Advances in Meta-Heuristic Optimization Algorithms in Big Data Text Clustering
Abstract
:1. Introduction
- To introduce a categorizing structure that groups the existing meta-heuristic clustering algorithms into classes and shows their advantages and shortcomings from a general point of view.
- To give a complete classification of the clustering evaluation criteria to be utilized for experimental research.
- To make a theoretical analysis for the most representative meta-heuristic optimization algorithms of each class.
2. Main Procedures of the Text Clustering
2.1. Problem Descriptions and Formulations
- D can be demonstrated as a vector of objects , presents the object number two, i is the number of the object and n presents the number of total objects given in D [36].
- Each group contains a cluster centroid, called , which is represented as a vector of term weights of the words .
- presents the cluster centroid, is the value of position two in the centroid of cluster number k, and t is the number of all unique centroid terms (features) in the given object.
2.2. Pre-Processing Steps
2.2.1. Tokenization
2.2.2. Stop Words Removal
2.2.3. Stemming
2.3. Document Representation
2.4. Solution Representation of Clustering Problem
2.5. Fitness Function
3. Meta-Heuristic Algorithms in Text Clustering Applications
3.1. Meta-Heuristic Algorithms
3.1.1. Particle Swarm Optimization (PSO)
3.1.2. Gray Wolf Optimizer (GWO)
3.1.3. Cuckoo Search (CS)
3.1.4. Firefly Algorithm (FA)
3.1.5. Krill Herd Algorithm (KHA)
3.1.6. Social Spider Optimization (SSO)
3.1.7. Gravitational Search Algorithm (GSA)
3.1.8. Whale Optimization Algorithm (WOA)
3.1.9. Ant Colony Optimization (ACO)
3.1.10. Genetic Algorithm (GA)
3.1.11. Harmony Search (HS)
3.1.12. Other Meta-Heuristic Algorithms
3.2. Local Search Techniques
3.2.1. Heuristic Local Search
3.2.2. K-Means (KM) Clustering Technique
3.2.3. C-Means Clustering Technique
3.3. Big Data Techniques
3.4. Hybrid Clustering Techniques
4. Evaluation Criteria Used in Text Clustering Applications
4.1. Internal Evaluation Criteria
4.1.1. Distance Measures
4.1.2. Similarity Measures
4.2. External Evaluation Criteria
4.2.1. Accuracy Measure
4.2.2. Purity Measure
4.2.3. Entropy Measure
4.2.4. Precision Measure
4.2.5. Recall Measure
4.2.6. F-Measure
5. Theoretical Discussions
- No universally clustering algorithm can be utilized to solve all clustering problems. Typically, algorithms are produced with specific theories and support some biases. For this reason, it is not reasonable to say “best” in the circumstances of clustering algorithms, although some observations are conceivable. These examples are often based on particular applications under specific requirements, and the results may match quite differently if the conditions vary.
- New mechanisms have produced more complicated and challenging tasks, needing more robust clustering algorithms. The following features are essential to the performance and efficiency of a novel clustering algorithm. Create random patterns of clusters rather than be restricted to some selective pattern; manage a big amount of data, as well as high-dimensional characteristics, with satisfactory storage and time complexities; identify and eliminate potential noise and outliers; reduce the confidence of clustering algorithms on users adjusting parameters; have the ability of trading with anew happening data without relearning from scratch; be protected from the impacts of order of input clusters; give some prudence for the number of possible groups without prior information; give dependable data visualization and give users results that can clarify the analysis; and the ability to manage both statistical and simple data or be quickly flexible to some other data representation. Of course, some more particular specifications for unique applications will influence these characteristics.
- Feature selection, extraction, and cluster validation are crucial as the clustering algorithms at the post-processing and pre-processing stages. Choosing relevant and essential features can significantly reduce the difficulty of subsequent schemes, and result evaluations indicate the level of trust to which we can depend on the produced clusters. Unfortunately, both methods lack universal leadership. Finally, the tradeoff among various criteria and processes are still reliant on the applications themselves.
6. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hruschka, E.R.; Campello, R.J.; Freitas, A.A. A survey of evolutionary algorithms for clustering. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2009, 39, 133–155. [Google Scholar] [CrossRef] [Green Version]
- Shi, T.T.; Liu, X.R.; Li, J.J. Market segmentation by travel motivations under a transforming economy: Evidence from the Monte Carlo of the Orient. Sustainability 2018, 10, 3395. [Google Scholar] [CrossRef] [Green Version]
- Abualigah, L.; Bashabsheh, M.Q.; Alabool, H.; Shehab, M. Text Summarization: A Brief Review. In Recent Advances in NLP: The Case of Arabic Language; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–15. [Google Scholar]
- Jang, B.; Kim, M.; Harerimana, G.; Kang, S.; Kim, J.W. Bi-LSTM Model to Increase Accuracy in Text Classification: Combining Word2vec CNN and Attention Mechanism. Appl. Sci. 2020, 10, 5841. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Geem, Z.W. A Comprehensive Survey of the Harmony Search Algorithm in Clustering Applications. Appl. Sci. 2020, 10, 3827. [Google Scholar] [CrossRef]
- Hoeppner, F. Fuzzy shell clustering algorithms in image processing: Fuzzy c-rectangular and 2-rectangular shells. IEEE Trans. Fuzzy Syst. 1997, 5, 599–613. [Google Scholar] [CrossRef]
- José-García, A.; Gómez-Flores, W. Automatic clustering using nature-inspired metaheuristics: A survey. Appl. Soft Comput. 2016, 41, 192–213. [Google Scholar] [CrossRef]
