 2, 444–456. [Google Scholar] [CrossRef]
- Fan, J.; Wang, X.; Huang, Q.; Zhang, X.; Li, Y.; Zeng, P. Power gird interconnection with HVDC link in Northeast Asia considering complementarity of renewable energy and time zone difference. J. Eng. 2019, 2019, 1625–1629. [Google Scholar] [CrossRef]
- Chiacchio, F.; Famoso, F.; D’Urso, D.; Cedola, L. Performance and economic assessment of a grid-connected photovoltaic power plant with a storage system: A comparison between the north and the south of Italy. Energies 2019, 12, 2356. [Google Scholar] [CrossRef] [Green Version]
- Benato, R.; Chiarelli, A.; Sessa, S.D.; Zan, R.D.; Rebolini, M.; Pazienza, M. HVDC Cables Along with Highway Infrastructures: The “Piedmont-Savoy” Italy-France Intertie. In Proceedings of the 2018 AEIT International Annual Conference, Bari, Italy, 3–5 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Rafique, S.F.; Shen, P.; Wang, Z.; Rafique, R.; Iqbal, T.; Ijaz, S.; Javaid, U. Global power grid interconnection for sustainable growth: Concept, project and research direction. IET Gener. Transm. Distrib. 2018, 12, 3114–3123. [Google Scholar] [CrossRef]
- Jodensvi, L.; Torstensson, N. Analysis of How Universal Access to Electricity May Impact the Long-Term Viability of the Electricity Sectors in Ethiopia and Kenya. Master’s Thesis, Chalmers University of Technology, Göteborg, Suedia, 2020. [Google Scholar]
- Dhakal, S.; Karki, P.; Shrestha, S. Cross-border electricity trade for Nepal: A SWOT-AHP analysis of barriers and opportunities based on stakeholder’s perception. Int. J. Water Resour. Dev. 2019, 37, 559–580. [Google Scholar] [CrossRef]
- Itiki, R.; Manjrekar, M.; Di Santo, S.G.; Machado, L.F.M. Technical feasibility of Japan-Taiwan-Philippines HVdc interconnector to the Asia Pacific Super Grid. Renew. Sustain. Energy Rev. 2020, 133, 110161. [Google Scholar] [CrossRef]
- Mircea, A.; Philip, M. A China–EU Electricity Transmission Link: Assessment of Potential Connecting Countries and Routes; European Comission: Luxembourg, 2017. [Google Scholar]
- Andrew, B.; Joachim, L.; Anna, N. Asia Pacific Super Grid–Solar electricity generation, storage and distribution. Green 2012, 2, 189–202. [Google Scholar] [CrossRef]
- Taggart, S.; James, G.; Dong, Z.; Russell, C. The Future of Renewables Linked by a Transnational Asian Grid. Proc. IEEE 2012, 100, 348–359. [Google Scholar] [CrossRef]
- Gulagi, A.; Bogdanov, D.; Fasihi, M.; Breyer, C. Can Australia power the energy-hungry asia with renewable energy? Sustainability 2017, 9, 233. [Google Scholar] [CrossRef] [Green Version]
- Cova, B.; Pincella, C.; Simioli, G.; Stigliano, G.P.; Vailati, R.; Zecca, B. HVDC interconnections in the Mediterranean Basin. In Proceedings of the IEEE Power Engineering Society Inaugural Conference and Exposition in Africa, Durban, South Africa, 11–15 July 2005; pp. 143–148. [Google Scholar]
- Siamanta, Z.C. Building a green economy of low carbon: The Greek post-crisis experience of photovoltaics and financial ‘green grabbing’. J. Polit. Ecol. 2017, 24, 258–276. [Google Scholar] [CrossRef] [Green Version]
- Lehtola, T.; Zahedi, A. Solar energy and wind power supply supported by storage technology: A review. Sustain. Energy Technol. Assess. 2019, 35, 25–31. [Google Scholar] [CrossRef]
- Liikanen, M.; Havukainen, J.; Viana, E.; Horttanainen, M. Steps towards more environmentally sustainable municipal solid waste management—A life cycle assessment study of São Paulo, Brazil. J. Clean. Prod. 2018, 196, 150–162. [Google Scholar] [CrossRef]
