Hybrid High-Order and Fractional-Order Total Variation with Nonlocal Regularization for Compressive Sensing Image Reconstruction
Abstract
:1. Introduction
2. The Proposed Algorithm Model
2.1. Regularization Model
2.1.1. Fractional-Order Total Variation Model
2.1.2. High-Order Total Variation Model
2.1.3. Nonlocal Mean Regularization Model
2.2. The Proposed Algorithm Model
2.2.1. w and v Subproblems
2.2.2. u Subproblems
2.2.3. z Subproblems
Algorithm 1 HoFrTv algorithm. |
Input: The observed measurement , the measurement matrix Φ and Initialization: , , While Outer iteration unsatisfied do While Inner iteration unsatisfied do Solve w subproblem via Equation (17) Solve v subproblem via Equation (19) Solve u subproblem via Equation (21) Compute the weight wij via Equation (11) |
Solve z subproblem via Equation (26) |
end while |
Update multipliers via Equation (27) |
end while |
Output: the reconstructed image |
3. Experimental Results and Discussion
3.1. Parameter Selection
3.1.1. The Influence of High-Order
3.1.2. The Influence of Fractional-Order
3.1.3. The Influence of Non-Local Mean Regularization Kernel Window and Search Window
3.2. Parameter Verification
3.2.1. Verify Fractional Order Existence Performance
3.2.2. Verify High-Order Existence Performance
3.3. Comparison to Other Reconstruction Algorithms
3.4. Computational Complexity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Image | Algorithms | Measurement Rates | ||||
---|---|---|---|---|---|---|
0.1 | 0.15 | 0.2 | 0.25 | 0.3 | ||
Woman | TV-NLR | 28.406/0.804 | 29.886/0.847 | 31.261/0.877 | 32.540/0.901 | 33.325/0.917 |
MH-BCS | 28.610/0.825 | 30.779/0.813 | 31.624/0.890 | 33.175/0.911 | 34.141/0.921 | |
BCS-TV | 27.982/0.781 | 29.581/0.829 | 30.766/0.858 | 31.914/0.882 | 32.74/0.901 | |
BCS-SPL | 27.560/0.774 | 28.869/0.814 | 30.117/0.843 | 31.202/0.864 | 32.201/0.880 | |
TVAL3 | 27.259/0.781 | 29.539/0.835 | 30.786/0.863 | 31.880/0.887 | 32.941/0.904 | |
HoFrTV | 29.099/0.832 | 31.130/0.878 | 32.241/0.901 | 33.342/0.916 | 34.555/0.931 | |
Candy | TV-NLR | 28.645/0.905 | 30.659/0.933 | 32.859/0.954 | 34.560/0.966 | 36.488/0.976 |
MH-BCS | 28.656/0.891 | 31.161/0.925 | 32.643/0.940 | 34.158/0.954 | 35.229/0.962 | |
BCS-TV | 27.458/0.881 | 29.729/0.919 | 31.659/0.943 | 33.465/0.959 | 35.209/0.969 | |
BCS-SPL | 26.467/0.842 | 28.283/0.877 | 30.261/0.901 | 31.242/0.919 | 32.352/0.932 | |
TVAL3 | 26.238/0.854 | 29.598/0.917 | 31.184/0.938 | 32.907/0.955 | 34.333/0.966 | |
HoFrTV | 30.266/0.929 | 32.671/0.953 | 34.671/0.968 | 36.288/0.975 | 37.970/0.982 | |
Bell | TV-NLR | 25.070/0.846 | 26.858/0.883 | 28.615/0.912 | 29.682/0.927 | 31.401/0.943 |
MH-BCS | 25.262/0.826 | 26.275/0.864 | 28.666/0.898 | 29.861/0.916 | 30.838/0.928 | |
BCS-TV | 23.937/0.795 | 25.619/0.847 | 27.044/0.883 | 28.276/0.905 | 29.621/0.923 | |
BCS-SPL | 23.755/0.774 | 24.928/0.805 | 26.493/0.841 | 27.402/0.851 | 27.750/0.879 | |
TVAL3 | 23.469/0.775 | 25.899/0.861 | 27.538/0.895 | 28.915/0.914 | 30.194/0.929 | |
HoFrTV | 25.758/0.860 | 27.827/0.897 | 29.381/0.920 | 30.862/0.935 | 32.229/0.948 | |
