Modeling of PV Module and DC/DC Converter Assembly for the Analysis of Induced Transient Response Due to Nearby Lightning Strike
Abstract
:1. Introduction
2. Magnetic-Field Computation from a Lightning Channel
3. Modeling of the PV Module
3.1. Wiring of the PV Module
3.2. PV Metallic Frame
4. Modelling of the PV Module and DC/DC Converter Assembly
4.1. Modelling for the PV Module
4.1.1. Lightning Channel Coupling Model for a Single PV Module
4.1.2. Dynamic and Insulation Model of a PV Module
4.2. Modelling of the DC/DC Boost Converter
5. Results
5.1. Simulation Setup
5.2. Input Data
5.3. Induced Voltages and Currents on the PV Module and DC/DC Converter Assembly
5.3.1. Reference Case
5.3.2. Sensitivity Analysis with Respect to Parameter Change
5.3.3. Influence of the Lightning Current Waveform
5.3.4. Impact of the LC Tortuous Geometry
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
a, b, c, d | fitting parameters |
magnetic vector potential at point and time t due to a lightning strike segment | |
Acm | common-mode area |
Adm | differential-mode area |
Af | frame area |
free space light velocity | |
Cboost | capacitance in the LC filter of the DC/DC boost converter |
CD,PVc | diffusion capacitance of a PV cell |
Ck | number of arbitrarily oriented segments of the LC |
Cp,iso,PVm | leakage capacitance of a PV module |
parallel capacitance of a PV cell | |
parallel capacitance of a PV module | |
CT,PVc | transition capacitance of a PV cell |
D | duty cycle |
f | frequency |
fs | switching frequency |
channel height | |
return stroke current waveform at channel base | |
current at the positive (negative) output terminal of the DC/DC converter | |
common mode current at the terminals of the DC/DC converter | |
differential mode current at the terminals of the DC/DC converter | |
photocurrent | |
peak value of the lightning current waveform | |
IGBT | insulated-gate bipolar transistor |
Iiso | module insulation current |
output current of the DC/DC converter | |
Isw | current through the switch |
total length of the four frame sides | |
k | coupling factor |
L | overall length of the LC |
Lboost | inductance in the LC filter of the DC/DC boost converter |
LC | lightning channel |
Ldc,w(Lpv,w) | parasitic inductance of the connecting wires at the converter’s DC side (at PV module) |
Lfra | frame equivalent self-inductance |
Lgnd | ground path inductance |
average length of each segment average of the LC | |
Ls | series inductance of cables and connectors |
Mfra-mod | mutual inductance of metallic frame with the PV circuitry |
MPP | maximum power point |
n | exponent factor |
OC | open-circuit |
PV | photovoltaic |
observation point | |
r | radial distance of observation point P |
position vector of observation point P | |
Rboost | resistance in the LC filter of the DC/DC boost converter |
Rd,PVc | dynamic resistance of diode of a PV cell |
Rdc,w(Rpv,w) | parasitic resistance of the connecting wires at the converter’s DC side (at PV module) |
frame equivalent resistance | |
Rgnd | ground path resistance |
Riso,PVm | insulation resistance of a PV module |
RLoad | load resistance |
Rp,iso,PVm | parallel insulation resistance of a PV module |
Rp,PVc (Cp,PVc) | parallel resistance (capacitance) of a PV cell |
parallel resistance of a PV module | |
distance between infinitesimal current dipole and observation point P | |
Rs | series resistance of cables and connectors |
Rs,PVc | series resistance of a PV cell |
series resistance of a PV module | |
Rsh,PVc | shunt resistance of a PV cell |
Rs,iso,PVm | series insulation resistance of a PV module |
Rsw,on | resistance in series with ideal switch |
Rsw,sh(Csw,sh) | resistance (capacitance) connected in parallel to the with ideal switch |
Rsw,.gnd(Csw,gnd) | shunt resistance (stray shunt capacitance) between the aluminum radiator of IGBT module and the ground |
