Optimal Power Dispatch of Distributed Generators in Direct Current Networks Using a Master–Slave Methodology That Combines the Salp Swarm Algorithm and the Successive Approximation Method
Abstract
:1. Introduction
1.1. Direct Current Networks and the Optimal Power Flow Problem
1.2. State-of-the-Art on the Optimal Power Flow Problem in Direct Current Networks
1.3. Scope and Contributions
- A new application for the SSA,
- A new master–slave methodology to solve the OPF problem in DC networks,
- Better results in terms of solution quality, repeatability, and processing times than those that have been reported by other methodologies.
- A new methodology to make the most of the DGs installed in electrical networks when implementing energy management strategies in DC networks. It can be used to find high-quality solutions in short processing times each time the system experiences variations in power generation and demand.
- In planning strategies, the sizing of DGs is key to improving their impact when integrated into electrical networks. The methodology proposed here falls into the category of methodologies for locating and sizing DGs and, thus, allows for the rapid identification of the power levels that will bring the best benefits to the network under a scheme of DGs located by another optimization technique.
1.4. Structure of the Paper
2. Mathematical Formulation
2.1. Objective Function
2.2. Set of Constraints
3. Proposed Solution Methodology
3.1. Master Stage: Salp Swarm Algorithm (SSA)
3.1.1. Generating the Initial Population
3.1.2. Calculating the Objective Function
3.1.3. Movement of the Salp Chain
3.1.4. Movement with Respect to the Incumbent
3.1.5. Movement Using Newton’s Laws of Motion
3.1.6. Stopping Criteria
- The master stage will finish when the incumbent of the problem is not updated after n number of consecutive iterations. In other words, the iterative process ends when the objective function reaches a certain number of iterations (non-improvement counter) without finding a better solution to the problem.
- The computational analysis will end when the optimization algorithm reaches the maximum number of allowable iterations. The iterations of the algorithm are controlled by a counter.
Algorithm 1 Hybrid SSA-SA optimization algorithm |
|
3.2. Slave Stage
3.3. Comparison of Methods and Parameters
4. Test Scenarios and Considerations
4.1. 21-Node System
4.2. The 69-Node System
5. Simulations and Results
5.1. 21-Node System
5.2. The 69-Node System
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gurven, M.; Walker, R. Energetic demand of multiple dependents and the evolution of slow human growth. Proc. R. Soc. B Biol. Sci. 2006, 273, 835–841. [Google Scholar] [CrossRef] [Green Version]
- Gupta, B.R. Generation of Electrical Energy; S. Chand Publishing: New Delhi, India, 2017; pp. 1–616. Available online: https://books.google.com.co/books?hl=es&lr=&id=bERxDwAAQBAJ&oi=fnd&pg=PR1&dq=Generation+of+Electrical+Energy&ots=vxlWpcSTf5&sig=vzzX7SReWRerVqawXEXGe77LQlE&redir_esc=y#v=onepage&q=Generation%20of%20Electrical%20Energy&f=false (accessed on 16 November 2021).
