Adequacy Evaluation of an Islanded Microgrid
Abstract
:1. Introduction
2. Approach
3. System Framework
3.1. Network Type
3.2. Generation Capacity Overview
3.3. Unit Scaling
3.4. Storage Unit
4. Obtaining Converter Failure Distributions
4.1. Loading Translation
4.2. Categorization of the Thermal Loading
4.3. Strength Models of the Components
4.4. Component Variation and Weibull Analysis
5. Availability Modeling of Power Converters
Incorporating the Non-Constant Failure Rates
6. Risk Evaluation
7. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blaabjerg, F.; Yang, Y.; Ma, K. Power electronics—Key technology for renewable energy systems—Status and future. In Proceedings of the 2013 3rd International Conference on Electric Power and Energy Conversion Systems, Istanbul, Turkey, 2–4 October 2013; pp. 1–6. [Google Scholar]
- Yang, S.; Bryant, A.; Mawby, P.; Xiang, D.; Ran, L.; Tavner, P. An industry-based survey of reliability in power electronic converters. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2009; pp. 3151–3157. [Google Scholar]
- Fischer, K.; Pelka, K.; Bartschat, A.; Tegtmeier, B.; Coronado, D.; Broer, C.; Wenske, J. Reliability of Power Converters in Wind Turbines: Exploratory Analysis of Failure and Operating Data From a Worldwide Turbine Fleet. IEEE Trans. Power Electron. 2019, 34, 6332–6344. [Google Scholar] [CrossRef]
- Chung Henry, S.C.; Wang, H.; Blaabjer, F.; Pecht, M. Reliability of Power Electronic Converter Systems, 1st ed.; The Institution of Engineering and Technology: London, UK, 2015. [Google Scholar]
- Wang, H.; Liserre, M.; Blaabjerg, F.; de Place Rimmen, P.; Jacobsen, J.B.; Kvisgaard, T.; Landkildehus, J. Transitioning to Physics-of-Failure as a Reliability Driver in Power Electronics. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 97–114. [Google Scholar] [CrossRef]
- Billinton, R.; Satish, J. Adequacy Evaluation in Generation, Transmission and Distribution Systems of an Electric Power System. In Proceedings of the IEEE WESCANEX 93 Communications, Computers and Power in the Modern Environment—Conference Proceedings, Saskatoon, SK, Canada, 17–18 May 1993; pp. 120–126. [Google Scholar]
- Husain, S.; Mohamed, J.A.; Abbas, H.A.; Sayed, A.; Aziz, A.; Ali, M.A.; Qamber, I.S. LOLP and LOLE Calculation for Smart Cities Power Plants. In Proceedings of the 2019 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), Sakhier, Bahrain, 22 September 2019; pp. 1–6. [Google Scholar]
- Arefifar, S.A.; Mohamed, Y.; EL-Fouly, T.H.M. Optimum Microgrid Design for Enhancing Reliability and Supply-Security. IEEE Trans. Smart Grid 2013, 4, 1567–1575. [Google Scholar] [CrossRef]
- Backhaus, S.; Dobriansky, L.; Glover, S.; Liu, C.-C.; Looney, P.; Mashayekh, S.; Pratt, A.; Schneider, K.; Stadler, M.; Starke, M.; et al. Networked Microgrids Scoping Study; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2016.