SC | short-circuit |
C shape equivalent section of a PV metallic frame | |
time | |
Heaviside step function | |
velocity of propagation of return stroke current | |
voltage bias of a PV cell | |
common mode voltage at the terminals of the DC/DC converter | |
differential mode voltage at the terminals of the DC/DC converter | |
Ve.mod | effective module voltage due to frame effect |
equivalent voltage source simulating the coupling of the LC with the conducting frame (frame voltage) | |
input voltage of the DC/DC converter | |
equivalent voltage source simulating the coupling of the LC with the module inner electrical circuitry (module voltage) | |
voltage of negative (positive) output terminal to ground | |
PV output voltage | |
switch voltage | |
angular frequency | |
height of an infinitesimal current dipole | |
ground path impedance | |
dynamic impedance of the PV module in dark conditions | |
current ripple of the DC/DC converter | |
voltage ripple of the DC/DC converter | |
Δϕ | average absolute value of the angle between adjacent segments |
η | correction factor |
vacuum permeability | |
ρ | material resistivity |
τ1 | rise time |
τ2 | decay time |
φ | azimuth of a generic observation point P |
Γ | equivalent line for the cell interconnections |
References
- Formisano, A.; Petrarca, C.; Hernández, J.C.; Muñoz-Rodríguez, F.J. Assessment of induced voltages in common and differential-mode for a PV module due to nearby lightning strikes. IET Renew. Power Gener. 2019, 13, 1369–1378. [Google Scholar] [CrossRef]
- Hernández, J.C.; Gómez-Vidal, P.; Jurado, F. Lightning and Surge Protection in Photovoltaic Installations. IEEE Trans. Power Deliv. 2008, 23, 1961–1971. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.C.; Du, Y. Lightning protection design of solar photovoltaic systems: Methodology and guidelines. Electr. Power Syst. Res. 2019, 174, 105877. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.C.; Du, Y. Considerations of Photovoltaic System Structure Design for Effective Lightning Protection. IEEE Trans. Electromagn. Compat. 2020, 62, 1333–1341. [Google Scholar] [CrossRef]
- Uman, M.A. All about Lightning; Dover: Toronto, ON, Canada, 1986; pp. 1–158. [Google Scholar]
- Belik, M. PV panels under lightning conditions. In Proceedings of the 2014 15th International Scientific Conference on Electric Power Engineering (EPE), Brno, Czech Republic, 12–14 May 2014; pp. 367–370. [Google Scholar]
- Jiang, T.; Grzybowski, S. Electrical degradation of Photovoltaic modules caused by lightning induced voltage. In Proceedings of the 2014 IEEE Electrical Insulation Conference (EIC), Philadelphia, PA, USA, 8–11 June 2014; pp. 107–110. [Google Scholar]
- Kokkinos, N.; Christofides, N.; Charalambous, C.A. Lightning protection practice for large-extended photovoltaic installations. In Proceedings of the 2012 International Conference on Lightning Protection (ICLP), Vienna, Australia, 2–7 September 2012; pp. 1–5. [Google Scholar]
- NEDO. Analysis and Evaluation of Lightning Damage Condition and Damage Decrease Countermeasure Technique of Lightning Damage for PV Systems; NEDO: Tokyo, Japan, 2009. [Google Scholar]
- Lightning Protection of Low-Voltage Networks; CIGRE WG C4.408; CIGRE Technical Brochure: Paris, France, 2013.
- Yang, H.; Liu, X. Design of PV charge and discharge controller in insulator monitoring system. In Proceedings of the 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), Dengleng, China, 8–10 August 2011; pp. 2039–2042. [Google Scholar]
- Ahmad, N.; Ab-Kadir, M.; Izadi, M.; Azis, N.; Radzi, M.; Zaini, N.; Nasir, M. Lightning protection on photovoltaic systems: A review on current and recommended practices. Renew. Sustain. Energy Rev. 2018, 82, 1611–1619. [Google Scholar] [CrossRef]