Couple | TV-NLR | 25.424/0.676 | 27.417/0.759 | 28.298/0.798 | 28.994/0.827 | 30.216/0.861 |
MH-BCS | 24.961/0.667 | 26.805/0.749 | 28.089/0.795 | 28.890/0.823 | 30.146/0.855 | |
BCS-TV | 24.376/0.625 | 26.153/0.702 | 27.394/0.756 | 28.537/0.798 | 29.592/0.834 | |
BCS-SPL | 23.773/0.580 | 24.933/0.632 | 25.827/0.673 | 26.57/0.7063 | 27.286/0.736 | |
TVAL3 | 23.426/0.615 | 26.081/0.719 | 27.745/0.774 | 28.911/0.816 | 30.117/0.848 | |
HoFrTV | 25.765/0.695 | 27.589/0.774 | 29.323/0.828 | 30.553/0.864 | 31.728/0.891 | |
Man | TV-NLR | 23.469/0.632 | 24.775/0.707 | 25.972/0.754 | 26.810/0.790 | 27.875/0.828 |
MH-BCS | 23.328/0.624 | 24.856/0.701 | 25.920/0.748 | 26.860/0.784 | 27.564/0.808 | |
BCS-TV | 22.902/0.596 | 24.483/0.681 | 25.593/0.737 | 26.628/0.779 | 27.543/0.816 | |
BCS-SPL | 21.889/0.505 | 22.955/0.562 | 23.815/0.611 | 24.587/0.651 | 25.260/0.687 | |
TVAL3 | 22.327/0.567 | 23.211/0.619 | 24.35/0.678 | 25.206/0.720 | 27.504/0.811 | |
HoFrTV | 23.754/0.660 | 25.4822/0.741 | 26.719/0.793 | 27.761/0.826 | 28.748/0.855 |
References
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candès, E.J.; Wakin, M.B.; Wakin, M.B. An introduction to compressive sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Duarte, M.F.; Davenport, M.A.; Takhar, D.; Laska, J.N.; Sun, T.; Kelly, K.F.; Baraniuk, R.G. Single-Pixel Imaging via Compressive Sampling. IEEE Signal Process. Mag. 2008, 25, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Alonso, M.T.; Dekker, P.L.; Mallorqui, J.J. A Novel Strategy for Radar Imaging Based on Compressive Sensing. IEEE Trans. Geoence Remote Sens. 2011, 48, 4285–4295. [Google Scholar] [CrossRef] [Green Version]
- Lustig, M.; Donoho, D.L.; Santos, J.M.; Pauly, J.M. Compressed sensing MRI. IEEE Signal Process. Mag. 2008, 25, 72–82. [Google Scholar] [CrossRef]
- Candès, E.J. The restricted isometry property and its implications for compressed sensing. C. R.-Math. 2008, 346, 589–592. [Google Scholar] [CrossRef]
- Mutgekar, M.B.; Bhaskar, P.C. Analysis of DCT and FAST DCT using soft core processor. In Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 23–25 April 2019; pp. 1128–1132. [Google Scholar] [CrossRef]
- Rousset, F.; Ducros, N.; Farina, A.; Valentini, G.; D’Andrea, C.; Peyrin, F. Adaptive Basis Scan by Wavelet Prediction for Single-Pixel Imaging. IEEE Trans. Comput. Imaging 2017, 3, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Beck, A.; Teboulle, M. Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems. IEEE Trans. Image Process. 2009, 18, 2419–2434. [Google Scholar] [CrossRef] [Green Version]
- Iordache, M.-D.; Bioucas-Dias, J.M.; Plaza, A. Variation Spatial Regularization for Sparse Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4484–4502. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Yin, W.; Jiang, H.; Zhang, Y. An efficient augmented lagrangian method with applications to total variation minimization. Comput. Optim. Appl. 2013, 56, 507–530. [Google Scholar] [CrossRef] [Green Version]
- Candès, E.J.; Wakin, M.B.; Boyd, S.P. Enhancing Sparsity by Reweighted L1 Minimization. J. Fourier Anal. Appl. 2007, 14, 877–905. [Google Scholar] [CrossRef]