- Ding, T.; Lin, Y.; Bie, Z.; Chen, C. A Resilient Microgrid Formation Strategy for Load Restoration Considering Master-Slave Distributed Generators and Topology Reconfiguration. Appl. Energy 2017, 199, 205–216. [Google Scholar] [CrossRef]
- Ding, T.; Lin, Y.; Li, G.; Bie, Z. A New Model for Reilient Distribution Systems by Microgrids Formation. IEEE Trans. Power Syst. 2017, 32, 4145–4147. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, Z.; Wu, Q.; Shahidehpour, M. Two-Stage Load Shedding for Secondary Control in Hierarchical Operation of Islanded Microgrids. IEEE Trans. Smart Grid 2019, 10, 3103–3111. [Google Scholar] [CrossRef] [Green Version]
- Struntz, K.; Abbasi, E.; Abbey, C.; Andrieu, C.; Annakkage, U.; Barsali, S.; Campbell, R.; Fletcher, R.; Gao, F.; Gaunt, T. Benchmark Systems for Network Integration of Renewable and Distributed Energy Resources; CIGRE: Paris, France, 2014; pp. 54–61. [Google Scholar]
- Yang, Y.; Ma, K.; Wang, H.; Blaabjerg, F. Mission profile translation to capacitor stresses in grid-connected photovoltaic systems. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 15–18 September 2014; pp. 5479–5486. [Google Scholar]
- Sangwongwanich, A.; Wang, H.; Blaabjerg, F. Impact of Mission Profile Dynamics on Accuracy of Thermal Stress Modeling in PV Inverters. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 5269–5275. [Google Scholar]
- Li, Y.; Zheng, Y.; Zhu, N.; Zhao, F. Wind Turbine Kinetic Energy Accumulation and Release Regulation for Wind Farm Optimization. In Proceedings of the 2019 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Hohhot, China, 24–26 October 2019; pp. 231–2314. [Google Scholar]
- Thy Windpower. Available online: http://thymoellen.dk/wp-content/uploads/2014/01/Brochure-TWP-40-6-10kW-DK.pdf (accessed on 29 June 2021).
- Permanent Magnet Synchronous Motors for Inverter Operation. Available online: http://www.vem-group.com/fileadmin/content/pdf/Download/Kataloge (accessed on 29 June 2021).
- Sera, D.; Teodorescu, R.; Rodriguez, P. PV panel model based on datasheet values. In Proceedings of the 2007 IEEE International Symposium on Industrial Electronics, Kumamoto, Japan, 8–10 May 2007; pp. 2392–2396. [Google Scholar]
- Sangwongwanich, A.; Yang, Y.; Sera, D.; Blaabjerg, F. Mission Profile-Oriented Control for Reliability and Lifetime of Photovoltaic Inverters. IEEE Trans. Ind. Appl. 2020, 56, 601–610. [Google Scholar] [CrossRef] [Green Version]
- Billinton, R.; Huang, D. Basic Concepts in Generating Capacity Adequacy Evaluation. In Proceedings of the 2006 International Conference on Probabilistic Methods Applied to Power Systems, Stockholm, Sweden, 11–15 June 2006; pp. 1–6. [Google Scholar]
- Energy Numbers. Available online: http://energynumbers.info/capacity-factors-at-danish-offshore-wind-farms (accessed on 29 June 2021).
- Electric Power Monthly. Available online: http://www.eia.gov/electricity/monthly (accessed on 29 June 2021).
- SUNmetrix. Available online: http://sunmetrix.com/ (accessed on 29 June 2021).
- Anvari-Moghaddam, A.; Dragicevic, T.; Vasquez, J.C.; Guerrero, J.M. Optimal utilization of microgrids supplemented with battery energy storage systems in grid support applications. In Proceedings of the 2015 IEEE First International Conference on DC Microgrids (ICDCM), Atlanta, GA, USA, 7–10 June 2015; pp. 57–61. [Google Scholar]
- Sandelic, M.; Sangwongwanich, A.; Blaabjerg, F. Robustness Evaluation of PV-Battery Sizing Principle Under Mission Profile Variations. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 545–552. [Google Scholar]
- Huang, H.; Mawby, P.A. A Lifetime Estimation Technique for Voltage Source Inverters. IEEE Trans. Power Electron. 2013, 28, 4113–4119. [Google Scholar] [CrossRef]
- Troe, D.-I.; Swierczynski, M.; Stroe, A.-I.; Teodorescu, R.; Laerke, R.; Kjaer, P.C. Degradation behaviour of Lithium-ion batteries based on field measured frequency regulation mission profile. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015; pp. 14–21. [Google Scholar]
- Reddy, T.B. Linden’s Handbook of Batteries, 4th ed.; McGraw-Hill: New York, NY, USA, 2011. [Google Scholar]