- Hernández, Y.M.; Ioannidis, D.; Ferlas, G.; Giannelaki, E.; Tsovilis, T.E.; Politis, Z.; Samaras, K. An experimental approach of the transient effects of lightning currents on the overvoltage protection system in MW-class photovoltaic plants. In Proceedings of the 2014 International Conference on Lightning Protection (ICLP), Shanghai, China, 11–18 October 2014; pp. 1972–1977. [Google Scholar]
- Yamamoto, K.; Takami, J.; Okabe, N. Overvoltages on DC Side of Power Conditioning System Caused by Lightning Stroke to Structure Anchoring Photovoltaic Panels. Electr. Eng. Jpn. 2014, 187, 29–41. [Google Scholar] [CrossRef]
- Higo, T.; Matsuda, K.; Nagaoka, N. Transient electromagnetic induction into a PV panel. In Proceedings of the 2014 49th International Universities Power Engineering Conference (UPEC), Cluj-Napoca, Romania, 2–5 September 2014; pp. 1–5. [Google Scholar]
- Stern, H.-J.; Karner, H.C. Lightning induced EMC phenomena in photovoltaic modules. In Proceedings of the 1993 International Symposium on Electromagnetic Compatibility, Dallas, TX, USA, 9–13 August 1993; pp. 442–446. [Google Scholar]
- Sakai, K.; Yamamoto, K. Lightning protection of photovoltaic power generation system: Influence of grounding systems on overvoltages appearing on DC wirings. In Proceedings of the 2013 International Symposium on Lightning Protection (XII SIPDA), Belo Horizonte, Brazil, 7–11 October 2013; pp. 335–339. [Google Scholar]
- Charalambous, C.A.; Kokkinos, N.; Christofides, N.; Ab Kadir, M.Z.A.; Gomes, C. A simulation tool to assess the lightning induced over-voltages on dc cables of photovoltaic installations. In Proceedings of the 2014 International Conference on Lightning Protection (ICLP), Shanghai, China, 11–18 October 2014; pp. 1571–1576. [Google Scholar]
- Sekioka, S. An experimental study of sparkover between a rod and a photovoltaic panel. In Proceedings of the 2012 International Conference on Lightning Protection (ICLP), Vienna, Austria, 2–7 September 2012; pp. 1–5. [Google Scholar]
- Haberlin, H.; Minkner, R. A simple method for lightning protection of PV-systems. In Proceedings of the 2th European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, The Netherlands, 14–18 February 1994; pp. 1–4. [Google Scholar]
- Haeberlin, H. Interference voltages induced by magnetic fields of simulated lightning currents in photovoltaic modules and arrays. In Proceedings of the 17th European Photovoltaic Solar Energy Conference, Munich, Germany, 22–26 October 2001; pp. 1–4. [Google Scholar]
- Coetzer, K.M.; Wiid, P.G.; Rix, A.J. PV Installation Design Influencing the Risk of Induced Currents from Nearby Lightning Strikes. In Proceedings of the 2019 International Conference on Clean Electrical Power (ICCEP), Otranto, Italy, 2–4 July 2019; pp. 204–213. [Google Scholar]
- Mendez, Y.; Acosta, I.; Rodriguez, J.C.; Ramirez, J.; Bermudez, J.; Martinez, M. Effects of the PV-generator’s terminals connection to ground on electromagnetic transients caused by lightning in utility scale PV-plants. In Proceedings of the 2016 33rd International Conference on Lightning Protection (ICLP), Estoril, Portugal, 25–30 September 2016; pp. 1–8. [Google Scholar]
- Zhang, C.; Tu, Y.; Hu, J.; Sun, W.; Li, H.J.; Wang, S. Study of induced overvoltage on solar arrays. In Proceedings of the 2011 7th Asia-Pacific International Conference on Lightning, Chengdu, China, 1–4 November 2011; pp. 852–857. [Google Scholar]
- Tu, Y.; Zhang, C.; Hu, J.; Wang, S.; Sun, W.; Li, H. Research on lightning overvoltages of solar arrays in a rooftop photovoltaic power system. Electr. Power Syst. Res. 2013, 94, 10–15. [Google Scholar] [CrossRef]
- Yonezawa, K.; Mochizuki, S.; Takahashi, Y.; Idogawa, T.; Morii, N.; Yonezawa, K. Evaluation of SPDs for a PV system using the FDTD method taking concrete foundations into consideration. In Proceedings of the 2014 International Conference on Lightning Protection (ICLP), Shanghai, China, 11–18 October 2014; pp. 1091–1094. [Google Scholar]