- Xu, J.; Ma, J.; Zhang, D.; Zhang, Y.; Lin, S. Improved total variation minimization method for compressive sensing by intra-prediction. Signal Process. 2012, 92, 2614–2623. [Google Scholar] [CrossRef]
- Bredies, K.; Kunisch, K.; Pock, T. Total Generalized Variation. Siam J. Imaging Sci. 2010, 3, 492–526. [Google Scholar] [CrossRef]
- Florian, K.; Bredies, K.; Pock, T.; Stollberger, R. Second order total generalized variation (TGV) for MRI. Magn. Resonance Med. 2010, 65, 480–491. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, Y.; Yin, W. A Fast Alternating Direction Method for TVL1-L2 Signal Reconstruction From Partial Fourier Data. IEEE J. Sel. Top. Signal Process. 2010, 4, 288–297. [Google Scholar] [CrossRef]
- Guo, W.; Qin, J.; Yin, W. A New Detail-Preserving Regularization Scheme. Siam J. Imaging Sci. 2014, 7, 1309–1334. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Xiong, R.; Ma, S.; Zhao, D. Improved total variation based image compressive sensing recovery by nonlocal regularization. In Proceedings of the 2013 IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 19–23 May 2013; pp. 2836–2839. [Google Scholar] [CrossRef]
- Jun, Z.; Zhihui, W. A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising. Appl. Math. Model. 2011, 35, 2516–2528. [Google Scholar] [CrossRef]
- Tian, D.; Xue, D.Y.; Wang, D.H. A fractional-order adaptive regularization primal-dual algorithm for image denoising. Inf. Sci. 2015, 296, 147–159. [Google Scholar] [CrossRef]
- Chen, H.; Qin, Y.; Ren, H.; Chang, L.; Hu, Y.; Zheng, H. Adaptive Weighted High Frequency Iterative Algorithm for Fractional-Order Total Variation with Nonlocal Regularization for Image Reconstruction. Electronics 2020, 9, 1103. [Google Scholar] [CrossRef]
- Adam, T.; Paramesran, R. Image denoising using combined higher order non-convex total variation with overlapping group sparsity. Multidimens. Syst. Signal Process. 2019, 30, 503–527. [Google Scholar] [CrossRef]
- Liu, P. Hybrid higher-order total variation model for multiplicative noise removal. IET Image Process. 2020, 14, 862–873. [Google Scholar] [CrossRef]
- Mei, J.J.; Huang, T.Z. Primal-dual splitting method for high-order model with application to image restoration. Appl. Math. Model. 2015, S0307904X15006022. [Google Scholar] [CrossRef]
- Tang, L.; Ren, Y.; Fang, Z.; He, C. A generalized hybrid nonconvex variational regularization model for staircase reduction in image restoration. Neurocomputing 2019, 359, 15–31. [Google Scholar] [CrossRef]
- Yang, J.-H.; Zhao, X.-L.; Ma, T.-H.; Chen, Y.; Huang, T.-Z.; Ding, M. Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization. J. Comput. Appl. Math. 2020, 363, 124–144. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, K. Variational image registration by a total fractional-order variation model. J. Comput. Phys. 2015, 293, 442–461. [Google Scholar] [CrossRef] [Green Version]
- Li, C. An Efficient Algorithm for Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing. Master’s Thesis, Rice University, Houston, TX, USA, 2010. Available online: https://hdl.handle.net/1911/62229 (accessed on 1 September 2009).