- Lee, L.H.; Wan, C.H.; Rajkumar, R.; Isa, D. An enhanced Support Vector Machine classification framework by using Euclidean distance function for text document categorization. Appl. Intell. 2012, 37, 80–99. [Google Scholar] [CrossRef]
- Khasawneh, A.M.; Kaiwartya, O.; Abualigah, L.M.; Lloret, J. Green computing in underwater wireless sensor networks pressure centric energy modeling. IEEE Syst. J. 2020, 14, 4735–4745. [Google Scholar] [CrossRef]
- Krishnapuram, R.; Joshi, A.; Nasraoui, O.; Yi, L. Low-complexity fuzzy relational clustering algorithms for web mining. IEEE Trans. Fuzzy Syst. 2001, 9, 595–607. [Google Scholar] [CrossRef] [Green Version]
- Abualigah, L.; Alfar, H.E.; Shehab, M.; Hussein, A.M.A. Sentiment Analysis in Healthcare: A Brief Review. In Recent Advances in NLP: The Case of Arabic Language; Springer: Berlin/Heidelberg, Germany, 2020; pp. 129–141. [Google Scholar]
- Abd Elaziz, M.; Li, L.; Jayasena, K.N.; Xiong, S. Multiobjective big data optimization based on a hybrid salp swarm algorithm and differential evolution. Appl. Math. Model. 2020, 80, 929–943. [Google Scholar] [CrossRef]
- Higham, D.J.; Kalna, G.; Kibble, M. Spectral clustering and its use in bioinformatics. J. Comput. Appl. Math. 2007, 204, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Alomari, O.A.; Khader, A.T.; Al-Betar, M.A.; Abualigah, L.M. MRMR BA: A hybrid gene selection algorithm for cancer classification. J. Theor. Appl. Inf. Technol. 2017, 95, 2610–2618. [Google Scholar]
- Alomari, O.A.; Khader, A.T.; Al-Betar, M.A.; Abualigah, L.M. Gene selection for cancer classification by combining minimum redundancy maximum relevancy and bat-inspired algorithm. Int. J. Data Min. Bioinform. 2017, 19, 32–51. [Google Scholar] [CrossRef]
- Manuel, A.J.; Deverajan, G.G.; Patan, R.; Gandomi, A.H. Optimization of Routing-Based Clustering Approaches in Wireless Sensor Network: Review and Open Research Issues. Electronics 2020, 9, 1630. [Google Scholar] [CrossRef]
- Nanda, S.J.; Panda, G. A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol. Comput. 2014, 16, 1–18. [Google Scholar] [CrossRef]
- Mahata, N.; Kahali, S.; Adhikari, S.K.; Sing, J.K. Local contextual information and Gaussian function induced fuzzy clustering algorithm for brain MR image segmentation and intensity inhomogeneity estimation. Appl. Soft Comput. 2018, 68, 586–596. [Google Scholar] [CrossRef]
- Harrigan, K.R. An application of clustering for strategic group analysis. Strateg. Manag. J. 1985, 6, 55–73. [Google Scholar] [CrossRef]
- Chen, S.; Mulgrew, B.; Grant, P.M. A clustering technique for digital communications channel equalization using radial basis function networks. IEEE Trans. Neural Netw. 1993, 4, 570–590. [Google Scholar] [CrossRef] [Green Version]
- Bien, Z.Z.; Lee, H.E. Effective learning system techniques for human–robot interaction in service environment. Knowl.-Based Syst. 2007, 20, 439–456. [Google Scholar] [CrossRef]
- Sornette, D.; Werner, M.J. Apparent clustering and apparent background earthquakes biased by undetected seismicity. J. Geophys. Res. Solid Earth 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Özyer, T.; Alhajj, R. Parallel clustering of high dimensional data by integrating multi-objective genetic algorithm with divide and conquer. Appl. Intell. 2009, 31, 318. [Google Scholar] [CrossRef]
- Srivastava, A.N.; Sahami, M. Text Mining: Classification, Clustering, and Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Nanda, S.; Mahanty, B.; Tiwari, M. Clustering Indian stock market data for portfolio management. Expert Syst. Appl. 2010, 37, 8793–8798. [Google Scholar] [CrossRef]
- Ben-Dor, A.; Shamir, R.; Yakhini, Z. Clustering gene expression patterns. J. Comput. Biol. 1999, 6, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Safaldin, M.; Otair, M.; Abualigah, L. Improved binary gray wolf optimizer and SVM for intrusion detection system in wireless sensor networks. J. Ambient. Intell. Humaniz. Comput. 2020, 1–18. [Google Scholar] [CrossRef]
- Brulles, D.; Peters, S.J.; Saunders, R. Schoolwide mathematics achievement within the gifted cluster grouping model. J. Adv. Acad. 2012, 23, 200–216. [Google Scholar] [CrossRef]
- Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering: A review. ACM Comput. Surv. (CSUR) 1999, 31, 264–323. [Google Scholar] [CrossRef]
- Alshaer, H.N.; Otair, M.A.; Abualigah, L.; Alshinwan, M.; Khasawneh, A.M. Feature selection method using improved CHI Square on Arabic text classifiers: Analysis and application. Multimed. Tools Appl. 2020, 1–18. [Google Scholar] [CrossRef]
- Falkenauer, E. Genetic Algorithms and Grouping Problems; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1998. [Google Scholar]
- Rayward-Smith, V.J. Metaheuristics for clustering in KDD. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK, 2–5 September 2005; Volume 3, pp. 2380–2387. [Google Scholar]
- Ghiasi, S.; Srivastava, A.; Yang, X.; Sarrafzadeh, M. Optimal energy aware clustering in sensor networks. Sensors 2002, 2, 258–269. [Google Scholar] [CrossRef]
- Fahad, A.; Alshatri, N.; Tari, Z.; Alamri, A.; Khalil, I.; Zomaya, A.Y.; Foufou, S.; Bouras, A. A survey of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE Trans. Emerg. Top. Comput. 2014, 2, 267–279. [Google Scholar] [CrossRef]
- Bharti, K.K.; Singh, P.K. Chaotic gradient artificial bee colony for text clustering. Soft Comput. 2015, 20, 1113–1126. [Google Scholar] [CrossRef]
- Prabha, K.A.; Visalakshi, N.K. Improved Particle Swarm Optimization Based K-Means Clustering. In Proceedings of the IEEE 2014 International Conference Intelligent Computing Applications (ICICA), Coimbatore, India, 6–7 March 2014; pp. 59–63. [Google Scholar]
- Forsati, R.; Mahdavi, M.; Shamsfard, M.; Meybodi, M.R. Efficient stochastic algorithms for document clustering. Inf. Sci. 2013, 220, 269–291. [Google Scholar] [CrossRef]