- Kyriakopoulos, G.L.; Arabatzis, G. Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes. Renew. Sustain. Energy Rev. 2016, 56, 1044–1067. [Google Scholar] [CrossRef]
- Krauter, S. Solar Electric Power Generation; Springer: Berlin/Heidelberg, Germany, 2006; Volume 10, pp. 978–983. [Google Scholar]
- Grigsby, L.L. Electric Power Generation, Transmission, and Distribution; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar] [CrossRef]
- Christensen, L.R.; Greene, W.H. Economies of scale in US electric power generation. J. Political Econ. 1976, 84, 655–676. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.F.; Montoya, O.D.; Hincapié-Isaza, R.A.; Echeverri, M.G.; Perea-Moreno, A.J. Optimal Location and Sizing of DGs in DC Networks Using a Hybrid Methodology Based on the PPBIL Algorithm and the VSA. Mathematics 2021, 9, 1913. [Google Scholar] [CrossRef]
- Sánchez, L.G.G. Localización óptima de generación Distribuida en Sistemas de Distribución Trifásicos con Carga Variable en el Tiempo Utilizando el método de Monte Carlo. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2012. [Google Scholar]
- Bove, R.; Lunghi, P. Electric power generation from landfill gas using traditional and innovative technologies technologies. Energy Convers. Manag. 2006, 47, 1391–1401. [Google Scholar] [CrossRef]
- Gollop, F.M.; Roberts, M.J. Environmental Regulations and Productivity Growth: The Case of Fossil-fueled Electric Power Generation. Economy 1983, 91, 654–674. [Google Scholar] [CrossRef]
- Koohi-Fayegh, S.; Rosen, M.A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047. [Google Scholar] [CrossRef]
- Pan, H.; Hu, Y.; Chena, L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338. [Google Scholar] [CrossRef]
- Joseph, A.; Shahidehpour, M. Battery Storage Systems in Electrical Power Systems Power Systems. J. Energy Storage 2017, 12, 87–107. [Google Scholar] [CrossRef]
- Peters, J.F.; Baumann, M.; Zimmermann, B.; Braun, J.; Weil, M. The environmental impact of Li-Ion batteries and the role of key parameters—A review Renew. Sustain. Energy Rev. 2017, 67, 491–506. [Google Scholar] [CrossRef]
- Kumar, J.; Agarwal, A.; Agarwal, V. A review on overall control of DC microgrids. J. Energy Storage 2019, 21, 113–138. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.F.; Ramos-Paja, C.A.; Gonzalez-Montoya, D.; Alcalá, G.; Hernandez-Escobedo, Q. Energy management in PV based microgrids designed for the Universidad Nacional de Colombia. Sustainability 2020, 12, 1219. [Google Scholar] [CrossRef] [Green Version]
- Franck, C.M. HVDC circuit breakers: A review identifying future research needs. IEEE Trans. Power Deliv. 2011, 26, 998–1007. [Google Scholar] [CrossRef] [Green Version]
- Momoh, J.; Koessler, R.; Bond, M.; Stott, B.; Sun, D.; Papalexopoulos, A.; Ristanovic, P. Challenges to optimal power flow. IEEE Trans. Power Syst. 1997, 12, 444–455. [Google Scholar] [CrossRef] [Green Version]
- Ocampo-Toro, J.; Garzon-Rivera, O.; Grisales-Noreña, L.; Montoya-Giraldo, O.; Gil-González, W. Optimal Power Dispatch in Direct Current Networks to Reduce Energy Production Costs and CO2 Emissions Using the Antlion Optimization Algorithm. Arab. J. Sci. Eng. 2021, 46, 9995–10006. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.F.; Garzón Rivera, O.D.; Ocampo Toro, J.A.; Ramos-Paja, C.A.; Rodriguez Cabal, M.A. Metaheuristic Optimization Methods for Optimal Power Flow Analysis in DC Distribution Networks Trans. Energy Syst. Eng. Appl. 2020, 1, 13–31. [Google Scholar] [CrossRef]