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Mun, S.; Fowler, J.E. Block Compressed Sensing of Images Using Directional Transforms. In Proceedings of the 2010 Data Compression Conference, Snowbird, UT, USA, 24–28 March 2010; p. 547. [Google Scholar] [CrossRef]
- Chen, C.; Tramel, E.W.; Fowler, J.E. Compressed-sensing recovery of images and video using multihypothesis predictions. In Proceedings of the 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, USA, 6–9 November 2011; pp. 1193–1198. [Google Scholar] [CrossRef]
Measurement Rates | |||||
---|---|---|---|---|---|
0.1 | 0.15 | 0.2 | 0.25 | 0.3 | |
0.1 | 26.539/0.801 | 28.398/0.845 | 29.526/0.875 | 30.699/0.895 | 31.733/0.916 |
0.2 | 26.721/0.807 | 28.411/0.846 | 29.545/0.877 | 30.799/0.897 | 31.797/0.916 |
0.3 | 26.790/0.809 | 28.485/0.853 | 29.696/0.879 | 30.905/0.900 | 31.896/0.918 |
0.4 | 26.949/0.814 | 28.537/0.853 | 29.706/0.880 | 30.957/0.903 | 32.023/0.920 |
0.5 | 26.984/0.815 | 28.681/0.854 | 29.805/0.882 | 31.059/0.905 | 32.140/0.922 |
0.6 | 27.320/0.824 | 28.763/0.860 | 29.947/0.886 | 31.158/0.907 | 32.235/0.924 |
0.7 | 27.235/0.823 | 28.891/0.856 | 30.030/0.888 | 31.277/0.910 | 32.401/0.927 |
0.8 | 26.670/0.803 | 28.911/0.861 | 30.130/0.895 | 31.312/0.912 | 32.503/0.929 |
0.9 | 26.671/0.813 | 28.677/0.860 | 30.059/0.893 | 30.953/0.901 | 32.583/0.930 |
α | Measurement Rates | ||||
---|---|---|---|---|---|
0.1 | 0.15 | 0.2 | 0.25 | 0.3 | |
0.5 | 20.427/0.580 | 22.578/0.651 | 26.361/0.718 | 25.553/0.758 | 26.919/0.801 |
0.7 | 24.061/0.720 | 25.876/0.773 | 27.534/0.822 | 28.800/0.854 | 29.841/0.879 |
0.9 | 26.065/0.782 | 27.729/0.828 | 28.988/0.860 | 30.252/0.888 | 31.362/0.908 |
1 | 26.483/0.794 | 28.187/0.839 | 29.379/0.869 | 30.567/0.894 | 31.595/0.912 |
1.1 | 26.823/0.803 | 28.305/0.842 | 29.631/0.874 | 30.727/0.897 | 31.775/0.914 |
1.3 | 27.021/0.810 | 28.506/0.847 | 29.833/0.879 | 30.848/0.900 | 31.865/0.917 |
1.5 | 26.996/0.810 | 28.604/0.852 | 30.092/0.887 | 31.024/0.903 | 32.071/0.922 |
1.7 | 26.956/0.809 | 28.591/0.853 | 30.125/0.889 | 31.093/0.906 | 32.074/0.924 |
1.9 | 26.858/0.806 | 28.561/0.854 | 30.119/0.889 | 31.191/0.908 | 32.252/0.925 |
2.0 | 26.700/0.801 | 28.526/0.852 | 30.108/0.889 | 31.250/0.908 | 32.282/0.926 |
Rates | PSNR (dB)/SSIM and Time (s) | |||||||
---|---|---|---|---|---|---|---|---|
k:s = 1:3 | k:s = 3:7 | k:s = 5:11 | k:s = 7:15 | |||||
0.1 | 26.448/0.793 | 198 | 27.460/0.828 | 289 | 27.463/0.828 | 901 | 27.510/0.832 | 3715 |
0.15 | 28.553/0.854 | 116 | 29.108/0.870 | 440 | 29.214/0.870 | 831 | 29.161/0.872 | 3996 |
0.2 | 30.097/0.888 | 93 | 30.379/0.896 | 366 | 30.525/0.896 | 1327 | 30.837/0.902 | 2439 |
0.25 | 31.183/0.908 | 120 | 31.612/0.916 | 311 | 32.158/0.916 | 1039 | 32.034/0.921 | 3639 |
0.3 | 32.208/0.925 | 99 | 32.821/0.933 | 208 | 32.958/0.933 | 1181 | 32.869/0.933 | 3610 |