- Forsati, R.; Keikha, A.; Shamsfard, M. An improved bee colony optimization algorithm with an application to document clustering. Neurocomputing 2015, 159, 9–26. [Google Scholar] [CrossRef]
- Basu, T.; Murthy, C. A similarity assessment technique for effective grouping of documents. Inf. Sci. 2015, 311, 149–162. [Google Scholar] [CrossRef]
- Bharti, K.K.; Singh, P.K. Opposition chaotic fitness mutation based adaptive inertia weight BPSO for feature selection in text clustering. Appl. Soft Comput. 2016, 43, 20–34. [Google Scholar] [CrossRef]
- Zhong, N.; Li, Y.; Wu, S.T. Effective pattern discovery for text mining. Knowl. Data Eng. IEEE Trans. 2012, 24, 30–44. [Google Scholar] [CrossRef] [Green Version]
- Bharti, K.K.; Singh, P.K. Hybrid dimension reduction by integrating feature selection with feature extraction method for text clustering. Expert Syst. Appl. 2015, 42, 3105–3114. [Google Scholar] [CrossRef]
- Salton, G.; Wong, A.; Yang, C.S. A vector space model for automatic indexing. Commun. ACM 1975, 18, 613–620. [Google Scholar] [CrossRef] [Green Version]
- De Vries, C.M. Document Clustering Algorithms, Representations and Evaluation for Information Retrieval. Ph.D. Thesis, Queensland University of Technology, Brisbane City, QLD, Australia, 2014. [Google Scholar]
- Abualigah, L.M.Q.; Hanandeh, E.S. Applying genetic algorithms to information retrieval using vector space model. Int. J. Comput. Sci. Eng. Appl. 2015, 5, 19. [Google Scholar]
- Hong, S.S.; Lee, W.; Han, M.M. The Feature Selection Method based on Genetic Algorithm for Efficient of Text Clustering and Text Classification. Int. J. Adv. Soft Comput. Appl. 2015, 7, 2074–8523. [Google Scholar]
- Mahdavi, M.; Abolhassani, H. Harmony K-means algorithm for document clustering. Data Min. Knowl. Discov. 2009, 18, 370–391. [Google Scholar] [CrossRef]
- Ghanem, O.; Alhanjouri, M. Evaluating the Effect of Preprocessing in Arabic Documents Clustering. Ph.D. Thesis, Computer Engineering Department, Islamic University of Gaza, Gaza, Palestine, 2014. [Google Scholar]
- Forsati, R.; Mahdavi, M. Web text mining using harmony search. In Recent Advances in Harmony Search Algorithm; Springer: Berlin/Heidelberg, Germany, 2010; pp. 51–64. [Google Scholar]
- Abualigah, L.M.; Khader, A.T.; Hanandeh, E.S. A new feature selection method to improve the document clustering using particle swarm optimization algorithm. J. Comput. Sci. 2018, 25, 456–466. [Google Scholar] [CrossRef]
- Baloochian, H.; Nazari, M. Clustering-Based Text Improvement and Summarization Based on Collective Intelligence Algorithm. Spec. J. Electron. Comput. Sci. 2018, 4, 7–15. [Google Scholar]
- Chen, H.N.; He, B.; Yan, L.; Li, J.; Ji, W. A text clustering method based on two-dimensional OTSU and PSO algorithm. In Proceedings of the 2009 IEEE International Symposium on Computer Network and Multimedia Technology, Wuhan, China, 18–20 January 2009; pp. 1–4. [Google Scholar]
- Wu, J.W.; Tseng, J.C.; Tsai, W.N. A hybrid linear text segmentation algorithm using hierarchical agglomerative clustering and discrete particle swarm optimization. Integr. Comput.-Aided Eng. 2014, 21, 35–46. [Google Scholar] [CrossRef]
- Sarkar, S.; Roy, A.; Purkayastha, B. A comparative analysis of particle swarm optimization and K-means algorithm for text clustering using Nepali Wordnet. Int. J. Nat. Lang. Comput. (IJNLC) 2014, 3. [Google Scholar] [CrossRef]
- Abualigah, L.M.; Khader, A.T. Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering. J. Supercomput. 2017, 73, 4773–4795. [Google Scholar] [CrossRef]
- Lee, J.S.; Hah, H.; Park, S.C. Less-redundant text summarization using ensemble clustering algorithm based on GA and PSO. Wseas Trans. Comput. 2017, 16, 10–17. [Google Scholar]
- Janani, R.; Vijayarani, S. Text document clustering using spectral clustering algorithm with particle swarm optimization. Expert Syst. Appl. 2019, 134, 192–200. [Google Scholar] [CrossRef]
- Purushothaman, R.; Rajagopalan, S.; Dhandapani, G. Hybridizing Gray Wolf Optimization (GWO) with Grasshopper Optimization Algorithm (GOA) for text feature selection and clustering. Appl. Soft Comput. 2020, 96, 106651. [Google Scholar] [CrossRef]
- Vidyadhari, C.; Sandhya, N.; Premchand, P. Particle Grey Wolf Optimizer (PGWO) Algorithm and Semantic Word Processing for Automatic Text Clustering. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2019, 27, 201–223. [Google Scholar] [CrossRef] [Green Version]
- Rashaideh, H.; Sawaie, A.; Al-Betar, M.A.; Abualigah, L.M.; Al-Laham, M.M.; Ra’ed, M.; Braik, M. A grey wolf optimizer for text document clustering. J. Intell. Syst. 2018, 29, 814–830. [Google Scholar] [CrossRef]
- Jain, V.; Shrivastava, N.; PCST, B. Class Based Clustering with Cuckoo Search Rank Optimization for Text Data Categorization. Int. J. Master Eng. Res. Technol. 2015, 2, 82–87. [Google Scholar]
- Ishak Boushaki, S.; Kamel, N.; Bendjeghaba, O. High-dimensional text datasets clustering algorithm based on cuckoo search and latent semantic indexing. J. Inf. Knowl. Manag. 2018, 17, 1850033. [Google Scholar] [CrossRef]
- Mohammed, A.J.; Yusof, Y.; Husni, H. Integrated bisect K-means and firefly algorithm for hierarchical text clustering. J. Eng. Appl. Sci. 2016, 11, 522–527. [Google Scholar]
- Mohammed, A.J.; Yusof, Y.; Husni, H. GF-CLUST: A nature-inspired algorithm for automatic text clustering. J. Inf. Commun. Technol. (JICT) 2016, 15, 57–81. [Google Scholar] [CrossRef]
- Le, H.P.; Nguyen, T.D.; Park, J.; Lee, G. Combining Fuzzy C-means Clustering and Flood Filling Algorithm for Enhancing Text Binarization. J. Korean Multimed. Soc. 2009, 333–336. Available online: https://www.semanticscholar.org/paper/Combining-Fuzzy-C-means-Clustering-and-Flood-for-Le-Nguy%C3%AAn/26691a4cb30b68b0e3435dacc07556481062b326 (accessed on 31 December 2020).