- Lee, B.X.; Kjaerulf, F.; Turner, S.; Cohen, L.; Donnelly, P.D.; Muggah, R.; Davis, R.; Realini, A.; Kieselbach, B.; MacGregor, L.S.; et al. Transforming our world: Implementing the 2030 agenda through sustainable development goal indicators. J. Public Health Policy 2016, 37, 13–31. [Google Scholar] [CrossRef]
- Ahrens, U.; Diehl, M.; Schmehl, R. Airborne Wind Energy Technology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Nam, T.; Vahid, O.; Gupta, R.; Kapania, R.K. High Altitude Airborne Wind Energy. In Proceedings of the AIAA Scitech 2021 Forum, Virtual Event, 19–21 January 2021. [Google Scholar]
- Eisapour, A.H.; Eisapour, M.; Hosseini, M.; Shafaghat, A.; Sardari, P.T.; Ranjbar, A. Toward a highly efficient photovoltaic thermal module: Energy and exergy analysis. Renew. Energy 2021, 169, 1351–1372. [Google Scholar] [CrossRef]
- Kanoun, M.B.; Kanoun, A.A.; Merad, A.E.; Goumri-Said, S. Device design optimization with interface engineering for highly efficient mixed cations and halides perovskite solar cells. Res. Phys. 2021, 20, 103707. [Google Scholar]
- Yang, R.; Li, D.; Salazar, S.L.; Rao, Z.; Arıcı, M.; Wei, W. Photothermal properties and photothermal conversion performance of nano-enhanced paraffin as a phase change thermal energy storage material. Sol. Energy Mater. Sol. Cells 2021, 219, 110792. [Google Scholar] [CrossRef]
- Kang, W.; Xiwu, G. Design of Optimal Scheme for Industrial Network Monitoring of Ocean Energy Power Generation System. IOP Conf. Ser. Earth Environ. Sci. 2021, 647, 012120. [Google Scholar] [CrossRef]
- Madan, D.; Rathnakumar, P.; Marichamy, S.; Ganesan, P.; Vinothbabu, K.; Stalin, B. A Technological Assessment of the Ocean Wave Energy Converters. In Advances in Industrial Automation and Smart Manufacturing; Springer: Singapore, 2021; pp. 1057–1072. [Google Scholar]
- Borthwick, A.G. Marine renewable energy seascape. Engineering 2016, 2, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Gungor, V.C.; Lu, B.; Hancke, G.P. Opportunities and challenges of wireless sensor networks in smart grid. IEEE Trans. Ind. Electron. 2010, 57, 3557–3564. [Google Scholar] [CrossRef] [Green Version]
- Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G.P. Smart grid technologies: Communication technologies and standards. IEEE Trans. Ind. Electron. 2011, 7, 529–539. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Zhang, C.; Bai, X.; Li, J.; Sun, M.; Kong, W. Energy-efficient resource allocation for machine-type communications in smart grid based on a matching with externalities approach. IEEE Access 2019, 7, 104354–104364. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, X.; Cao, Y.; Wang, D.; Yang, L. Smart choice for the smart grid: Narrowband Internet of Things (NB-IoT). IEEE Internet Things J. 2017, 5, 1505–1515. [Google Scholar] [CrossRef]
- Kulkarni, V.; Sahoo, S.K.; Mathew, R. Applications of Internet of Things for Microgrid. In Microgrid Technologies; Wiley: Hoboken, NJ, USA, 2021; pp. 405–428. [Google Scholar]
- Joseph, A.; Balachandra, P. Smart Grid to Energy Internet: A systematic review of transitioning electricity systems. IEEE Access 2020, 8, 215787–215805. [Google Scholar] [CrossRef]
- Jamil, F.; Iqbal, N.; Ahmad, S.; Kim, D. Peer-to-Peer Energy Trading Mechanism based on Blockchain and Machine Learning for Sustainable Electrical Power Supply in Smart Grid. IEEE Access 2021, 9, 39193–39217. [Google Scholar] [CrossRef]
- Nawaz, R.; Akhtar, R.; Shahid, M.A.; Qureshi, I.M.; Mahmood, M.H. Machine learning based false data injection in smart grid. Int. J. Electr. Power Energy Syst. 2021, 130, 106819. [Google Scholar] [CrossRef]
- Priyanka, E.; Thangavel, S.; Gao, X.Z. Review analysis on cloud computing based smart grid technology in the oil pipeline sensor network system. Pet. Res. 2021, 6, 77–90. [Google Scholar]