ε | Measurement Rates | ||||
---|---|---|---|---|---|
0.1 | 0.15 | 0.2 | 0.25 | 0.3 | |
0.1 | 27.016/0.811 | 28.731/0.856 | 30.155/0.890 | 31.209/0.910 | 32.204/0.925 |
0.2 | 27.097/0.814 | 28.795/0.858 | 30.190/0.891 | 31.286/0.911 | 32.241/0.925 |
0.3 | 27.186/0.817 | 28.852/0.859 | 30.238/0.892 | 31.348/0.912 | 32.292/0.926 |
0.4 | 27.283/0.820 | 28.939/0.862 | 30.291/0.893 | 31.422/0.913 | 32.365/0.927 |
0.5 | 27.407/0.824 | 29.056/0.864 | 30.358/0.895 | 31.469/0.914 | 32.450/0.928 |
0.6 | 27.497/0.827 | 29.159/0.867 | 30.396/0.896 | 31.581/0.916 | 32.525/0.929 |
0.7 | 27.600/0.831 | 29.222/0.869 | 30.400/0.897 | 31.610/0.917 | 32.636/0.931 |
0.8 | 27.405/0.828 | 29.139/0.867 | 30.347/0.894 | 31.731/0.919 | 32.714/0.932 |
0.9 | 26.883/0.810 | 28.967/0.864 | 30.156/0.892 | 31.499/0.913 | 32.713/0.932 |
α | Measurement Rates | ||||
---|---|---|---|---|---|
0.1 | 0.15 | 0.2 | 0.25 | 0.3 | |
0.5 | 21.541/0.626 | 26.831/0.810 | 28.642/0.856 | 29.952/0.885 | 31.306/0.909 |
0.7 | 25.537/0.762 | 28.106/0.841 | 29.492/0.872 | 30.613/0.895 | 31.920/0.917 |
0.9 | 26.482/0.791 | 28.523/0.854 | 30.015/0.885 | 31.189/0.908 | 32.437/0.926 |
1 | 26.745/0.800 | 28.611/0.853 | 30.113/0.886 | 31.337/0.909 | 32.524/0.927 |
1.1 | 27.086/0.814 | 28.725/0.857 | 30.195/0.887 | 31.367/0.91 | 32.553/0.928 |
1.3 | 27.495/0.826 | 28.996/0.866 | 30.328/0.892 | 31.450/0.912 | 32.556/0.928 |
1.5 | 27.552/0.829 | 28.946/0.865 | 30.319/0.894 | 31.445/0.912 | 32.611/0.929 |
1.7 | 27.493/0.829 | 28.977/0.866 | 30.347/0.894 | 31.489/0.916 | 32.714/0.932 |
1.9 | 27.190/0.822 | 29.053/0.868 | 30.357/0.895 | 31.617/0.918 | 32.769/0.932 |
2.0 | 26.975/0.820 | 28.947/0.867 | 30.500/0.899 | 31.787/0.920 | 32.852/0.933 |
Image | Algorithms | Measurement Rates | ||||
---|---|---|---|---|---|---|
0.1 | 0.15 | 0.2 | 0.25 | 0.3 | ||
barbara | TV-NLR | 24.926/0.723 | 26.458/0.781 | 27.236/0.807 | 27.970/0.832 | 29.113/0.859 |
MH-BCS | 25.605/0.740 | 27.162/0.798 | 28.103/0.815 | 29.126/0.853 | 30.015/0.853 | |
BCS-TV | 24.215/0.681 | 25.560/0.738 | 26.585/0.778 | 27.421/0.807 | 28.167/0.830 | |
BCS-SPL | 23.619/0.640 | 25.067/0.697 | 26.209/0.739 | 27.105/0.770 | 27.807/0.793 | |
TVAL3 | 23.563/0.664 | 25.814/0.751 | 26.812/0.788 | 27.480/0.810 | 28.335/0.834 | |
HoFrTV | 25.706/0.758 | 27.253/0.807 | 28.304/0.834 | 29.317/0.861 | 30.211/0.879 | |
boat | TV-NLR | 24.136/0.674 | 25.553/0.746 | 26.475/0.782 | 27.509/0.819 | 28.350/0.847 |
MH-BCS | 24.322/0.682 | 25.879/0.745 | 27.170/0.796 | 28.198/0.831 | 29.011/0.851 | |
BCS-TV | 23.190/0.623 | 24.691/0.702 | 26.013/0.758 | 27.156/0.800 | 28.152/0.834 | |
BCS-SPL | 22.974/0.596 | 24.079/0.647 | 25.090/0.69 | 26.088/0.733 | 26.929/0.766 | |
TVAL3 | 23.393/0.631 | 25.035/0.716 | 26.421/0.773 | 27.403/0.810 | 28.445/0.84 | |
HoFrTV | 24.465/0.699 | 26.258/0.774 | 27.523/0.816 | 28.615/0.851 | 29.953/0.881 | |
