Autonomous Trajectory Planning and Control of Anti-Radiation Loitering Munitions under Uncertain Conditions
Abstract
:1. Introduction
2. Problem Description and Modeling
2.1. Mission Scenario
2.2. Anti-Radiation LM Trajectory Planning Model
2.3. Radar Target Modeling
2.4. Seeker Sensing Modeling
3. Inferencing Target Radar Position
4. Loitering Control by Minimizing Target Uncertainty
4.1. Measure of Target Information Uncertainty
4.2. Conditional Entropy Calculation Based on Particle Position Weight
4.3. Model Predictive Optimal Control
5. Experimental Verification by Simulation
5.1. Experimental Conditions
5.2. Benchmark
5.2.1. Stochastic Decision-Making
5.2.2. Re-Planning Based on Field-of-View Coverage
5.2.3. Method Assuming Gaussian Noise
5.3. Simulation Results and Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- John, C. Harop Loitering Munitions UCAV System—Airforce Technology. 1 September 2018. Available online: https://www.airforce-technology.com/projects/haroploiteringmuniti/ (accessed on 30 October 2020).
- Gettinger, D.; Michel, A.H. Loitering Munitions. Cent. Study Drone 2017, 2, 1–3. [Google Scholar]
- IAI Group, A. Fire and forget: Harpy is an Autonomous Weapon for All Weather. 13 August 2017. Available online: https://www.iai.co.il/p/harpy (accessed on 17 August 2020).
- Liu, P.; Sheng, H. The Route Planning of Anti-radiation UAV Search Based on Improved Artificial Potential Field Method. J. Proj. Rocket. Missiles Guid. 2020, 1, 1–5. [Google Scholar]
- Liu, P.; Sheng, H. A Search Route Optimization of Anti-Radiation UAV in SEAD Mission. J. Air Force Eng. Univ. (Nat. Sci. Ed.) 2020, 21, 87–91. [Google Scholar]
- Zhu, H.; Wang, Y.; Du, C.; Zhang, Q.; Wang, W. A novel odor source localization system based on particle filtering and information entropy. Robot. Auton. Syst. 2020, 132, 103619. [Google Scholar] [CrossRef]
- Park, M.; Oh, H. Cooperative information-driven source search and estimation for multiple agents. Inf. Fusion 2020, 54, 72–84. [Google Scholar] [CrossRef]
- Schlotfeldt, B.; Thakur, D.; Atanasov, N.; Kumar, V.; Pappas, G.J. Anytime Planning for Decentralized Multirobot Active Information Gathering. IEEE Robot. Autom. Lett. 2018, 3, 1025–1032. [Google Scholar] [CrossRef]
- Aoki, E.H.; Bagchi, A.; Mandal, P.; Boers, Y. A theoretical look at information-driven sensor management criteria. In Proceedings of the 14th International Conference on Information Fusion, Chicago, IL, USA, 5–8 July 2011. [Google Scholar]
- Jin, T.; Chen, Y.; Shen, L. Cooperative Search Algorithm for Multi-UAVs in Uncertainty Environment. J. Electron. Inf. Technol. 2007, 29, 2325–2328. [Google Scholar]
- Han, X.; Sheng, H.; Chen, M. Anti-radiation UAV Cluster Cooperative Search Based on D-S Evidence Theory. J. Detect. Control. 2018, 40, 80–87. [Google Scholar]
- Liu, X. Electromagnetic Echo Environment Modeling, Platform Location and Weak Target Detection in Complex Random Scattering Environment. Master’s Thesis, Shanghai Jiao Tong University, Shanghai, China, 2019. [Google Scholar]
- Mahler, R.P.S. Statistical Multisource-Multitarget Information Fusion; Artech House: Norwood, MA, USA, 2007. [Google Scholar]
- Li, L.; Wang, X.; Gui, J.; Zhou, Z. Processing method of constant false alarm rate technology. Laser J. 2018, 39, 8–13. [Google Scholar]
- Middleton, D. Non-Gaussian noise models in signal processing for telecommunications: New methods an results for class A and class B noise models. IEEE Trans. Inf. Theory 1999, 45, 1129–1149. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, J.; Tang, J.; Jiang, F.; Liu, P.; Gong, F.; Zhao, N. 2-D DOA Robust Estimation of Echo Signals Based on Multiple Satellites Passive Radar in the Presence of Alpha Stable Distribution Noise. IEEE Access 2019, 7, 16032–16042. [Google Scholar] [CrossRef]
- Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.; Burlina, P. Efficient Particle Filtering via Sparse Kernel Density Estimation. IEEE Trans. Image Process. 2010, 19, 2480–2490. [Google Scholar] [CrossRef] [PubMed]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley: Hoboken, NJ, USA, 1991. [Google Scholar]
- Ajgl, J.; Šimandl, M. Differential entropy estimation by particles. IFAC Proc. Vol. 2011, 44, 11991–11996. [Google Scholar] [CrossRef]
- Ryan, A.; Hedrick, J.K. Particle filter based information-theoretic active sensing. Robot. Auton. Syst. 2010, 58, 574–584. [Google Scholar] [CrossRef]
- Skoglar, P.; Orguner, U.; Gustafsson, F. On information measures based on particle mixture for optimal bearings-only tracking. In Proceedings of the 2009 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2009; pp. 1–14. [Google Scholar] [CrossRef] [Green Version]
- Boers, Y.; Driessen, H.; Bagchi, A.; Mandal, P. Particle filter based entropy. In Proceedings of the 2010 13th International Conference on Information Fusion, Edinburgh, Scotland, 26–29 July 2010; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jarin-Lipschitz, L.; Paulos, J.; Bjorkman, R.; Kumar, V. Dispersion-Minimizing Motion Primitives for Search-Based Motion Planning. arXiv 2021, arXiv:robotics/2103.14603. Available online: http://arxiv.org/abs/2103.14603 (accessed on 10 September 2021).
- Eaton, J.W.; Bateman, D.; Hauberg, S.; Wehbring, R. GNU Octave Version 5.2.0 Manual: A High-Level Interactive Language for Numerical Computations. 2019. Available online: https://www.gnu.org/software/octave/doc/v5.2.0/ (accessed on 2 December 2020).
Mean of Conditional Entropy (Nats) | Variance of Conditional Entropy | Mean of RMSE (m) | |
---|---|---|---|
Random Strategy | 10.18 | 0.724 | 301.80 |
Coverage of Field | 10.03 | 1.059 | 256.10 |
Iterative EKF | 9.85 | 0.983 | 176.05 |
Proposed Method | 9.69 | 0.481 | 74.29 |
Minimum numbers are underlined |
Desired RMSE 400 (m) | Desired RMSE 250 (m) | Desired RMSE 100 (m) | |
---|---|---|---|
Random Strategy | mean: 19.34 std: 5.92 | mean: 406.72 std: 59.43 | >2000 |
Coverage of Field | mean: 18.63 std: 5.74 | mean: 112.32 std: 39.52 | >2000 |
Iterative EKF | mean: 16.77 std: 5.68 | mean: 71.26 std: 37.23 | mean: 276.15 std: 79.24 |
Proposed Method | mean: 14.81 std: 5.42 | mean: 32.41 std: 22.32 | mean: 87.31 std: 44.39 |
Minimum numbers are underlined |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, L.; Luo, H.; Ling, H. Autonomous Trajectory Planning and Control of Anti-Radiation Loitering Munitions under Uncertain Conditions. Electronics 2021, 10, 2399. https://doi.org/10.3390/electronics10192399
Bai L, Luo H, Ling H. Autonomous Trajectory Planning and Control of Anti-Radiation Loitering Munitions under Uncertain Conditions. Electronics. 2021; 10(19):2399. https://doi.org/10.3390/electronics10192399
Chicago/Turabian StyleBai, Linyuan, Hongchuan Luo, and Haifeng Ling. 2021. "Autonomous Trajectory Planning and Control of Anti-Radiation Loitering Munitions under Uncertain Conditions" Electronics 10, no. 19: 2399. https://doi.org/10.3390/electronics10192399
APA StyleBai, L., Luo, H., & Ling, H. (2021). Autonomous Trajectory Planning and Control of Anti-Radiation Loitering Munitions under Uncertain Conditions. Electronics, 10(19), 2399. https://doi.org/10.3390/electronics10192399