- Han, P.; Sun, H.; Tong, Q.; Zhang, Y.; Chen, Z.; Yang, W.; Yang, X. A control strategy of converters based on constant extinction area for UHVDC system under hierarchical connection. Int. J. Electr. Power Energy Syst. 2021, 130, 106968. [Google Scholar] [CrossRef]
- An, T.; Tang, G.; Wang, W. Research and application on multi-terminal and DC grids based on VSC-HVDC technology in China. High Volt. 2017, 2, 1–10. [Google Scholar] [CrossRef]
- Chen, S.; Guo, Y.; Lan, S.; Zhang, K.; Tan, L.; Zhang, D. Simulation Research on Distribution Characteristics of Electromagnetic Field of AC UHV Transmission Line. IOP Conf. Ser. Earth Environ. Sci. 2021, 632, 042050. [Google Scholar] [CrossRef]
- Zhu, H.; Shi, L.; Xing, C. Study on Dynamic Response of a New Type Ultra High Voltage AC-DC Hybrid Power Grid. IOP Conf. Ser. Earth Environ. Sci. 2021, 631, 012121. [Google Scholar] [CrossRef]
- Refaay, M.S.A.M. Analysis of DC Charge Distribution and Electromagnetic Fields in High-Voltage Direct Current Transmission Lines for Bulk Energy Transmission. Ph.D. Thesis, Technische Hochschule, Lübeck, Germany, 2021. [Google Scholar]
- Liu, Z.; OuYang, B.; Chen, Z.; Zhao, P.; Zhao, J. Research on Circuit Parameter Configuration of DC Superimposed Impulse Voltage Test on UHV DC Cable. In Proceedings of the IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 30 October–1 November 2020; pp. 3372–3377. [Google Scholar]
- Liu, M.; Zheng, S.; Wang, F.; Huang, T. Research and Application of Series Compensation Protection Automatic Testing Technology. In Proceedings of the IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 30 October–1 November 2020; pp. 3201–3205. [Google Scholar]
- Tayyab, S.M.; Sekhar, K.C. A Meticulous Method for the Measurement of Partial Discharges in Gas Insulated Switchgears. Int. J. Emerg. Trends Eng. Res. 2021, 9, 189–192. [Google Scholar]
- Du, B.; Dong, J.; Li, J.; Wang, M.; Ran, Z. Insulation Design of Superconducting Gas Insulated Transmission Line. In Polymer Insulation Applied for HVDC Transmission; Springer: Singapore, 2021; pp. 587–604. [Google Scholar]
- Sriram, A.; Sudhakar, T. Technology revolution in the inspection of power transmission lines—A literature review. In Proceedings of the 7th International Conference on Electrical Energy Systems (ICEES), Chennai, India, 11–13 February 2021; pp. 256–262. [Google Scholar]
- Wang, M.; Leterme, W.; Chaffey, G.; Beerten, J.; Van Hertem, D. Multi-vendor interoperability in HVDC grid protection: State-of-the-art and challenges ahead. IET Gener. Transm. Distrib. 2021, 15. [Google Scholar] [CrossRef]
- Muniappan, M. A comprehensive review of DC fault protection methods in HVDC transmission systems. Prot. Control Mod. Power Syst. 2021, 6, 1. [Google Scholar] [CrossRef]
- Feng, L. Study on Difference Between Two-Terminal LCC-HVDC and Three-Terminal LCC-HVDC Control and Protection System. IOP Conf. Ser. Earth Environ. Sci. 2021, 701, 012013. [Google Scholar] [CrossRef]
- Wang, H.; Deng, L.; Luo, H.; Du, J.; Zhou, D.; Huang, S. Microwave Wireless Power Transfer System Based on a Frequency Reconfigurable Microstrip Patch Antenna Array. Energies 2021, 14, 415. [Google Scholar] [CrossRef]
- Ghotbi, I.; Sarfaraz, H. Multiple-load wireless power transmission system through time-division multiplexed resonators. Int. J. Circ. Theory Appl. 2021, 49, 1225–1243. [Google Scholar] [CrossRef]
- Reiser, W.; Reek, T.; Räch, C.; Kreuter, D. Superconductor Busbars—High Benefits for Aluminium Plants. In Light Metals 2021: 50th Anniversary Edition; Springer International Publishing: Cham, Switzerland, 2021; pp. 359–367. [Google Scholar]