- Montoya, O.D.; Grisales-Noreña, L.; González-Montoya, D.; Ramos-Paja, C.; Garces, A. Linear power flow formulation for low-voltage DC power grids. Electr. Power Syst. Res. 2018, 163, 375–381. [Google Scholar] [CrossRef]
- Gavrilas, M. Heuristic and Metaheuristic Optimization Techniques with Application to Power Systems; Technical University of Iasi, D. Mangeron Blvd.: Iasi, Romania, 2010. [Google Scholar]
- Orosz, T.; Rassõlkin, A.; Kallaste, A.; Arsénio, P.; Pánek, D.; Kaska, J.; Karban, P. Robust design optimization and emerging technologies for electrical machines: Challenges and open problems. Appl. Sci. 2020, 10, 6653. [Google Scholar] [CrossRef]
- Li, J.; Liu, F.; Wang, Z.; Low, S.H.; Mei, S. Optimal power flow in stand-alone DC microgrids. IEEE Trans. Power Syst. 2018, 33, 5496–5506. [Google Scholar] [CrossRef] [Green Version]
- Montoya, O.; Gil-González, W.; Grisales-Noreña, L. Optimal Power Dispatch of DGs in DC Power Grids: A Hybrid Gauss-Seidel-Genetic-Algorithm Methodology for Solving the OPF Problem. Wseas Trans. Power Syst. 2018, 13, 335–346. [Google Scholar]
- Montoya, O.D.; Gil-González, W.; Garces, A. Sequential quadratic programming models for solving the OPF problem in DC grids. Electr. Power Syst. Res. 2019, 169, 18–23. [Google Scholar] [CrossRef]
- Garzon-Rivera, O.; Ocampo, J.; Grisales-Noreña, L.; Montoya, O.; Rojas-Montano, J. Optimal power flow in Direct Current Networks using the antlion optimizer. Stat. Optim. Inf. Comput. 2020, 8, 846–857. [Google Scholar] [CrossRef]
- Montoya, O.D.; Grisales-Noreña, L.F.; Amin, W.T.; Rojas, L.A.; Campillo, J. Vortex Search Algorithm for Optimal Sizing of Distributed Generators in AC Distribution Networks with Radial Topology. In Workshop on Engineering Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 235–249. [Google Scholar]
- Velasquez, O.S.; Montoya Giraldo, O.D.; Garrido Arevalo, V.M.; Grisales Norena, L.F. Optimal power flow in direct-current power grids via black hole optimization. Adv. Electr. Electron. Eng. 2019, 17, 24–32. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Montoya, O.D.; Garrido, V.M.; Gil-González, W.; Grisales-Noreña, L.F. Power flow analysis in DC grids: Two alternative numerical methods. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 1865–1869. [Google Scholar] [CrossRef]
- Abualigah, L.; Shehab, M.; Alshinwan, M.; Alabool, H. Salp swarm algorithm: A comprehensive survey. Neural Comput. Appl. 2020, 32, 11195–11215. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-international conference on neural networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [Google Scholar] [CrossRef]
- Chelouah, R.; Siarry, P. A continuous genetic algorithm designed for the global optimization of multimodal functions. J. Heuristics 2000, 6, 191–213. [Google Scholar] [CrossRef]
- Zawbaa, H.M.; Emary, E.; Parv, B. Feature selection based on antlion optimization algorithm. In Proceedings of the 2015 Third World Conference on Complex Systems (WCCS), Marrakech, Morocco, 23–25 November 2015; pp. 1–7. [Google Scholar]
- Mirjalili, S.; Jangir, P.; Mirjalili, S.Z.; Saremi, S.; Trivedi, I.N. Optimization of problems with multiple objectives using the multi-verse optimization algorithm. Knowl.-Based Syst. 2017, 134, 50–71. [Google Scholar] [CrossRef] [Green Version]
