A Fully Integrated 64-Channel Recording System for Extracellular Raw Neural Signals
Abstract
:1. Introduction
2. System Overall Architecture
3. Signal Conditioning Circuitry
3.1. Low-Noise Open Loop Amplifier
3.2. Amplifiers of Programmable Gain and Bandwidth
3.3. Switched-Capacitor Design of T3 and T4
4. Design of 10-Bit SAR ADC
5. Synchronous Design of Timing Sequence
6. Chip Floorplan and Measurement Setup
7. Measurement Results
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Heer, F.; Hafizovic, S.; Franks, W. CMOS microelectrode array for bidirectional interaction with neuronal networks. IEEE J. Solid-State Circuits 2006, 41, 1620–1629. [Google Scholar] [CrossRef]
- Harrison, R.R.; Watkins, P.T.; Kier, R.J. A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J. Solid-State Circuits 2006, 42, 123–133. [Google Scholar] [CrossRef]
- Chae, M.S.; Liu, W.; Sivaprakasam, M. Design optimization for integrated neural recording systems. IEEE J. Solid-State Circuits 2008, 43, 1931–1939. [Google Scholar] [CrossRef]
- Aziz, J.N.; Abdelhalim, K.; Shulyzki, R. 256-channel neural recording and delta compression microsystem with 3D electrodes. IEEE J. Solid-State Circuits 2009, 44, 995–1005. [Google Scholar] [CrossRef]
- Shahrokhi, F.; Abdelhalim, K.; Serletis, D. The 128-channel fully differential digital integrated neural recording and stimulation interface. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Wattanapanitch, W.; Sarpeshkar, R. A low-power 32-channel digitally programmable neural recording integrated circuit. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 592–602. [Google Scholar] [CrossRef]
- Lopez, C.M.; Prodanov, D.; Braeken, D. A multichannel integrated circuit for electrical recording of neural activity, with independent channel programmability. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Walker, R.M.; Nuyujukian, P.; Hermes, E. A 96-Channel Full Data Rate Direct Neural Interface in 0.13 um CMOS. IEEE J. Solid-State Circuits 2012, 47, 1043–1055. [Google Scholar] [CrossRef]
- Guo, J.; Yuan, J.; Chan, M. Modeling of the cell-electrode interface noise for microelectrode arrays. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 605–613. [Google Scholar]
- Han, D.; Zheng, Y.; Rajkumar, R. A 0.45 V 100-channel neural-recording IC with Sub μW channel consumption in 0.18 um CMOS. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 735–746. [Google Scholar] [PubMed]
- Lopez, C.M.; Andrei, A.; Mitra, S. An implantable 455-active-electrode 52-channel CMOS neural probe. IEEE J. Solid-State Circuits 2013, 49, 248–261. [Google Scholar] [CrossRef]
- Muller, R.; Le, H.P.; Li, W. A minimally invasive 64-channel wireless μECoG implant. IEEE J. Solid-State Circuits 2014, 50, 344–359. [Google Scholar] [CrossRef] [Green Version]
- Shulyzki, R.; Abdelhalim, K.; Bagheri, A. 320-channel active probe for high-resolution neuromonitoring and responsive neurostimulation. IEEE Trans. Biomed. Circuits Syst. 2014, 9, 34–49. [Google Scholar] [CrossRef]
- Biederman, W.; Yeager, D.J.; Narevsky, N. A 4.78 mm2 fully-integrated neuromodulation SoC combining 64 acquisition channels with digital compression and simultaneous dual stimulation. IEEE J. Solid-State Circuits 2015, 50, 1038–1047. [Google Scholar] [CrossRef]
- Greenwald, E.; So, E.; Wang, Q. A bidirectional neural interface IC with chopper stabilized BioADC array and charge balanced stimulator. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 990–1002. [Google Scholar] [CrossRef]
- Kassiri, H.; Salam, M.T.; Pazhouhandeh, M.R. Rail-to-rail-input dual-radio 64-channel closed-loop neurostimulator. IEEE J. Solid-State Circuits 2017, 52, 2793–2810. [Google Scholar] [CrossRef]