- Matsushita, T.; Kiuchi, M.; Nishijima, G.; Masuda, T.; Mukoyama, S.; Aoki, Y.; Nakai, A. Round Robin Test of Critical Current of Superconducting Cable. IEEE Trans. Appl. Superconduct. 2021, 3, 4801004. [Google Scholar]
- Dondapati, R.S.; Thadela, S. Nanotechnology for smart grids and superconducting cables. In Emerging Nanotechnologies for Renewable Energy; Elsevier: Amsterdam, The Netherlands, 2021; pp. 369–403. [Google Scholar]
Countries | Project Name (End Points) | Voltage Rating | Power Transfer | Power Exchanges |
---|---|---|---|---|
(kV) | Capability (MW) | (GWh/2015) | ||
Russia-Mongolia | Gusinoozersk Thermal Power Plant | 220 | 250 | 283 (Mongolia’s import)/ 54 (Russia’s import) |
Chadan-Khandagayty-Ulaangom | 110 | 90 | ||
Russia-China | Blagoveshchenskaya-Heihe | 220 | 95 | 3299 (China’s import) |
Sivaki-Shibazhan | 110 | 90 | ||
Blagoveshchensk-Sirius (Aigun) | 220 | 300 | ||
Amurskaya-Heihe | 500 | 750 | ||
Mongolia-China | Oyu Tolgoi-Inner Mongolia | 220 | n.a. | 1200 (Mongolia’s import) |
Year | Project Name | Country | Power (MW) | DC Voltage (kV) | Distance (km) |
---|---|---|---|---|---|
2019 | Ethiopia–Kenya HVDC Interconnector | Ethiopia-Kenya | 2000 | 500 | 1044 |
2018 | Belo Monte | Brazil | 4000 | 520 | |
2018 | Nelson River, Bipole 1/2/3 (2004/1977/2018) | Canada | 1000/2000/2000 | ||
2017 | Western HVDC Link | UK | 2200 | 600 | 422 |
2016 | WALT | Canada | 1000 | 500 | 350 |
2016 | EALT | Canada | 1000 | 500 | 500 |
2016 | Madawaska | Canada | 350 | 130 | BTB |
2016 | Pacific Intertie | USA | 1440 | 1360 | |
2016 | NordBalt | Sweden–Lithuania | 700 | 400 | |
2016 | DolWin2 | Germany (North Sea) | 916 | 2 × 45 | |
2016 | Quebec–New England | Canada–USA | 2000 | 1480 | |
2015 | North-East–Agra | India | 6000 | 1728 | |
2015 | Nuozhadu–Guangdong | China | 5000 | 1451 | |
2015 | Troll A 3&4 | Norway | 100 | 70 | |
2015 | DolWin1 | Germany | 800 | 2 × 75 | |
2015 | AL-link | Finland | 100 | 158 | |
2015 | BorWin1 | Germany | 400 | 2 × 75 | |
2015 | LitPol Link | Poland–South Lithuania | 500 | BTB | |
2014 | Xiluodu–Guangdong | China | 6400 | 1251 | |
2014 | EstLink 2 | Finland–Estonia | 650 | 450 | 171 |
2014 | Inter-Island Connector Pole 3 | New Zealand | 700 | 649 | |
2014 | Oklaunion | USA | 220 | BTB | |
2014 | Railroad DC Tie | Mexico | 300 | BTB | |
2014 | Eel River | Canada | 350 | 80 | BTB |
2014 | Skagerrak | Norway–Denmark | 700 | 500 | 140 |
2014 | Inga–Kolwezi | Congo | 560 | 1700 | |
2014 | Mackinac | USA | 200 | BTB | |
2014 | INELFE | France–Spain | 65 |
Project Name | Rated Power (MW) | Rated Voltage (kV) | Commiss. Year | Commiss. by | Reference |
---|---|---|---|---|---|
Trans Bay Cable (USA) | 400 | 2010 | Siemens | [72] | |
Nan’ao (China) | 200/100/50 | 2013 | - | [73] | |
Zhoushan (China) | 400/300/100/100/100 | 2014 | C-EPRI | [74] | |
Zhangbei (China) | 3000/3000/1500/1500 | 2020 | ABB | [75,76] | |
COBRA cable (Netherlands–Denmark) | 700 | 2019 | Siemens | [77,78] | |
North Sea Link (Norway–Britain) | 1400 | 2021 | ABB | [79] | |
Caithness–Moray Link (Scotland) | 1200 | 2018 | ABB | [80] | |
BorWin3 (Germany) | 900 | 2019 | Siemens | [81] | |
DolWin3 (Germany) | 900 | 2017 | GE-Alstom | [82] | |
ULTRANET (Germany) | 2000 | 2019 | Siemens | [83] |
Variable Frequency Transformer (VFT) | FASAL System | ||||
---|---|---|---|---|---|
Components | Ratings | Quantity | Components | Ratings | Quantity |
WRIM | 100 MW, 17 kV | 1 | WRIM | 100 MW, 17 kV | 1 |
Two-winding transformers | 107 MVA, 120/17 kV | 2 | Two-winding transformer | 107 MVA, 120/17 kV | 2 |