- Gil-González, W.; Montoya, O.D.; Holguín, E.; Garces, A.; Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J. Energy Storage 2019, 21, 1–8. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.F.; Gonzalez Montoya, D.; Ramos-Paja, C.A. Optimal sizing and location of distributed generators based on PBIL and PSO techniques. Energies 2018, 11, 1018. [Google Scholar] [CrossRef] [Green Version]
- Garcés, A. On the convergence of Newton’s method in power flow studies for DC microgrids. IEEE Trans. Power Syst. 2018, 33, 5770–5777. [Google Scholar] [CrossRef] [Green Version]
- Rosales-Muñoz, A.A.; Grisales-Noreña, L.F.; Montano, J.; Montoya, O.D.; Perea-Moreno, A.J. Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Direct Current Electrical Networks. Sustainability 2021, 13, 8703. [Google Scholar] [CrossRef]
Variable | Meaning |
---|---|
Power losses associated with energy transport | |
v | Vector containing all the nodal voltages of the system, which are calculated based on the load flow |
Conductance matrix of the energy distribution lines | |
Transposed vector of v | |
Power generated by the slack node | |
Power supplied by the DGs installed in the system | |
Power demanded by the nodes in the system | |
Symmetric positive matrix containing the nodal voltages of the system in its diagonal | |
Conductance of each transmission line | |
Resistive loads connected to the DC network | |
Minimum power allowed for the DGs | |
Maximum power allowed for the DGs | |
Minimum voltage allowed at each node of the system | |
Maximum voltage allowed at each node of the system | |
Current that passes through the line that interconnects nodes i and j | |
Current limit established by the conductor assigned to this line | |
Transposed vector composed of ones, which can be used to add together different penalties in the objective function | |
Maximum power injection level allowed for each DG, which varies between 20%, 40%, and 60% of the power supplied by the slack generator |
21-Node System | ||||||
---|---|---|---|---|---|---|
Method | SSA | MVO | ALO | BH | CGA | PSO |
Number of particles | 44 | 71 | 79 | 67 | 52 | 49 |
Maximum iterations | 312 | 613 | 769 | 317 | 592 | 679 |
Non-improvement iterations | 294 | 504 | 441 | 317 | 346 | 263 |
P parameter | — | 8 | — | — | — | — |
69-Node System | ||||||
---|---|---|---|---|---|---|
Method | SSA | MVO | ALO | BH | CGA | PSO |
Number of particles | 55 | 86 | 77 | 35 | 40 | 58 |
Maximum iterations | 187 | 656 | 182 | 566 | 622 | 723 |
Non-improvement iterations | 152 | 584 | 182 | 566 | 443 | 252 |
P parameter | — | 7 | — | — | — | — |
21-Node System | |||||||
---|---|---|---|---|---|---|---|
Method | Node/Power (kW) | Power Losses | Vworst (p.u)/ Node | Imax (A) | |||
Minimum (kW) /Reduction (%) | Average (kW)/ Reduction (%) | Time (s) | STD (%) | ||||
Without DGs | — | 27.603 | — | — | — | (0.9–1.1) | 520 |
20% penetration | |||||||
SSA | 9/0 | 13.18226/52.24 | 13.18271/52.24 | 1.67 | 0.003 | 0.957/20 | 380.6 |
12/17.78 | |||||||
16/98.54 | |||||||
MVO | 9/0.0004 | 13.18228/52.24 | 13.18277/52.24 | 12.63 | 0.003 | 0.957/20 | 380.6 |
12/17.96 | |||||||
16/98.36 | |||||||
ALO | 9/0.03 | 13.18335/52.23 | 13.26578/51.94 | 6.67 | 1.140 | 0.957/20 | 380.6 |
12/16.85 | |||||||
16/99.44 | |||||||
BH | 9/1.15 | 13.29974/51.81 | 14.07025/49.02 | 2.78 | 2.418 | 0.954/17 | 380.72 |
12/32.73 | |||||||
16/82.44 | |||||||
CGA | 9/0.07 | 13.19566/52.19 | 13.28310/51.87 | 3.22 | 0.279 | 0.957/20 | 380.76 |
12/17.59 | |||||||
16/98.52 | |||||||
PSO | 9/0 | 13.18226/52.24 | 13.21501/52.12 | 6.10 | 0.783 | 0.957/20 | 380.6 |