- Abualigah, L.M.; Khader, A.T.; Hanandeh, E.S. A combination of objective functions and hybrid krill herd algorithm for text document clustering analysis. Eng. Appl. Artif. Intell. 2018, 73, 111–125. [Google Scholar] [CrossRef]
- Abualigah, L.M.; Khader, A.T.; Al-Betar, M.A.; Awadallah, M.A. A krill herd algorithm for efficient text documents clustering. In Proceedings of the 2016 IEEE symposium on computer applications & industrial electronics (ISCAIE), Batu Feringghi, Malaysia, 30–31 May 2016; pp. 67–72. [Google Scholar]
- Abualigah, L.M.; Khader, A.T.; Hanandeh, E.S.; Gandomi, A.H. A novel hybridization strategy for krill herd algorithm applied to clustering techniques. Appl. Soft Comput. 2017, 60, 423–435. [Google Scholar] [CrossRef]
- Abualigah, L.M.; Khader, A.T.; Hanandeh, E.S. Hybrid clustering analysis using improved krill herd algorithm. Appl. Intell. 2018, 48, 4047–4071. [Google Scholar] [CrossRef]
- Abualigah, L.M.Q. Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Abualigah, L.; Alsalibi, B.; Shehab, M.; Alshinwan, M.; Khasawneh, A.M.; Alabool, H. A parallel hybrid krill herd algorithm for feature selection. Int. J. Mach. Learn. Cybern. 2020, 1–24. [Google Scholar] [CrossRef]
- Chandran, T.R.; Reddy, A.; Janet, B. A social spider optimization approach for clustering text documents. In Proceedings of the 2016 IEEE 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), Chennai, India, 27–28 February 2016; pp. 22–26. [Google Scholar]
- Chandran, T.R.; Reddy, A.; Janet, B. Text clustering quality improvement using a hybrid social spider optimization. Int. J. Appl. Eng. Res. 2017, 12, 995–1008. [Google Scholar]
- Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Mirhosseini, M. A clustering approach using a combination of gravitational search algorithm and k-harmonic means and its application in text document clustering. Turk. J. Electr. Eng. Comput. Sci. 2017, 25, 1251–1262. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Gopal, J.; Brunda, S. Text Clustering Algorithm Using Fuzzy Whale Optimization Algorithm. Int. J. Intell. Eng. Syst. 2019, 12. [Google Scholar] [CrossRef]
- Ma, S.X.; Liu, D.; Jia, S.J. Text Clustering Algorithm Based on Ant Colony Algorithm. Comput. Eng. 2010, 8. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-JSJC201008074.htm (accessed on 30 December 2020).
- Nema, P.; Sharma, V. Multi-label text categorization based on feature optimization using ant colony optimization and relevance clustering technique. In Proceedings of the 2015 IEEE International Conference on Computers, Communications, and Systems (ICCCS), Kanyakumari, India, 2–3 November 2015; pp. 1–5. [Google Scholar]
- Cobo, A.; Rocha, R. Document management with ant colony optimization metaheuristic: A fuzzy text clustering approach using pheromone trails. In Soft Computing in Industrial Applications; Springer: Berlin/Heidelberg, Germany, 2011; pp. 261–270. [Google Scholar]
- Mustafi, D.; Sahoo, G. A hybrid approach using genetic algorithm and the differential evolution heuristic for enhanced initialization of the k-means algorithm with applications in text clustering. Soft Comput. 2019, 23, 6361–6378. [Google Scholar] [CrossRef]
- Song, W.; Li, C.H.; Park, S.C. Genetic algorithm for text clustering using ontology and evaluating the validity of various semantic similarity measures. Expert Syst. Appl. 2009, 36, 9095–9104. [Google Scholar] [CrossRef]
- Chun-hong, W.; Li-Li, N.; Yao-Peng, R. Research on the text clustering algorithm based on latent semantic analysis and optimization. In Proceedings of the 2011 IEEE International Conference on Computer Science and Automation Engineering, Shanghai, China, 10–12 June 2011; Volume 4, pp. 470–473. [Google Scholar]
- Shi, K.; Li, L. High performance genetic algorithm based text clustering using parts of speech and outlier elimination. Appl. Intell. 2013, 38, 511–519. [Google Scholar] [CrossRef]
- Karaa, W.B.A.; Ashour, A.S.; Sassi, D.B.; Roy, P.; Kausar, N.; Dey, N. Medline text mining: An enhancement genetic algorithm based approach for document clustering. In Applications of Intelligent Optimization in Biology and Medicine; Springer: Berlin/Heidelberg, Germany, 2016; pp. 267–287. [Google Scholar]
- Garg, N.; Gupta, R. Performance Evaluation of New Text Mining Method Based on GA and K-Means Clustering Algorithm. In Advanced Computing and Communication Technologies; Springer: Berlin/Heidelberg, Germany, 2018; pp. 23–30. [Google Scholar]
- Wang, M.-C.; Wang, Z.-O. Text Fuzzy Clustering Algorithm Based on Rough Set and Genetic Algorithm. J. Electron. Inf. Technol. 2005, 4. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-DZYX200504011.htm (accessed on 30 December 2020).