- Karim, M.R.; Ahmed, R. Analysis of Electromagnetic Induction due to Lightning on a Large-Scale Solar Power Generation. In Proceedings of the 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’sBazar, Bangladesh, 7–9 February 2019; pp. 1–5. [Google Scholar]
- Hossain, A.; Ahmed, R. Analysis of indirect lightning phenomena on solar power system. J. Electr. Eng. 2014, 21, 127–133. [Google Scholar] [CrossRef]
- Benesova, Z.; Haller, R.; Birkl, J.; Zahlmann, P. Overvoltages in photovoltaic systems induced by lightning strikes. In Proceedings of the 2012 International Conference on Lightning Protection (ICLP), Vienna, Austria, 2–7 September 2012; pp. 1–6. [Google Scholar]
- Dechthummarong, C.; Thepa, S.; Chenvidhya, D.; Jivacate, C.; Kirtikara, K.; Thongpron, J. Lightning impulse test of field-aged PV modules and simulation partial discharge within MATLAB. In Proceedings of the 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Phetchaburi, Thailand, 16–18 May 2012; pp. 1–4. [Google Scholar]
- Jiang, T.; Grzybowski, S. Impact of lightning impulse voltage on polycrystalline silicon photovoltaic modules. In Proceedings of the 2013 International Symposium on Lightning Protection (XII SIPDA), Belo Horizonte, Brazil, 7–11 October 2013; pp. 287–290. [Google Scholar]
- Ahmad, N.I.; Ab-Kadir, M.Z.A.; Izadi, M.; Zaini, N.H.; Radzi, M.A.M.; Azis, N.; Hasan, W.Z.W. On the performance of a polycrystalline PV panel under different impulse voltages and temperatures. In Proceedings of the 2016 33rd International Conference on Lightning Protection (ICLP), Estoril, Portugal, 25–30 September 2016; pp. 1–6. [Google Scholar]
- Naxakis, I.; Christodoulou, C.; Perraki, V.; Pyrgioti, E. Degradation effects on single crystalline silicon photovoltaic modules subjected to high impulse-voltages. IET Sci. Meas. Technol. 2017, 11, 563–570. [Google Scholar] [CrossRef]
- Naxakis, I.; Pyrgioti, E.; Perraki, V.; Tselepis, E. Studying the effect of the impulse voltage application on sc-Si PV modules. Sol. Energy 2017, 144, 721–728. [Google Scholar] [CrossRef]
- Charalambous, C.A.; Kokkinos, N.D.; Christofides, N. External Lightning Protection and Grounding in Large-Scale Photovoltaic Applications. IEEE Trans. Electromagn. Compat. 2013, 56, 427–434. [Google Scholar] [CrossRef]
- Hernández, J.C.; Gómez-Vidal, P.; Medina, A. Characterization of the insulation and leakage currents of PV generators: Relevance for human safety. Renew. Energy 2010, 35, 593–601. [Google Scholar] [CrossRef]
- Dechthummarong, C.; Chenvidhya, D.; Jivacate, C.; Kirtikara, K. Experiment and simulation impulse partial discharge behavior in dielectric encapsulations of field-aged PV modules. In Proceedings of the 2011 37th IEEE Photovoltaic Specialists Conference, Experiment and Simulation Impulse Partial Discharge Behavior in Dielectric Encapsulations of Field-Aged PV Modules, Seattle, WA, USA, 19–24 June 2011; pp. 003109–003112. [Google Scholar]
- Deshmukh, M.; Kumar, R.A.; Nagaraju, J. Measurement of solar cell ac parameters using the time domain technique. Rev. Sci. Instrum. 2004, 75, 2732–2735. [Google Scholar] [CrossRef]
- Limsakul, C.; Chenvidhya, D.; Kirtikara, K. PV impedance characterization using square wave method and frequency response analyser. In Proceedings of the 31st Photovoltaic Science and Engineer Conference and Solar Energy Exhibition, Hamburg, Germany, 14–18 September 2015; pp. 3109–3112. [Google Scholar]
- Kumar, R.; Suresh, M.; Nagaraju, J. Silicon (BSFR) solar cell AC parameters at different temperatures. Sol. Energy Mater. Sol. Cells 2005, 85, 397–406. [Google Scholar] [CrossRef]