12/17.73 | |||||||
16/98.59 | |||||||
40% penetration | |||||||
SSA | 9/30.59 | 6.12077/77.82 | 6.12087/77.82 | 1.58 | 0.001 | 0.971/20 | 257.22 |
12/72.98 | |||||||
16/129.07 | |||||||
MVO | 9/30.60 | 6.12077/77.82 | 6.12089/77.82 | 11.81 | 0.002 | 0.971/20 | 257.22 |
12/72.97 | |||||||
16129.06 | |||||||
ALO | 9/30.50 | 6.12114/77.82 | 6.12838/77.80 | 6.28 | 0.800 | 0.971/20 | 257.22 |
12/72.56 | |||||||
16/129.58 | |||||||
BH | 9/41.01 | 6.17466/77.63 | 6.53525/76.32 | 2.75 | 3.238 | 0.970/20 | 257.81 |
12/67.44 | |||||||
16/123.66 | |||||||
CGA | 9/32.71 | 6.12238/77.82 | 6.14733/77.73 | 3.05 | 0.236 | 0.971/20 | 257.23 |
12/72.06 | |||||||
16/127.87 | |||||||
PSO | 9/30.43 | 6.12079/77.82 | 6.14710/77.73 | 3.99 | 1.243 | 0.971/20 | 257.22 |
12/73.22 | |||||||
16/128.99 | |||||||
60% penetration | |||||||
SSA | 9/93.36 | 2.78532/89.91 | 2.78533/89.91 | 1.56 | 0.0004 | 0.982/20 | 137.56 |
12/107.43 | |||||||
16/148.17 | |||||||
MVO | 9/93.33 | 2.78532/89.91 | 2.78538/89.91 | 10.64 | 0.002 | 0.982/20 | 137.56 |
12/107.48 | |||||||
16/148.16 | |||||||
ALO | 9/93.09 | 2.78564/89.91 | 2.78763/89.90 | 6.19 | 0.044 | 0.982/20 | 137.57 |
12/108.49 | |||||||
16/147.38 | |||||||
BH | 9/91.48 | 2.81543/89.80 | 3.04165/88.98 | 2.67 | 4.760 | 0.982/20 | 139.38 |
12/110.59 | |||||||
16/145.10 | |||||||
CGA | 9/92.13 | 2.79016/89.89 | 2.81172/89.81 | 3.00 | 0.449 | 0.983/20 | 137.66 |
12/105.11 | |||||||
16/151.64 | |||||||
PSO | 9/93.34 | 2.78532/89.91 | 2.80165/89.85 | 3.79 | 2.007 | 0.982/20 | 137.56 |
12/107.45 | |||||||
16/148.18 |
Method | Average Minimum (kW) | Average Time (s) | Distance between the Origin and the Method |
---|---|---|---|
SSA | 7.3628 | 1.603 | 7.535 |
MVO | 7.3628 | 11.693 | 13.818 |
ALO | 7.3634 | 6.378 | 9.742 |
BH | 7.4299 | 2.733 | 7.917 |
CGA | 7.3694 | 3.092 | 7.992 |
PSO | 7.3628 | 4.623 | 8.694 |
Method | Mean Average (kW) | Average Time (s) | Distance between the Origin and the Method |
---|---|---|---|
SSA | 7.3630 | 1.603 | 7.536 |
MVO | 7.3630 | 11.693 | 13.818 |
ALO | 7.3939 | 6.378 | 9.765 |
BH | 7.8824 | 2.733 | 8.343 |
CGA | 7.4141 | 3.092 | 8.033 |
PSO | 7.3876 | 4.623 | 8.715 |
69-Node System | |||||||
---|---|---|---|---|---|---|---|
Method | Node /Power (kW) | Power Losses | Vworst (p.u)/ Node | Imax (A) | |||
Minimum (kW) /Reduction (%) | Average (kW)/ Reduction (%) | Time (s) | STD (%) | ||||
Without DGs | — | 27.603 | — | — | — | (0.9–1.1) | 335 (A) |
20% penetration | |||||||
SSA | 26/0 | 56.48539/63.29 | 56.49460/63.20 | 5.94 | 0.014 | 0.961/64 | 247.8 |
61/562.74 | |||||||
66/245.88 | |||||||
MVO | 26/0.0001 | 56.48563/63.29 | 56.49026/63.28 | 144.73 | 0.011 | 0.961/64 | 247.8 |
61/564.21 | |||||||
66/244.40 | |||||||
ALO | 26/0 | 56.55938/63.24 | 57.39904/62.69 | 9.833 | 1.159 | 0.961/64 | 247.83 |
61/616.06 | |||||||
66/192.22 | |||||||
BH | 26/0.29 | 57.80503/62.43 | 62.33161/59.49 | 14.076 | 4.494 | 0.962/61 | 248.38 |
61/330.66 | |||||||
66/471.60 | |||||||
CGA | 26/1.60 | 56.58498/63.22 | 57.08262/62.90 | 23.252 | 0.418 | 0.961/64 | 247.86 |
61/560.06 | |||||||
66/246.25 | |||||||
PSO | 26/0 | 56.48562/63.29 | 56.70174/63.14 | 28.26 | 0.407 | 0.961/64 | 247.8 |
61/566.67 | |||||||
66/241.94 | |||||||
40% penetration | |||||||
SSA | 26/157.94 | 13.99234/90.91 | 13.99337/90.90 | 5.49 | 0.006 | 0.985/21 | 180.57 |
61/1213.58 | |||||||
66/245.72 | |||||||
MVO | 26/158.31 | 13.99235/90.91 | 13.99287/90.90 | 131.953 | 0.005 | 0.985/21 | 180.57 |
61/1212.45 | |||||||