- Yu, S.Y.; Ding, H.F.; Fu, Z.C. Study on text categorization based on genetic algorithm and fuzzy clustering. Comput. Technol. Dev. 2009, 4. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-WJFZ200904037.htm (accessed on 30 December 2020).
- Tohti, T.; Ablat, A.; Aniwar, M.; Hamdulla, A. Combined algorithm of GAAC and K-means for Uyghur text clustering. Comput. Eng. Sci. 2013, 7, 30. [Google Scholar]
- Dong, Y.H.; Guo, S.C. Text clustering algorithm with improved weighting factor and feature vector. Comput. Eng. Des. 2015, 4, 42. [Google Scholar]
- Shao, Z.; Li, Y.; Wang, X.; Zhao, X.; Guo, Y. Research on a New Automatic Generation Algorithm of Concept Map Based on Text Clustering and Association Rules Mining. In International Conference on Intelligent Computing; Springer: Berlin/Heidelberg, Germany, 2018; pp. 479–490. [Google Scholar]
- Sailaja, V.; Srinivasa Rao, K.; Reddy, K. Text independent speaker identification with finite multivariate generalized gaussian mixture model and hierarchical clustering algorithm. Int. J. Comput. Appl. 2010, 11, 975–8887. [Google Scholar] [CrossRef]
- Zeng, A.; Huang, Y. A text classification algorithm based on rocchio and hierarchical clustering. In International Conference on Intelligent Computing; Springer: Berlin/Heidelberg, Germany, 2011; pp. 432–439. [Google Scholar]
- Lokhande, M.M.P.; Gawande, M.N.; Koprade, M.S.; Bewoor, M.M. Text summarization using hierarchical clustering algorithm and expectation maximization clustering algorithm. Int. J. Comput. Eng. Technol. (IJCET) 2015, 6, 58–65. [Google Scholar]
- Rong, Y. Staged text clustering algorithm based on K-means and hierarchical agglomeration clustering. In Proceedings of the 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 27–29 June 2020; pp. 124–127. [Google Scholar]
- Abualigah, L.M.; Khader, A.T.; AlBetar, M.A.; Hanandeh, E.S. Unsupervised text feature selection technique based on particle swarm optimization algorithm for improving the text clustering. In Proceedings of the 1st EAI International Conference on Computer Science and Engineering. European Alliance for Innovation (EAI), Penang, Malaysia, 11–12 November 2016; p. 169. [Google Scholar]
- Lipeng, Y.; Fuzhang, W.; Chunmei, F. A Text Clustering Algorithm based on Weeds and Differential Optimization. Int. J. Database Theory Appl. 2016, 9, 121–130. [Google Scholar]
- Choudhury, J.; Kimtani, D.K.; Chakrabarty, A. Text clustering using a WordNet-based knowledge-base and the Lesk Algorithm. Int. J. Comput. Appl. 2012, 48, 20–24. [Google Scholar]
- Shi, X.; Guan, R.; Wang, L.; Pei, Z.; Liang, Y. An incremental affinity propagation algorithm and its applications for text clustering. In Proceedings of the 2009 IEEE International Joint Conference on Neural Networks, Atlanta, GA, USA, 14–19 June 2009; pp. 2914–2919. [Google Scholar]
- Agarwal, N. A Real-time Temporal Clustering Algorithm for Short Text, and Its Applications. Ph.D. Thesis, University of California San Diego, La Jolla, CA, USA, 2017. [Google Scholar]
- Meng, Z.; Zhu, H.; Zhu, Y.; Zhou, G. A clustering algorithm for Chinese text based on SOM neural network and density. In International Symposium on Neural Networks; Springer: Berlin/Heidelberg, Germany, 2005; pp. 251–256. [Google Scholar]
- Jambak, M.I.; Jambak, A.I.I. Comparison of dimensional reduction using the Singular Value Decomposition Algorithm and the Self Organizing Map Algorithm in clustering result of text documents. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 551, p. 12046. [Google Scholar]
- Liu, X. An Improved K-Means Text Clustering Algorithm Based on Local Search. In Proceedings of the 2008 IEEE 4th International Conference on Wireless Communications, Networking and Mobile Computing, Dalian, China, 12–14 October 2008; pp. 1–4. [Google Scholar]
- Guoli, L.; Xiaohua, W.; Rongbo, W. Text Clustering Research on the Max Term Contribution Dimension Reduction and Simulated Annealing Algorithm. Data Anal. Knowl. Discov. 2008, 24, 43–47. [Google Scholar]
- Sree, P.K.; Raju, G.; Raju, S.V.; Devi, N.U. NTCA: A Novel Text Clustering Algorithm Build on Cellular automata Based local search and K-Means Algorithm For Identifying the Protein Coding Regions in Genomic DNA. In Proceedings of the International Congress for Global Science and Technology; 2008; p. 39. Available online: https://www.researchgate.net/profile/Ashraf_Aboshosha/publication/283713969_AIML-Volume8-issue1-P1121546431/links/564449a608ae54697fb6b751.pdf#page=43 (accessed on 30 December 2020).