- Kumar, S.; Sareen, V.; Batra, N.; Singh, P.K. Study of C–V characteristics in thin n+-p-p+ silicon solar cell sandinduced junction n-p-p+ cell structures. Sol. Energy Mater. Sol. Cells 2010, 94, 1469–1472. [Google Scholar] [CrossRef]
- Kim, K.A.; Krein, P.T.; Seo, G.-S.; Cho, B.-H. Photovoltaic AC parameter characterization for dynamic partial shading and hot spot detection. In Proceedings of the 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 17–21 March 2013; pp. 109–115. [Google Scholar]
- Chenvidhya, D.; Kirtikara, K.; Jivacate, C. PV module dynamic impedance and its voltage and frequency dependencies. Sol. Energy Mater. Sol. Cells 2005, 86, 243–251. [Google Scholar] [CrossRef]
- Pongklang, T.; Chenvidhya, D.; Kirtikara, K.; Chuangchote, S.; Silsirivanich, N. Voltage and Frequency Dependent Impedances of Dye-sensitized Solar Cell. Energy Procedia 2014, 52, 536–540. [Google Scholar] [CrossRef] [Green Version]
- Chayavanich, T.; Limsakul, C.; Chayavanich, N.; Chenvidhya, D.; Jivacate, C.; Kirtikara, K. Describing dynamic behavior of static iv characteristics of pv modules using dynamic impedance. In Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, 4–8 September 2006; pp. 1–2. [Google Scholar]
- Poon, J.; Jain, P.; Spanos, C.; Panda, S.K.; Sanders, S.R. Photovoltaic condition monitoring using real-time adaptive parameter identification. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 1119–1124. [Google Scholar]
- Kareem, M.S.A.; Saravanan, M. A new method for accurate estimation of PV module parameters and extraction of maximum power point under varying environmental conditions. Turk. J. Electr. Eng. Comput. Sci. 2016, 24, 2028–2041. [Google Scholar] [CrossRef]
- Omicron-Lab. Available online: https://www.omicron-lab.com (accessed on 4 December 2020).
- Chayavanich, T.; Limsakul, C.; Chayavanich, N.; Chenvidhya, D.; Jivacate, C.; Kirtikara, K. Voltage and frequency dependent model for PV module dynamic impedance. In Proceedings of the 17th International Photovoltaic Science & Engineering Conference, Fukuoka, Japan, 3–7 December 2007; pp. 1–4. [Google Scholar]
- Panigrahi, J.; Vandana; Singh, R.; Batra, N.; Gope, J.; Sharma, M.; Pathi, P.; Srivastava, S.; Rauthan, C.; Singh, P. Impedance spectroscopy of crystalline silicon solar cell: Observation of negative capacitance. Sol. Energy 2016, 136, 412–420. [Google Scholar] [CrossRef]
- Bharadwaj, P.; Kulkarni, A.; John, V. Impedance estimation of photovoltaic modules for inverter start-up analysis. Sadhana 2017, 42, 1377–1387. [Google Scholar] [CrossRef]
- Eshappa, T.; Ranjan, R.; Ghatpande, N.D. Modeling of solar array and analyze the current transient response of shunt switch voltage regulator in spacecraft power conditioning unit. J. Adv. Comput. Commun. Technol. 2015, 3, 33–39. [Google Scholar]
- Matsuda, K.; Nagaoka, N.; Higo, T.; Namba, A. A simple lumped-equivalent circuit of a photovoltaic panel for transient simulations. In Proceedings of the 2014 49th International Universities Power Engineering Conference (UPEC), Cluj-Napoca, Romania, 2–5 September 2014; pp. 1–5. [Google Scholar]
- Nariman, M. Diagnosis of Photovoltaic Modules using Alternate Methods of Measurement. Bachelor’s Thesis, Czech Technical University in Prague, Prague, Czech Republic, 2017. [Google Scholar]
- Chenvidhya, D.; Kirtikara, K.; Jivacate, C. A new characterization method for solar cell dynamic impedance. Sol. Energy Mater. Sol. Cells 2003, 80, 459–464. [Google Scholar] [CrossRef]
- Kumar, R.; Suresh, M.; Nagaraju, J. GaAs/Ge solar cell AC parameters at different temperatures. Sol. Energy Mater. Sol. Cells 2003, 77, 145–153. [Google Scholar] [CrossRef]
- Chenvidhya, D.; Kirtikara, K.; Jivacate, C. Dynamic impedance characterization of solar cells and PV modules based on frequency and time domain analysis. In Trends in Solar Energy Research; Nova Science Publishers, Inc.: New York, NY, USA, 2006; pp. 21–45. [Google Scholar]