- Dragas, J.; Viswam, V.; Shadmani, A. In vitro multi-functional microelectrode array featuring 59760 electrodes, 2048 electrophysiology channels, stimulation, impedance measurement, and neurotransmitter detection channels. IEEE J. Solid-State Circuits 2017, 52, 1576–1590. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Luan, S.; Williams, I. A 64-channel versatile neural recording SoC with activity-dependent data throughput. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 1344–1355. [Google Scholar] [CrossRef] [Green Version]
- Lopez, C.M.; Putzeys, J.; Raducanu, B.C. A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 um SOI CMOS. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 510–522. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.C.; Huang, P.T.; Wu, S.L. Ultrahigh-density 256-channel neural sensing microsystem using TSV-embedded neural probes. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 1013–1025. [Google Scholar] [CrossRef] [PubMed]
- Angotzi, G.N.; Malerba, M.; Boi, F. A synchronous neural recording platform for multiple high-resolution CMOS probes and passive electrode arrays. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 532–542. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.M.; Chun, H.S.; Wang, S.; Berti, L.; Putzeys, J.; Van Den Bulcke, C.; Weijers, J.W.; Firrincieli, A.; Reumers, V.; Braeken, D.; et al. A multimodal CMOS MEA for high-throughput intracellular action potential measurements and impedance spectroscopy in drug-screening applications. IEEE J. Solid-State Circuits 2018, 53, 3076–3086. [Google Scholar] [CrossRef]
- Park, S.Y.; Cho, J.; Lee, K. Dynamic power reduction in scalable neural recording interface using spatiotemporal correlation and temporal sparsity of neural signals. IEEE J. Solid-State Circuits 2018, 53, 1102–1114. [Google Scholar] [CrossRef]
- Rezaei, M.; Maghsoudloo, E.; Bories, C. A low-power current-reuse analog front-end for high-density neural recording implants. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Tsai, D.; Yuste, R.; Shepard, K.L. Statistically reconstructed multiplexing for very dense, high-channel-count acquisition systems. IEEE Trans. Biomed. Circuits Syst. 2017, 12, 13–23. [Google Scholar] [CrossRef]
- Park, S.Y.; Cho, J.; Na, K. Modular 128-channel Δ-ΔƩ analog front-end architecture using spectrum equalization scheme for 1024-Channel 3-D neural recording microsystems. IEEE J. Solid-State Circuits 2017, 53, 501–514. [Google Scholar] [CrossRef]
- Kim, C.; Joshi, S.; Courellis, H. Sub-uVrms-noise Sub-uW/Channel ADC-direct neural recording with 200-mV/ms transient recovery through predictive digital autoranging. IEEE J. Solid-State Circuits 2018, 53, 3101–3110. [Google Scholar] [CrossRef] [Green Version]
- Ng, K.A.; Yuan, C.; Rusly, A. A wireless multi-channel peripheral nerve signal acquisition system-on-chip. IEEE J. Solid-State Circuits 2019, 54, 2266–2280. [Google Scholar] [CrossRef]
- Kim, M.K.; Jeon, H.; Lee, H.J. Plugging electronics into minds: Recent trends and advances in neural interface microsystems. IEEE Solid-State Circuits Mag. 2019, 11, 29–42. [Google Scholar] [CrossRef]
- Simmich, S.; Bahr, A.; Rieger, R. Noise efficient integrated amplifier designs for biomedical applications. Electronics 2021, 10, 1522. [Google Scholar] [CrossRef]
- Sawigun, C.; Demosthenous, A.; Liu, X. A compact Rail-to-Rail Class-AB CMOS buffer with Slew-Rate enhancement. IEEE Trans. Circuits Syst. II 2012, 59, 486–490. [Google Scholar] [CrossRef]
- Carrillo, J.M.; Carvajal, R.G.; Torralba, A.; Duque-Carrillo, J.F. Rail-to-rail low-power high-slew-rate CMOS analogue buffer. Electron. Lett. 2004, 40, 843–844. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Lopez, C.M.; Ballini, M. Leakage compensation scheme for ultra-high-resistance pseudo-resistors in neural amplifiers. Electron. Lett. 2018, 54, 270–272. [Google Scholar] [CrossRef]
- Buzsáki Lab.: Simultaneous Intracellular and Extracellular Recordings from Hippocampus Region CA1 of Anesthetized Rats. Available online: http://crcns.org/data-sets/hc/hc-1 (accessed on 7 November 2021).