- Svoboda, V.; Wenzl, H.; Kaiser, R.; Jossen, A.; Baring-Gould, I.; Manwell, J.; Lundsager, P.; Bindner, H.; Cronin, T.; Nørgård, P.; et al. Operating conditions of batteries in off-grid renewable energy systems. Sci. Direct Sol. Energy 2007, 81, 1409–1425. [Google Scholar] [CrossRef]
- Zhang, G.; Zhou, D.; Blaabjerg, F.; Yang, J. Consumed Lifetime Estimation of DFIG Power Converter with Constructed High-Resolution Mission Profile. In Proceedings of the 2018 20th European Conference on Power Electronics and Applications (EPE’18 ECCE Europe), Riga, Latvia, 17–21 September 2018; pp. 1–10. [Google Scholar]
- Ma, K.; Liserre, M.; Blaabjerg, F.; Kerekes, T. Thermal Loading and Lifetime Estimation for Power Device Considering Mission Profiles in Wind Power Converter. IEEE Trans. Power Electron. 2015, 30, 590–602. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, H.; Blaabjerg, F.; Kaer, S.K.; Blom-Hansen, D. Real mission profile based lifetime estimation of fuel-cell power converter. In Proceedings of the 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, China, 22–26 May 2016; pp. 2798–2805. [Google Scholar]
- Reigosa, P.D.; Wang, H.; Yang, Y.; Blaabjerg, F. Prediction of Bond Wire Fatigue of IGBTs in a PV Inverter Under a Long-Term Operation. IEEE Trans. Power Electron. 2016, 31, 7171–7182. [Google Scholar]
- Sangwongwanich, A.; Yang, Y.; Sera, D.; Blaabjerg, F. Lifetime Evaluation of Grid-Connected PV Inverters Considering Panel Degradation Rates and Installation Sites. IEEE Trans. Power Electron. 2018, 33, 1225–1236. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, P.; Bęczkowski, S.; Munk-Nielsen, S.; Rannestad, B.; Thøgersen, P.B. A review on real time physical measurement techniques and their attempt to predict wear-out status of IGBT. In Proceedings of the 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 2–6 September 2013; pp. 1–10. [Google Scholar]
- Wang, H.; Liserre, M.; Blaabjerg, F. Toward Reliable Power Electronics: Challenges, Design Tools, and Opportunities. IEEE Ind. Electron. Mag. 2013, 7, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Vernica, I.; Wang, H.; Blaabjerg, F. A Mission-Profile-Based Tool for the Reliability Evaluation of Power Semiconductor Devices in Hybrid Electric Vehicles. In Proceedings of the 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria, 13–18 September 2020; pp. 380–383. [Google Scholar]
- Zhang, G.; Zhou, D.; Blaabjerg, F.; Yang, J. Mission profile resolution effects on lifetime estimation of doubly-fed induction generator power converter. In Proceedings of the 2017 IEEE Southern Power Electronics Conference (SPEC), Puerto Varas, Chile, 4–7 December 2017; pp. 1–6. [Google Scholar]
- Wang, H.; Blaabjerg, F. Reliability of Capacitors for DC-Link Applications in Power Electronic Converters—An Overview. IEEE Trans. Ind. Appl. 2014, 50, 3569–3578. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, H.; Blaabjerg, F.; Ma, K. Mission profile based multi-disciplinary analysis of power modules in single-phase transformerless photovoltaic inverters. In Proceedings of the 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 2–6 September 2013; pp. 1–10. [Google Scholar]
- Infineon. Technical Information FS25R12W1T7. 2020. Available online: http//www.infineon.com/cms/en/product/power/igbt/igbt-modules/fs25r12w1t7/ (accessed on 30 June 2021).
- Musallam, M.; Yin, C.; Bailey, C.; Johnson, M. Mission Profile-Based Reliability Design and Real-Time Life Consumption Estimation in Power Electronics. IEEE Trans. Power Electron. 2015, 30, 2601–2613. [Google Scholar] [CrossRef]
- Kjaer, M.V.; Yang, Y.; Wang, H.; Blaabjerg, F. Long-Term Climate Impact On IGBT Lifetime. In Proceedings of the 2020 22nd European Conference on Power Electronics and Applications (EPE’20 ECCE Europe), Lyon, France, 7–11 September 2020; pp. 1–10. [Google Scholar]
- Yang, Y.; Ma, K.; Wang, H.; Blaabjerg, F. Instantaneous thermal modeling of the DC-link capacitor in PhotoVoltaic systems. In Proceedings of the 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015; pp. 2733–2739. [Google Scholar]
- Golnas, A. PV System Reliability: An Operator’s Perspective. IEEE J. Photovolt. 2013, 3, 416–421. [Google Scholar] [CrossRef]
- Infineon, Technical Information IGBT Modules Use of Power Cycling curves for IGBT 4; Infineon Technologies AG: Warstein, Germany, 2010.