cameraman | TV-NLR | 24.561/0.794 | 26.245/0.838 | 27.356/0.864 | 28.904/0.890 | 29.968/0.909 |
MH-BCS | 24.366/0.751 | 26.672/0.813 | 27.939/0.853 | 29.229/0.875 | 30.892/0.912 | |
BCS-TV | 23.613/0.761 | 25.196/0.807 | 26.652/0.844 | 27.864/0.871 | 28.910/0.892 | |
BCS-SPL | 22.785/0.691 | 24.284/0.740 | 25.626/0.783 | 26.686/0.813 | 27.744/0.838 | |
TVAL3 | 23.169/0.727 | 25.442/0.817 | 26.741/0.850 | 28.018/0.877 | 29.284/0.900 | |
HoFrTV | 25.102/0.813 | 26.992/0.858 | 28.791/0.887 | 30.244/0.907 | 31.600/0.926 | |
house | TV-NLR | 29.519/0.830 | 31.809/0.862 | 33.018/0.879 | 34.153/0.894 | 35.306/0.909 |
MH-BCS | 30.006/0.828 | 32.348/0.866 | 33.235/0.878 | 34.825/0.899 | 35.609/0.911 | |
BCS-TV | 27.763/0.79 | 29.784/0.829 | 31.111/0.852 | 32.282/0.870 | 33.413/0.888 | |
BCS-SPL | 26.627/0.742 | 28.104/0.770 | 29.815/0.814 | 31.059/0.838 | 31.464/0.840 | |
TVAL3 | 26.047/0.750 | 29.885/0.837 | 31.385/0.860 | 32.653/0.878 | 33.584/0.892 | |
HoFrTV | 30.122/0.838 | 32.446/0.870 | 33.881/0.887 | 35.143/0.903 | 35.953/0.915 | |
lena | TV-NLR | 26.272/0.789 | 28.030/0.840 | 29.334/0.869 | 30.373/0.893 | 31.249/0.909 |
MH-BCS | 26.773/0.797 | 28.520/0.853 | 29.757/0.872 | 30.815/0.897 | 31.840/0.918 | |
BCS-TV | 25.486/0.752 | 27.043/0.805 | 28.478/0.846 | 29.569/0.872 | 30.623/0.894 | |
BCS-SPL | 24.56/0.689 | 26.142/0.742 | 27.423/0.784 | 28.473/0.816 | 29.443/0.841 | |
TVAL3 | 24.510/0.724 | 27.469/0.818 | 28.633/0.850 | 29.644/0.876 | 30.570/0.895 | |
HoFrTV | 27.493/0.829 | 29.071/0.869 | 30.403/0.896 | 31.745/0.916 | 32.655/0.931 | |
mandrill | TV-NLR | 22.014/0.469 | 22.483/0.527 | 23.495/0.602 | 24.018/0.656 | 23.835/0.671 |
MH-BCS | 22.003/0.439 | 23.087/0.545 | 24.036/0.602 | 24.472/0.677 | 25.172/0.713 | |
BCS-TV | 21.895/0.453 | 22.695/0.525 | 23.380/0.587 | 23.956/0.638 | 24.499/0.682 | |
BCS-SPL | 22.069/0.449 | 22.701/0.504 | 23.264/0.559 | 23.695/0.599 | 24.186/0.639 | |
TVAL3 | 22.351/0.471 | 22.875/0.537 | 23.437/0.592 | 23.954/0.643 | 24.590/0.686 | |
HoFrTV | 22.202/0.486 | 23.189/0.560 | 23.942/0.621 | 24.613/0.680 | 25.231/0.720 | |
peppers | TV-NLR | 26.601/0.829 | 29.119/0.879 | 30.762/0.906 | 32.295/0.925 | 33.845/0.940 |
MH-BCS | 26.929/0.805 | 29.035/0.854 | 30.614/0.884 | 31.739/0.902 | 32.938/0.918 | |
BCS-TV | 25.802/0.790 | 28.270/0.850 | 30.001/0.882 | 31.432/0.905 | 32.799/0.924 | |
BCS-SPL | 24.241/0.695 | 25.974/0.747 | 27.280/0.783 | 28.544/0.812 | 29.604/0.836 | |
TVAL3 | 24.515/0.767 | 27.949/0.853 | 29.709/0.885 | 31.198/0.908 | 32.467/0.924 | |
HoFrTV | 28.497/0.868 | 30.991/0.906 | 32.755/0.929 | 34.309/0.944 | 35.732/0.954 | |
ruler | TV-NLR | 14.799/0.298 | 15.496/0.441 | 16.445/0.546 | 16.827/0.591 | 19.348/0.783 |
MH-BCS | 14.895/0.238 | 19.312/0.638 | 20.312/0.638 | 21.965/0.792 | 22.895/0.856 | |
BCS-TV | 15.172/0.309 | 15.811/0.451 | 16.707/0.539 | 17.457/0.605 | 18.059/0.656 | |