Two-winding transformer for Converter | >3 MVA | 1 | Auto-Transformer | 100 MVA, 120 kV | 1 |
DC Motor Drive System | >3 MW | 1 | - | - | - |
DC Motor | 3750 hp (2.796375 MW) | 1 | - | - | - |
Attributes of Technologies | Interconnection Technologies | |||
---|---|---|---|---|
FASAL | VFT | LCC-HVDC | VSC-HVDC | |
Efficiency | High | Low compared to FASAL | High in comparison to all (being static system) | Low compared to LCC |
Complexity | Lowest as compared to VFT | Low | High | High compared to LCC |
Maintenance | Lowest (DC drive absent) | Low | standard | Industry standard |
Space Requirements | Small compared to VFT | Small compared to LCC | Large (to accommodate filters) | Industry standard |
Black Start Capability | Capable | Capable | Not Capable | Industry standard |
Control Interactions | Low | Low | High | High |
Harmonic Generation | Low | Very low (no PE converter in the main path) | High | High |
Impact on adjacent generators | Low | Low | High | High |
Modular design | Yes | Yes | No | Yes |
Integration with grid | Easy | Easy | Difficult | Industry standard |
Bump-less start-up | Yes | Yes | No | Yes |
Global Grid and Intercontinental Interconnections | |
---|---|
Benefits and Opportunities | Risks and Challenges |
1. Demand and supply are being smoothed via time-zone diversity | 1. Substantial investment costs and risks |
2. Latitudinal (seasonal and geographic differences) integration | 2. High transmission losses |
3. Enhances the diversity and security of supply | 3. Risks by interconnector dependence |
4. Provides versatility (lower demand for storage/reduction) | 4. Regulatory concerns about industry functioning |
5. Reduced operating reserves and total power generation | 5. Local RES-E is more productive and should be prioritized |
6. Lower market uncertainty (stable commodity prices) | 6. Safeguarding the needs of residents |
7. The broader market for the exchange of power | 7. Technical, geographical and organizational limitations |
8. Help for rising demand in developing regions | 8. Balance in price difference (increase in some areas) |
9. Simple exchange of energy rather than raw fuel | 9. Storage the cost-effective flexibility solution always |
10. Ability to circumvent low voltage grids | 10. Opposition to interconnectors or convergence |
11. Intercontinental RES-E will help policy goals | |
12. Promotes investment and cooperation between regions | |
13. Improved images from fossil to RES-E exporter | |
14. Green job development and general improvement of welfare | |
15. Environmental benefits due to higher RES-E incorporation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imdadullah; Alamri, B.; Hossain, M.A.; Asghar, M.S.J. Electric Power Network Interconnection: A Review on Current Status, Future Prospects and Research Direction. Electronics 2021, 10, 2179. https://doi.org/10.3390/electronics10172179
Imdadullah, Alamri B, Hossain MA, Asghar MSJ. Electric Power Network Interconnection: A Review on Current Status, Future Prospects and Research Direction. Electronics. 2021; 10(17):2179. https://doi.org/10.3390/electronics10172179
Chicago/Turabian StyleImdadullah, Basem Alamri, Md. Alamgir Hossain, and M. S. Jamil Asghar. 2021. "Electric Power Network Interconnection: A Review on Current Status, Future Prospects and Research Direction" Electronics 10, no. 17: 2179. https://doi.org/10.3390/electronics10172179
APA StyleImdadullah, Alamri, B., Hossain, M. A., & Asghar, M. S. J. (2021). Electric Power Network Interconnection: A Review on Current Status, Future Prospects and Research Direction. Electronics, 10(17), 2179. https://doi.org/10.3390/electronics10172179