- Kumar, R.A.; Suresh, M.S.; Nagaraju, J. Facility to measure solar cell ac parameters using an impedance spectroscopy technique. Rev. Sci. Instrum. 2001, 72, 3422–3426. [Google Scholar] [CrossRef]
- Cotfas, P.A.; Cotfas, D.T.; Borza, P.N.; Sera, D.; Teodorescu, R. Solar Cell Capacitance Determination Based on an RLC Resonant Circuit. Energies 2018, 11, 672. [Google Scholar] [CrossRef] [Green Version]
- Jha, V.; Triar, U.S. An Improved Generalized Method for Evaluation of Parameters, Modeling, and Simulation of Photovoltaic Modules. Int. J. Photoenergy 2017, 2017, 2532109. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Wang, J.; Zhang, X.; Li, F. Complete Parasitic capacitance model of photovoltaic panel considering the rain water. Chin. J. Mech. Electr. Eng. 2017, 3, 77–84. [Google Scholar]
- Sabiha, N.A.; Alsharef, M.; Metwaly, M.K.; Elattar, E.E.; Taha, I.B.; Abd-Elhady, A.M. Sustaining electrification service from photovoltaic power plants during backflow lightning overvoltages. Electr. Power Syst. Res. 2020, 186, 106386. [Google Scholar] [CrossRef]
- Di Piazza, M.C.; Viola, F.; Vitale, G. Evaluation of ground currents in a PV system with high frequency modeling. Int. J. Renew Energy Res. 2018, 8, 1770–1778. [Google Scholar]
- Petrarca, C.; Minucci, S.; Andreotti, A. On the influence of channel tortuosity on electric fields generated by lightning return strokes at close distance. Prog. Electromagn. Res. B 2017, 74, 61–75. [Google Scholar] [CrossRef] [Green Version]
- Lupo, G.; Vitelli, M.; Petrarca, C.; Tucci, V. EM fields generated by lightning channels with arbitrary location and slope. IEEE Trans. Electromagn. Compat. 2000, 42, 39–53. [Google Scholar] [CrossRef]
- Idone, V.P.; Orville, R.E. Channel tortuosity variation in Florida triggered lightning. Geophys. Res. Lett. 1988, 15, 645–648. [Google Scholar] [CrossRef]
- Protection against Lightning: General Principles; IEC Standard 62305-1; IEC: London, UK, 2010.
- Hernández, J.C.; Gómez-Vidal, P. Guidelines for Protection Against Electric Shock in PV Generators. IEEE Trans. Energy Convers. 2009, 24, 274–282. [Google Scholar] [CrossRef]
- Chiariello, A.G.; Formisano, A.; Martone, R. A high-performance computing procedure for the evaluation of 3D coils inductance. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2015, 34, 248–260. [Google Scholar] [CrossRef]
- Chen, H.C.; Du, Y. Model of ferromagnetic steels for lightning transient analysis. IET Sci. Meas. Technol. 2018, 12, 301–307. [Google Scholar] [CrossRef]
- Leban, K.; Ritchie, E. Selecting the accurate solar panel simulation model. In Proceedings of the 2008 Nordic Workshop on Power and Industrial Electronics, Espoo, Finland, 9–11 June 2008. [Google Scholar]
- Nishioka, K.; Sakitani, N.; Uraoka, Y.; Fuyuki, T. Analysis of multicrystalline silicon solar cells by modified 3-diode equivalent circuit model taking leakage current through periphery into consideration. Sol. Energy Mater. Sol. Cells 2007, 91, 1222–1227. [Google Scholar] [CrossRef]
- Pierret, R.F. Semiconductor Device Fundamentals; Addison-Wesley Publishing Company, Inc.: New York, NY, USA, 1996. [Google Scholar]
- Khamis, A.; Mohamed, A.; Shareef, H.; Ayob, A. Modeling and simulation of small scale microgrid system. Aust. J. Basic Appl. Sci. 2012, 6, 412–421. [Google Scholar]
- Manitoba, H. Battery System a Generic Example, PSCAD/EMTDC: Electromagnetic Transients Program Including DC Systems; Manitoba HVDC Research Centre: Winnipeg, MB, Canada, 1994. [Google Scholar]
- MURS320 Diode. Available online: https://www.mouser.es/datasheet/2/115/ds30197-87238.pdf (accessed on 28 December 2020).
- RF05VYM2S Diode. Available online: https://fscdn.rohm.com/en/products/databook/datasheet/discrete/diode/fast_recovery/rf05vym2sfh.pdf (accessed on 28 December 2020).