- Scheuermann, U.; Schmidt, R.; Newman, P. Power cycling testing with different load pulse durations. In Proceedings of the 7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014), Manchester, UK, 8–10 April 2014; pp. 1–6. [Google Scholar]
- Parler, S.G. Deriving Life Multipliers for Electrolytic Capacitors. IEEE Power Electron. Soc. Newsl. 2004, 16, 11–12. [Google Scholar]
- Shen, Y.; Wang, H.; Yang, Y.; Reigosa, P.D.; Blaabjerg, F. Mission profile based sizing of IGBT chip area for PV inverter applications. In Proceedings of the 2016 IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Vancouver, BC, Canada, 27–30 June 2016; pp. 1–8. [Google Scholar]
- Zhou, D.; Wang, H.; Blaabjerg, F.; Kœr, S.K.; Blom-Hansen, D. System-level reliability assessment of power stage in fuel cell application. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–8. [Google Scholar]
- Ma, K.; Wang, H.; Blaabjerg, F. New Approaches to Reliability Assessment: Using physics-of-failure for prediction and design in power electronics systems. IEEE Power Electron. Mag. 2016, 3, 28–41. [Google Scholar] [CrossRef]
- Bayerer, R.; Herrmann, T.; Licht, T.; Lutz, J.; Feller, M. Model for Power Cycling lifetime of IGBT Modules—various factors influencing lifetime. In Proceedings of the 5th International Conference on Integrated Power Electronics Systems, Nuremberg, Germany, 11–13 March 2008; pp. 1–6. [Google Scholar]
- O’Connor, P.; Kleyner, A. Practical Reliability Engineering, 5th ed.; Wiley: Hobooken, NJ, USA, 2012. [Google Scholar]
- Billinton, R.; Allan, R. Reliability Evaluation of Engineering Systems—Concepts and Techniques, 1st ed.; Spring Science: Berlin, Germany, 1987. [Google Scholar]
- Lisnianski, A.; Frenkel, I.; Ding, Y. Multi-State System Reliability Analysis and Optimization for Engineers and Industrial Managers; Springer: Berlin, Germany, 2010. [Google Scholar]
- Cox, D. The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables. Math. Proc. Camb. Philos. Soc. 1955, 51, 433–441. [Google Scholar] [CrossRef]
- Singh, C.; Billinton, R. System Reliability, Modelling and Evaluation, 1st ed.; Hutchinson: London, UK, 1977. [Google Scholar]
- Cepin, M. Assessment of Power System Reliability—Methods and Applications, 1st ed.; Springer: London, UK, 2011. [Google Scholar]
Wind Generation Unit Rated Power | 5.5 kW |
Wind Generation Unit Capacity Factor | 0.497 |
PV Generation Unit #1 Rated Power | 4 kW |
PV Generation Unit #2 Rated Power | 3 kW |
PV Generation Units Capacity Factor | 0.153 |
Rated Peak Load | 5.1 kW |
Load Factor | 0.521 |
Wind Generation Unit | = 1.57 | and = 5.28 |
PV Generation Unit #1 | = 1.85 | and = 7.72 |
PV Generation Unit #2 | = 2.12 | and = 11.82 |
Storage Unit | = 1.44 | and = 8.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kjær, M.; Wang, H.; Blaabjerg, F. Adequacy Evaluation of an Islanded Microgrid. Electronics 2021, 10, 2344. https://doi.org/10.3390/electronics10192344
Kjær M, Wang H, Blaabjerg F. Adequacy Evaluation of an Islanded Microgrid. Electronics. 2021; 10(19):2344. https://doi.org/10.3390/electronics10192344
Chicago/Turabian StyleKjær, Martin, Huai Wang, and Frede Blaabjerg. 2021. "Adequacy Evaluation of an Islanded Microgrid" Electronics 10, no. 19: 2344. https://doi.org/10.3390/electronics10192344
APA StyleKjær, M., Wang, H., & Blaabjerg, F. (2021). Adequacy Evaluation of an Islanded Microgrid. Electronics, 10(19), 2344. https://doi.org/10.3390/electronics10192344