- Abualigah, L.M.; Khader, A.T.; Al-Betar, M.A.; Alyasseri, Z.A.A.; Alomari, O.A.; Hanandeh, E.S. Feature selection with β-hill climbing search for text clustering application. In Proceedings of the 2017 IEEE Palestinian International Conference on Information and Communication Technology (PICICT), Gaza City, Palestine, 8–9 May 2017; pp. 22–27. [Google Scholar]
- Qian, S.Y.; Liu, H.H.; Li, D.Y. Research and Application of Improved K-means Algorithm in Text Clustering. DEStech Trans. Comput. Sci. Eng. 2018. [Google Scholar] [CrossRef] [Green Version]
- Abualigah, L.M.; Hanandeh, E.S.; Khader, A.T.; Otair, M.A.; Shandilya, S.K. An Improved B-hill Climbing Optimization Technique for Solving the Text Documents Clustering Problem. Curr. Med Imaging 2020, 16, 296–306. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, M.; Shen, C.; Huang, Z.; Gu, M. BTM and GloVe Similarity Linear Fusion-Based Short Text Clustering Algorithm for Microblog Hot Topic Discovery. IEEE Access 2020, 8, 32215–32225. [Google Scholar] [CrossRef]
- Xinwu, L. Research on Text Clustering Algorithm Based on K_means and SOM. In Proceedings of the 2008 IEEE International Symposium on Intelligent Information Technology Application Workshops, Shanghai, China, 21–22 December 2008; pp. 341–344. [Google Scholar]
- Guoping, L. Algorithm of Web Text Classification Based on Hierarchical and Density Clustering. J. Taiyuan Norm. Univ. (Nat. Sci. Ed.) 2008, 3, 16. [Google Scholar]
- Yan-Ting, X.Y.S.L.; Jia-Ning, X. The Two-stage Text Clustering Algorithm Based on K-mesans and aiNet. Microcomput. Inf. 2009, 2009, 81. [Google Scholar]
- Wang, Y.; Wang, L.; Qi, J.; Qian, Z.; Xu, B.; Lei, C.; Yang, Y.; Cai, H. Improved text clustering algorithm and application in microblogging public opinion analysis. In Proceedings of the 2013 IEEE Fourth World Congress on Software Engineering, Hong Kong, 3–4 December 2013; pp. 27–31. [Google Scholar]
- Nisha, S.N.; Ban, M.K.M.; Student, P.; Svcet, P. An Enhanced Image Retrieval Using K-Mean Clustering Algorithm in Integrating Text and Visual Features. Available online: http://www.ijiset.com/v1s1/IJISET_V1_I1_03.pdf (accessed on 30 December 2020).
- Rose, J.D.; Dev, D.D.; Robin, C.R. A novel approach for text clustering using must link and cannot link algorithm. J. Theor. Appl. Inf. Technol. 2014, 60. Available online: http://www.jatit.org/volumes/Vol60No1/10Vol60No1.pdf (accessed on 30 December 2020).
- Abualigah, L.M.; Khader, A.T.; Al-Betar, M.A.; Alomari, O.A. Text feature selection with a robust weight scheme and dynamic dimension reduction to text document clustering. Expert Syst. Appl. 2017, 84, 24–36. [Google Scholar] [CrossRef]
- Abualigah, L.M.; Khader, A.T.; Hanandeh, E.S. A novel weighting scheme applied to improve the text document clustering techniques. In Innovative Computing, Optimization and its Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 305–320. [Google Scholar]
- Abualigah, L.M.; Khader, A.T.; Al-Betar, M.A. Multi-objectives-based text clustering technique using K-mean algorithm. In Proceedings of the 2016 IEEE 7th International Conference on Computer Science and Information Technology (CSIT), Amman, Jordan, 13–14 July 2016; pp. 1–6. [Google Scholar]
- Adinugroho, S.; Sari, Y.A.; Fauzi, M.A.; Adikara, P.P. Optimizing K-means text document clustering using latent semantic indexing and pillar algorithm. In Proceedings of the 2017 IEEE 5th International Symposium on Computational and Business Intelligence (ISCBI), Dubai, UAE, 11–14 August 2017; pp. 81–85. [Google Scholar]
- Jain, H.; Grover, R.; LIET, A. Clustering Analysis with Purity Calculation of Text and SQL Data using K-means Clustering Algorithm. IJAPRR 2017, 4, 47–58. [Google Scholar]
- Jia, Y.; Kwong, S.; Hou, J.; Wu, W. Semi-supervised non-negative matrix factorization with dissimilarity and similarity regularization. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31. [Google Scholar] [CrossRef]
- Afzali, M.; Kumar, S. An Extensive Study of Similarity and Dissimilarity Measures Used for Text Document Clustering using K-means Algorithm. I.J. Inf. Technol. Comput. Sci. 2018, 9, 64–73. [Google Scholar] [CrossRef]
- Naeem, S.; Wumaier, A. Study and implementing K-mean clustering algorithm on English text and techniques to find the optimal value of K. Int. J. Comput. Appl. 2018, 182, 7–14. [Google Scholar] [CrossRef]
- YUAN, Y.; LIU, H.; LI, H. An Improved K-Means Text Clustering Algorithm Based on Density Peaks and Its Parallelization. J. Wuhan Univ. (Nat. Sci. Ed.) 2019, 5, 6. [Google Scholar]
- Liu, W.; Liu, M.; Huang, M. Study on Chinese Text Clustering Algorithm Based on K-mean and Evaluation Method on Effect of Clustering for Software-intensive System. In Proceedings of the 2020 IEEE International Conference on Computer Engineering and Application (ICCEA), Guangzhou, China, 18–20 March 2020; pp. 513–519. [Google Scholar]
- Wu, D.; Yang, R.; Shen, C. Sentiment word co-occurrence and knowledge pair feature extraction based LDA short text clustering algorithm. J. Intell. Inf. Syst. 2020, 1–23. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, L.T.; Chen, Z.; Li, P. PPHOPCM: Privacy-preserving high-order possibilistic c-means algorithm for big data clustering with cloud computing. IEEE Trans. Big Data 2017. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Yang, L.T.; Chen, Z.; Li, P. High-order possibilistic c-means algorithms based on tensor decompositions for big data in IoT. Inf. Fusion 2018, 39, 72–80. [Google Scholar] [CrossRef]
- Tan, Y.J.; Li, C.X. Study and Simulation of Text Clustering Using Attribute Weighted Fuzzy C-means Algorithm. Comput. Simul. 2011, 5. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-JSJZ201105056.htm (accessed on 30 December 2020).
- Wen-xia, W. The Text Clustering Algorithm Based on LSA and FCM. J. Shanxi Datong Univ. (Nat. Sci. Ed.) 2016, 3. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-YBSF201601003.htm (accessed on 30 December 2020).