BCS-SPL | 15.870/0.401 | 16.550/0.497 | 17.493/0.595 | 18.365/0.661 | 19.141/0.712 | |
TVAL3 | 15.300/0.274 | 15.392/0.363 | 16.269/0.483 | 17.158/0.585 | 18.019/0.661 | |
HoFrTV | 15.117/0.346 | 16.188/0.512 | 17.589/0.618 | 18.783/0.710 | 20.373/0.814 | |
testpat | TV-NLR | 16.397/0.723 | 19.372/0.831 | 19.440/0.792 | 24.283/0.929 | 26.333/0.959 |
MH-BCS | 16. 819/0.779 | 19.135/0.828 | 20.142/0.856 | 22.379/0.879 | 24.798/0.956 | |
BCS-TV | 15.981/0.709 | 18.798/0.820 | 21.241/0.888 | 23.224/0.932 | 24.934/0.960 | |
BCS-SPL | 14.734/0.497 | 16.637/0.571 | 18.178/0.626 | 19.342/0.666 | 20.452/0.696 | |
TVAL3 | 14.834/0.613 | 17.719/0.752 | 19.338/0.799 | 22.402/0.900 | 24.212/0.936 | |
HoFrTV | 17.799/0.803 | 22.762/0.910 | 26.047/0.944 | 28.512/0.965 | 30.191/0.970 | |
Resolutionchart | TV-NLR | 20.726/0.880 | 25.863/0.950 | 27.620/0.966 | 32.921/0.982 | 35.516/0.988 |
MH-BCS | 18.511/0.707 | 20.473/0.783 | 22.234/0.819 | 24.008/0.862 | 25.640/0.886 | |
BCS-TV | 9.173/0.578 | 9.649/0.6718 | 10.276/0.721 | 9.714/0.741 | 10.012/0.76 | |
BCS-SPL | 16.213/0.550 | 18.068/0.607 | 19.215/0.627 | 20.384/0.654 | 21.410/0.676 | |
TVAL3 | 16.411/0.675 | 21.741/0.888 | 24.951/0.942 | 27.899/0.966 | 30.475/0.980 | |
HoFrTV | 20.311/0.861 | 24.204/0.923 | 26.925/0.956 | 30.100/0.971 | 33.498/0.983 |
Algorithms | BCS-SPL | TVAL3 | MH-BCS | TV-NLR | HoFrTV | BCS-TV | |
---|---|---|---|---|---|---|---|
Time (s) | Rate = 0.1 | 4.8 | 3.5 | 15.6 | 150.6 | 322.3 | 392.3 |
Rate = 0.15 | 3.1 | 3.1 | 18.3 | 150.2 | 327.5 | 465.4 | |
Rate = 0.2 | 2.5 | 2.4 | 16.6 | 148.9 | 316.4 | 530.3 | |
Rate = 0.25 | 2.4 | 2.2 | 18.4 | 149.4 | 326.5 | 627.4 | |
Rate = 0.3 | 2.5 | 2.0 | 14.2 | 151.3 | 324.4 | 775.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, L.; Qin, Y.; Zheng, H.; Pan, Z.; Mei, J.; Hu, Y. Hybrid High-Order and Fractional-Order Total Variation with Nonlocal Regularization for Compressive Sensing Image Reconstruction. Electronics 2021, 10, 150. https://doi.org/10.3390/electronics10020150
Hou L, Qin Y, Zheng H, Pan Z, Mei J, Hu Y. Hybrid High-Order and Fractional-Order Total Variation with Nonlocal Regularization for Compressive Sensing Image Reconstruction. Electronics. 2021; 10(2):150. https://doi.org/10.3390/electronics10020150
Chicago/Turabian StyleHou, Lijia, Yali Qin, Huan Zheng, Zemin Pan, Jicai Mei, and Yingtian Hu. 2021. "Hybrid High-Order and Fractional-Order Total Variation with Nonlocal Regularization for Compressive Sensing Image Reconstruction" Electronics 10, no. 2: 150. https://doi.org/10.3390/electronics10020150
APA StyleHou, L., Qin, Y., Zheng, H., Pan, Z., Mei, J., & Hu, Y. (2021). Hybrid High-Order and Fractional-Order Total Variation with Nonlocal Regularization for Compressive Sensing Image Reconstruction. Electronics, 10(2), 150. https://doi.org/10.3390/electronics10020150