- Ibrahim, H.; Anani, N. Evaluation of Analytical Methods for Parameter Extraction of PV modules. Energy Procedia 2017, 134, 69–78. [Google Scholar] [CrossRef]
- Alqahtani, A.H. A simplified and accurate photovoltaic module parameters extraction approach using matlab. In Proceedings of the 2012 IEEE International Symposium on Industrial Electronics, Hangzhou, China, 28–31 May 2012; pp. 1748–1753. [Google Scholar]
- Insulation Coordination for Equipment within Low-Voltage Supply Systems: Principles, Requirements and Tests; IEC Standard 60664-1; IEC: London, UK, 2020.
Parameter | First Negative Short Stroke | Subsequent Negative Short Stroke |
---|---|---|
Peak current: Ipeak (kA) | 100 | 50 |
Exponent factor: n | 10 | 10 |
Correction factor: η | 0.986 | 0.993 |
Rise time: τ1 (µs) | 19 | 0.454 |
Decay time: τ2 (µs) | 485 | 143 |
Parameter | Units | Voltage Operating Conditions | |||
---|---|---|---|---|---|
Short-Circuit (SC) | Maximum Power Point (MPP) | Open-Circuit (OC) | |||
Rp,PVm | kΩ | 117.6 [42] | 35.6 [42] | 2.0 [42,46,47,60,78,79] | |
Cp,PVm | μF | 0.46 [42] | 1.36 [23,42,45,46] | 1.57 [42] | |
Parameter | Units | Value | Parameter | Units | Value |
Rs,PVm | mΩ | 807 [23,60] | Rgnd | Ω | 0.1 [62] |
Rfra | mΩ | 1.3 [1,3] | Rboost | mΩ | 1.0 [63] |
Lfra | μH | 3.0 [1,3] | Lboost | μH | 250 [63] |
Cp,iso,PVm | nF | 3.7–179.2 [23,36,62] | Cboost | μF | 200 [63] |
Rp,iso,PVm | kΩ | 0.38–14.93 [36] | Rsw,on | μΩ | 1.0 |
Rs,iso,PVm | kΩ | 0.003–2.980 [36,68] | Rsw,sh | Ω | 100 |
Ls | μH | 2.29 [3,51,52,53,62] | Csw,sh | nF | 1.0 |
Rs | mΩ | 150 [3,46] | Rsw,gnd | kΩ | 250 [62,63] |
Rpv,w (=Rdc,w) | mΩ | 50 [47,63] | Csw,gnd | pF | 0.15 [62,63] |
Lpv,w (=Ldc,w) | μH | 0.05 [47,63] | RLoad | Ω | 50 |
Lgnd | μH | 1.0 [62] | – | – | – |
Parameter | Units | Reference Value | Parameter | Units | Reference Value |
---|---|---|---|---|---|
2*Rp,iso,PVm | kΩ | 30 | Cp,PVm | μF | |
2*Rs,iso,PVm | kΩ | 6.0 | Rs,PVm | mΩ | 800 |
Cp,iso,PVm/2 | nF | 2.0 | Ls | μH | 2.3 |
Rp,PVm | kΩ | 36 | Rs | mΩ | 150 |
Parameter | Units | Voltage Operating Condition | |
---|---|---|---|
OC | SC | ||
Rp,PVm | kΩ | 2.0 | 120 |
Cp,PVm | μF | 1.6 | 0.5 |
Rs,PVm | mΩ | 800 |
Parameter | Units | Low Insulation |
---|---|---|
2*Rp,iso,PVm | kΩ | 0.8 |
2*Rs,iso,PVm | Ω | 6.0 |
Cp,iso,PVm/2 | nF | 90 |
Considered Variation | Vpv | Vsw | Vneg.gnd | Ipv | Isw | Icm | Iiso | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Peak Value (V) | Decay Time (μs) | Front Time (μs) | Half Value Time (μs) | Peak Value (V) | Peak Value (V) | Decay Time (μs) | Front Time (μs) | Half Value Time (μs) | Peak Value (A) | Decay Time (μs) | Peak Value (A) | Peak Value (A) | Peak Value (A) | |
Reference case | 1759.1 | 2.583 | 1.711 | 2.173 | 1.58 | –3116.4 | 1.830 | 1.712 | 2.175 | 5.13 | 943.6 | 5.13 | –0.013 | –0.518 |
Operating condition: OC | 1759.1 | 2.583 | 1.711 | 2.174 | 1.11 | –3116.5 | 1.830 | 1.712 | 2.175 | 5.13 | 878.2 | 5.13 | –0.013 | –0.518 |