- Victor, G.S.; Antonia, P.; Spyros, S. Csmr: A scalable algorithm for text clustering with cosine similarity and mapreduce. In IFIP International Conference on Artificial Intelligence Applications and Innovations; Springer: Berlin/Heidelberg, Germany, 2014; pp. 211–220. [Google Scholar]
- Wang, H.; Zhou, C.; Li, L. Design and Application of a Text Clustering Algorithm Based on Parallelized K-Means Clustering. Rev. D’Intell. Artif. 2019, 33, 453–460. [Google Scholar] [CrossRef]
- Zhao, Q.; Shi, Y.; Qing, Z. Research on Hadoop-based massive short text clustering algorithm. In Proceedings of the Fourth International Workshop on Pattern Recognition. International Society for Optics and Photonics, Nanjing, China, 31 July 2019; Volume 11198, p. 111980A. [Google Scholar] [CrossRef]
- Yang, K.; He, G.; He, G. Research and application of MapReduce-based MST text clustering algorithm. In Proceedings of the 2012 IEEE International Conference on Information Science and Technology, Wuhan, China, 23–25 March 2012; pp. 753–757. [Google Scholar]
- Dangol, S.; Pokhrel, S. Analysis of Document Clustering Using K-means Algorithm with Cosine Similarity for Large Scale Text Documents with and without Hadoop. Available online: https://www.semanticscholar.org/paper/Analysis-of-Document-Clustering-Using-K-means-with-Dangol-Pokhrel/3904fcc4bc8d8b53ff3fca6821b614df1ab22d3f (accessed on 30 December 2020).
- Kang, J.; Zhang, W. Combination of fuzzy C-means and particle swarm optimization for text document clustering. In Advances in Electrical Engineering and Automation; Springer: Berlin/Heidelberg, Germany, 2012; pp. 247–252. [Google Scholar]
- Loshma, G.; Hedge, D.N.P. Semantic analysis based text clustering by the fusion of bisecting k-means and UPGMA algorithm. ARPN J. Eng. Appl. Sci. 2006, 11, 3. [Google Scholar]
- Shi, K.; Li, L.; He, J.; Zhang, N.; Liu, H.; Song, W. Improved GA-based text clustering algorithm. In Proceedings of the 2011 4th IEEE International Conference on Broadband Network and Multimedia Technology, Shenzhen, China, 28–30 October 2011; pp. 675–679. [Google Scholar]
- Wang, Y.G.; Lin, L.; Liu, X.G. Hybrid text clustering algorithm based on dual particle swarm optimization and K-means algorithm. Appl. Res. Comput. 2014, 12. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-JSYJ201402012.htm (accessed on 30 December 2020).
- Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4831–4845. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Methods Appl. Mech. Eng. 2021, unpublished. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Jiao, L. A granular agent evolutionary algorithm for classification. Appl. Soft Comput. 2011, 11, 3093–3105. [Google Scholar] [CrossRef]
- Corne, D.W.; Jerram, N.R.; Knowles, J.D.; Oates, M.J. PESA-II: Region-based selection in evolutionary multiobjective optimization. In Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2001; pp. 283–290. [Google Scholar] [CrossRef]
- Babu, G.P.; Murty, M.N. Clustering with evolution strategies. Pattern Recognit. 1994, 27, 321–329. [Google Scholar] [CrossRef]
- Xia, H.; Zhuang, J.; Yu, D. Novel soft subspace clustering with multi-objective evolutionary approach for high-dimensional data. Pattern Recognit. 2013, 46, 2562–2575. [Google Scholar] [CrossRef]
- Aliniya, Z.; Mirroshandel, S.A. A novel combinatorial merge-split approach for automatic clustering using imperialist competitive algorithm. Expert Syst. Appl. 2019, 117, 243–266. [Google Scholar] [CrossRef]
- Sheng, W.; Liu, X.; Fairhurst, M. A niching memetic algorithm for simultaneous clustering and feature selection. IEEE Trans. Knowl. Data Eng. 2008, 20, 868–879. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Zhou, M.; Jiang, Z. A multi-objective memetic algorithm based on decomposition for big optimization problems. Memetic Comput. 2016, 8, 45–61. [Google Scholar] [CrossRef]
- Alami, J.; El Imrani, A.; Bouroumi, A. A multipopulation cultural algorithm using fuzzy clustering. Appl. Soft Comput. 2007, 7, 506–519. [Google Scholar] [CrossRef]
- İnkaya, T.; Kayalıgil, S.; Özdemirel, N.E. Ant colony optimization based clustering methodology. Appl. Soft Comput. 2015, 28, 301–311. [Google Scholar] [CrossRef]
- Cheng, Y.; Jiang, M.; Yuan, D. Novel clustering algorithms based on improved artificial fish swarm algorithm. In Proceedings of the 2009 IEEE Sixth International Conference on Fuzzy Systems and Knowledge Discovery, Tianjin, China, 14–16 August 2009; Volume 3, pp. 141–145. [Google Scholar]
- Karaboga, D.; Ozturk, C. A novel clustering approach: Artificial Bee Colony (ABC) algorithm. Appl. Soft Comput. 2011, 11, 652–657. [Google Scholar] [CrossRef]
- Satapathy, S.C.; Naik, A. Data clustering based on teaching-learning-based optimization. In International Conference on Swarm, Evolutionary, and Memetic Computing; Springer: Berlin/Heidelberg, Germany, 2011; pp. 148–156. [Google Scholar]
- Timmis, J.; Neal, M. A resource limited artificial immune system for data analysis. In Research and Development in Intelligent Systems XVII; Springer: Berlin/Heidelberg, Germany, 2001; pp. 19–32. [Google Scholar]