- Shiwei, W.; Seyed Kasra, G.; Hosung, C. A compact quad-shank CMOS neural probe with 5120 addressable recording sites and 384 fully differential parallel channels. IEEE Trans. Biomed. Circuits Syst. 2019, 6, 1625–1634. [Google Scholar]
This Work | [18] | [19] | [35] | [22] | |
---|---|---|---|---|---|
Process (μm) | 0.18 | 0.13 | 0.35 | 0.13 | 0.13 |
Channels | 64 | 64 | 384 | 384 | 1024 |
Supply (V) | 1.8 | 3–3.3 | 1.2/1.8 | 1.2 | 1.2 |
Power (μW)/Channel | 130 | 110 | 49.06 | 95.1 | 46 d |
RTI noise (μVrms) | 5.5 (1–10 kHz) a | 2.12 (300–3 kHz) | 6.36 (300–10 kHz) | 7.44 (300–10 kHz) 7.65 (0.5–1k) | 7.5 (300–10 kHz) 12 (0.5–10k) |
CMRR (dB) | 69 (50 Hz) | 70 | 60 | 75 | >74 (50 Hz) |
THD | 0.53% (2 mVpp) b | 1% c | 0.4% (10 mVpp) | 0.17% (10 mVpp) | 0.71% (20 mVpp) |
Gain | 8–512 | 200–5000 | 50–2500 | 83.8 | 2–3000 |
HP corner (Hz) | 0.1–20 | 0.02–750 | 0.53005001000 | 0.5 | 0.5300 |
LP corner (Hz) | 6k–8k | 6k–9.4k | 1k–10k | 10k | 10k |
ADC | 10 | 10 | 10 | 14 | 10 |
Area (mm2)/Channel | 0.25 | 0.3 | 0.12 | 0.035 | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, Q.; Chen, C.; Li, Y.; Zuo, F.; Liu, X.; Zhang, H.; Wang, X.; Liu, Y. A Fully Integrated 64-Channel Recording System for Extracellular Raw Neural Signals. Electronics 2021, 10, 2726. https://doi.org/10.3390/electronics10212726
Zhang X, Li Q, Chen C, Li Y, Zuo F, Liu X, Zhang H, Wang X, Liu Y. A Fully Integrated 64-Channel Recording System for Extracellular Raw Neural Signals. Electronics. 2021; 10(21):2726. https://doi.org/10.3390/electronics10212726
Chicago/Turabian StyleZhang, Xiangwei, Quan Li, Chengying Chen, Yan Li, Fuqiang Zuo, Xin Liu, Hao Zhang, Xiaosong Wang, and Yu Liu. 2021. "A Fully Integrated 64-Channel Recording System for Extracellular Raw Neural Signals" Electronics 10, no. 21: 2726. https://doi.org/10.3390/electronics10212726
APA StyleZhang, X., Li, Q., Chen, C., Li, Y., Zuo, F., Liu, X., Zhang, H., Wang, X., & Liu, Y. (2021). A Fully Integrated 64-Channel Recording System for Extracellular Raw Neural Signals. Electronics, 10(21), 2726. https://doi.org/10.3390/electronics10212726