Operating condition: SC | 1760.4 | 2.582 | 1.711 | 2.174 | 2.60 | –3117.1 | 1.830 | 1.712 | 2.175 | 5.12 | 1409.8 | 5.12 | –0.013 | –0.518 |
Steel frame | 1753.8 | 2.568 | 1.713 | 2.170 | 1.56 | –3111.0 | 1.830 | 1.713 | 2.173 | 5.07 | 941.6 | 5.07 | –0.013 | –0.517 |
Low PV insulation | 1408.5 | 2.683 | 1.718 | 2.139 | 1.54 | –2978.7 | 1.830 | 1.743 | 2.171 | 4.51 | 950.0 | 4.51 | –0.012 | –304.6 |
Considered Variation | Vpv | Vsw | Vneg.gnd | Ipv | Isw | Icm | Iiso | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Peak Value (V) | Decay Time (μs) | Front Time (μs) | Half Value Time (μs) | Peak Value (V) | Peak Value (V) | Decay Time (μs) | Front Time (μs) | Half Value Time (μs) | Peak Value (A) | Decay Time (μs) | Peak Value (A) | Peak Value (A) | Peak Value (A) | |
First short stroke (Reference case) | 1759.1 | 2.583 | 1.711 | 2.173 | 1.58 | –3116.4 | 1.830 | 1.712 | 2.175 | 5.13 | 943.6 | 5.13 | –0.013 | –0.518 |
Subsequent short stroke | 3890.1 | 7.540 | 0.386 | 0.633 | 1.27 | –6886.1 | 4.760 | 0.386 | 0.634 | 3.117 | 827.8 | 3.117 | –0.032 | –1.168 |
Considered Variation | Vpv | Vsw | Vneg.gnd | Ipv | Isw | Icm | Iiso | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Peak Value (V) | Decay Time (μs) | Front Time (μs) | Half Value Time (μs) | Peak Value (V) | Peak Value (V) | Decay Time (μs) | Front Time (μs) | Half Value Time (μs) | Peak Value (A) | Decay Time (μs) | Peak Value (A) | Peak Value (A) | Peak Value (A) | ||
Reference case | 1759.1 | 2.583 | 1.711 | 2.173 | 1.58 | –3116.4 | 1.830 | 1.712 | 2.175 | 5.13 | 943.6 | 5.13 | –0.013 | –0.518 | |
Tortuosity cases | Expected value | 2165.2 | 2.219 | 1.627 | 2.231 | 1.747 | –3811.4 | 1.825 | 1.630 | 2.229 | 6.319 | 808.6 | 6.319 | –0.015 | –0.634 |
Standard variation | 196.8 | 0.978 | 0.003 | 0.003 | 0.082 | 332.8 | 0.002 | 0.004 | 0.003 | 0.582 | 356.5 | 0.582 | 0.001 | 0.055 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Formisano, A.; Hernández, J.C.; Petrarca, C.; Sanchez-Sutil, F. Modeling of PV Module and DC/DC Converter Assembly for the Analysis of Induced Transient Response Due to Nearby Lightning Strike. Electronics 2021, 10, 120. https://doi.org/10.3390/electronics10020120
Formisano A, Hernández JC, Petrarca C, Sanchez-Sutil F. Modeling of PV Module and DC/DC Converter Assembly for the Analysis of Induced Transient Response Due to Nearby Lightning Strike. Electronics. 2021; 10(2):120. https://doi.org/10.3390/electronics10020120
Chicago/Turabian StyleFormisano, Alessandro, Jesus C. Hernández, Carlo Petrarca, and Francisco Sanchez-Sutil. 2021. "Modeling of PV Module and DC/DC Converter Assembly for the Analysis of Induced Transient Response Due to Nearby Lightning Strike" Electronics 10, no. 2: 120. https://doi.org/10.3390/electronics10020120
APA StyleFormisano, A., Hernández, J. C., Petrarca, C., & Sanchez-Sutil, F. (2021). Modeling of PV Module and DC/DC Converter Assembly for the Analysis of Induced Transient Response Due to Nearby Lightning Strike. Electronics, 10(2), 120. https://doi.org/10.3390/electronics10020120