- Wan, M.; Li, L.; Xiao, J.; Wang, C.; Yang, Y. Data clustering using bacterial foraging optimization. J. Intell. Inf. Syst. 2012, 38, 321–341. [Google Scholar] [CrossRef]
- Kulkarni, P.K.H.; Jesudason, P.M. Multipath data transmission in WSN using exponential cat swarm and fuzzy optimisation. IET Commun. 2019, 13, 1685–1695. [Google Scholar] [CrossRef]
- Alsalibi, B.; Abualigah, L.; Khader, A.T. A novel bat algorithm with dynamic membrane structure for optimization problems. Appl. Intell. 2020, 1–26. [Google Scholar] [CrossRef]
- Zhong, S.; Ghosh, J. Generative model-based document clustering: A comparative study. Knowl. Inf. Syst. 2005, 8, 374–384. [Google Scholar] [CrossRef]
- Kaur, S.P.; Madan, N. Document Clustering Using Firefly Algorithm. Artif. Intell. Syst. Mach. Learn. 2016, 8, 182–185. [Google Scholar]
- Kumar, L.; Bharti, K.K. A novel hybrid BPSO–SCA approach for feature selection. Nat. Comput. 2019, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Del Buono, N.; Pio, G. Non-negative Matrix Tri-Factorization for co-clustering: An analysis of the block matrix. Inf. Sci. 2015, 301, 13–26. [Google Scholar] [CrossRef]
- Inbarani, H.H.; Bagyamathi, M.; Azar, A.T. A novel hybrid feature selection method based on rough set and improved harmony search. Neural Comput. Appl. 2015, 26, 1859–1880. [Google Scholar] [CrossRef]
- Bharti, K.K.; Singh, P.K. A three-stage unsupervised dimension reduction method for text clustering. J. Comput. Sci. 2014, 5, 156–169. [Google Scholar] [CrossRef]
- Chen, L.; Liu, M.; Wu, C.; Xu, A. A Novel Clustering Algorithm and Its Incremental Version for Large-Scale Text Collection. Inf. Technol. Control. 2016, 45, 136–147. [Google Scholar] [CrossRef]
- Singh, V.K.; Tiwari, N.; Garg, S. Document clustering using k-means, heuristic k-means and fuzzy c-means. In Proceedings of the IEEE International Conference on Computational Intelligence and Communication Networks (CICN), Gwalior, India, 7–9 October 2011; pp. 297–301. [Google Scholar]
Method Type | Single Objective | Multi-Objective |
---|---|---|
Evolutionary algorithms | Arithmatec Optimization Algorithm [141] | |
Genetic Algorithm (GA) [69] | NSGAII [142] | |
Granular agent evolutionary algorithm [143] | SPEA, PESAII [144] | |
Evolutionary Strategy (ES) [145] | Multi-objective ES [146] | |
Genetic Programming (GP) [84] | Multi-objective GP [82] | |
Differential Evolution (DE) [97] | Multi-objective DE [97] | |
Imperialist Competitive Algorithm (ICA) [147] | ||
Physical algorithms | Simulated Annealing (SA) [104] | Multi-objective SA [104] |
Memetic Algorithm (MA) [148] | Multi-objective MA [149] | |
Harmony Search (HS) [96] | Multi-objective HS [96] | |
Cultural Algorithm (CA) [150] | ||
Swarm intelligence | Ant Colony Optimization (ACO) [80] | Multi-objective ACO [151] |
Fish Swarm algorithm (FSA) [152] | Multi-objective FSA [152] | |
Artificial Bee Colony (ABC) [153] | Multi-objective ABC [153] | |
Particle Swarm Optimization (PSO) [136] | Multi-objective PSO [54] | |
Teaching Learning-based Optimization [154] | ||
Bio-inspired algorithms | Artificial Immune System (AIS) [155] | Multi-objective AIS [155] |
Bacterial Foraging Optimization (BFO) [156] | Multi-objective BFO [156] | |
Krill Herd Algorithm (KHA) [70] | ||
Cuckoo Search (CS) Algorithm [62] | ||
Other meta-heuristic algorithms | Cat Swarm Opt. (CSO) [157] | Multi-objective CSO [157] |
Invasive Weed Optimization Algorithm (IWO) [97] | Multi-objective IWO [97] | |
Cuckoo Search Algorithm [61] | Multi-objective Cuckoo [61] | |
Gravitational Search Algorithm (GSA) [75] | Multi-objective GSA [75] | |
Firefly Algorithm (FA) [63] | Multi-objective FA (MFA) [64] | |
Bat Algorithm (BA) [14] | Multi-objective BA (MBA) [158] | |
Gray Wolf Optimizer (GWO) [60] | ||
Social Spider Optimization (SSO) [73] |
Name | Formula |
---|---|
Minkowski distance | |
Standardized Euclidean distance | |
Cosine distance | |
Pearson correlation distance | |
Mahalanobis distance |
Name | Formula |
---|---|
Cosine similarity | |
Jaccard similarity | |
Sorensen similarity | |
Dice similarity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abualigah, L.; Gandomi, A.H.; Elaziz, M.A.; Hamad, H.A.; Omari, M.; Alshinwan, M.; Khasawneh, A.M. Advances in Meta-Heuristic Optimization Algorithms in Big Data Text Clustering. Electronics 2021, 10, 101. https://doi.org/10.3390/electronics10020101
Abualigah L, Gandomi AH, Elaziz MA, Hamad HA, Omari M, Alshinwan M, Khasawneh AM. Advances in Meta-Heuristic Optimization Algorithms in Big Data Text Clustering. Electronics. 2021; 10(2):101. https://doi.org/10.3390/electronics10020101
Chicago/Turabian StyleAbualigah, Laith, Amir H. Gandomi, Mohamed Abd Elaziz, Husam Al Hamad, Mahmoud Omari, Mohammad Alshinwan, and Ahmad M. Khasawneh. 2021. "Advances in Meta-Heuristic Optimization Algorithms in Big Data Text Clustering" Electronics 10, no. 2: 101. https://doi.org/10.3390/electronics10020101
APA StyleAbualigah, L., Gandomi, A. H., Elaziz, M. A., Hamad, H. A., Omari, M., Alshinwan, M., & Khasawneh, A. M. (2021). Advances in Meta-Heuristic Optimization Algorithms in Big Data Text Clustering. Electronics, 10(2), 101. https://doi.org/10.3390/electronics10020101