66/246.48 | |||||||
ALO | 26/156.07 | 14.00838/90.89 | 14.42711/90.62 | 9.515 | 2.378 | 0.985/21 | 180.6 |
61/1234.42 | |||||||
66/226.40 | |||||||
BH | 26/141.05 | 14.61159/90.50 | 18.65151/87.88 | 13.927 | 12.623 | 0.984/21 | 181.66 |
61/1093.53 | |||||||
66/369.47 | |||||||
CGA | 26/156.56 | 14.01013/90.89 | 14.15333/90.80 | 16.286 | 0.644 | 0.985/21 | 180.59 |
61/1189.74 | |||||||
66/270.64 | |||||||
PSO | 26/158.00 | 13.99289/90.90 | 14.31295/90.70 | 42.309 | 5.936 | 0.985/21 | 180.57 |
61/1211.24 | |||||||
66/248.00 | |||||||
60% penetration | |||||||
SSA | 26/375.10 | 5.55580/96.39 | 5.55580/96.39 | 5.35 | 7.4 | 0.995/12 | 133.14 |
61/1588.45 | |||||||
66/245.75 | |||||||
MVO | 26/375.11 | 5.55580/96.39 | 5.55580/96.39 | 120.066 | 6.7 | >0.995/12 | 133.13 |
61/1588.50 | |||||||
66/245.73 | |||||||
ALO | 26/380.38 | 5.55775/96.39 | 5.73150/96.27 | 9.686 | 6.332 | 0.995/12 | 132.64 |
61/1584.26 | |||||||
66/250.89 | |||||||
BH | 26/401.27 | 5.88404/96.18 | 8.32468/94.59 | 13.739 | 21.543 | 0.995/12 | 136.89 |
61/1417.44 | |||||||
66/343.43 | |||||||
CGA | 26/373.60 | 5.55645/94.54 | 5.55645/94.54 | 17.388 | 0.298 | 0.995/12 | 133.49 |
61/1589.01 | |||||||
66/242.18 | |||||||
PSO | 26/375.11 | 5.55580/96.39 | 5.55580/96.39 | 13.68 | 5.9 | 0.995/12 | 133.13 |
61/1588.47 | |||||||
66/245.74 |
Method | Average Minimum (kW) | Average Time (s) | Distance between the Origin and the Method |
---|---|---|---|
SSA | 25.345 | 5.59 | 25.954 |
MVO | 25.345 | 132.25 | 134.657 |
ALO | 25.375 | 9.68 | 27.159 |
BH | 26.100 | 13.91 | 29.575 |
CGA | 25.384 | 18.98 | 31.695 |
PSO | 25.345 | 28.08 | 37.827 |
Method | Average Minimum (kW) | Average Time (s) | Distance between the Origin and the Method |
---|---|---|---|
SSA | 25.348 | 5.59 | 25.957 |
MVO | 25.346 | 132.25 | 134.657 |
ALO | 25.853 | 9.68 | 27.605 |
BH | 29.769 | 13.91 | 32.860 |
CGA | 25.605 | 18.98 | 31.870 |
PSO | 25.523 | 28.08 | 37.948 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosales Muñoz, A.A.; Grisales-Noreña, L.F.; Montano, J.; Montoya, O.D.; Giral-Ramírez, D.A. Optimal Power Dispatch of Distributed Generators in Direct Current Networks Using a Master–Slave Methodology That Combines the Salp Swarm Algorithm and the Successive Approximation Method. Electronics 2021, 10, 2837. https://doi.org/10.3390/electronics10222837
Rosales Muñoz AA, Grisales-Noreña LF, Montano J, Montoya OD, Giral-Ramírez DA. Optimal Power Dispatch of Distributed Generators in Direct Current Networks Using a Master–Slave Methodology That Combines the Salp Swarm Algorithm and the Successive Approximation Method. Electronics. 2021; 10(22):2837. https://doi.org/10.3390/electronics10222837
Chicago/Turabian StyleRosales Muñoz, Andrés Alfonso, Luis Fernando Grisales-Noreña, Jhon Montano, Oscar Danilo Montoya, and Diego Armando Giral-Ramírez. 2021. "Optimal Power Dispatch of Distributed Generators in Direct Current Networks Using a Master–Slave Methodology That Combines the Salp Swarm Algorithm and the Successive Approximation Method" Electronics 10, no. 22: 2837. https://doi.org/10.3390/electronics10222837
APA StyleRosales Muñoz, A. A., Grisales-Noreña, L. F., Montano, J., Montoya, O. D., & Giral-Ramírez, D. A. (2021). Optimal Power Dispatch of Distributed Generators in Direct Current Networks Using a Master–Slave Methodology That Combines the Salp Swarm Algorithm and the Successive Approximation Method. Electronics, 10(22), 2837. https://doi.org/10.3390/electronics10222837