Numerical Model of Current Flow and Thermal Phenomena in Lateral GaN/InGaN LEDs
Abstract
:1. Introduction
2. Model Description
2.1. The Model Domain
2.2. Current Flow Modelling
2.3. Energy Transfer Modelling
3. Simulations of the GaN LED Structure
3.1. Preliminary Calculations
- photon emission takes place in MQW with IQE = 1 (Wg = 2.79 eV, λ = 428 nm);
- the photons propagate perpendicularly to the MQW layer only as shown in Figure 8;
- the bottom contact is an ideal mirror for the photon flux;
- contact losses are included;
- forward current equals 35 A/cm2.
- the ohmic losses are negligible in the semiconductor chip;
- the mirror presence (e.g., metallic layer or distributed Bragg reflector [35]) can enlarge the efficiency by about 59%;
- a large magnitude of emitted energy may result in a negative energy balance inside the semiconductor chip;
- due to high doping level, the contact losses at metal-semiconductor contacts are small or even disappear in the case of degenerate semiconductors;
3.2. Numerical Analysis
- the temperature at the bottom of the sapphire substrate is constant and equals 29 °C;
- voltage applied across the LED (forward biased) changes in the range 3.1–4.9 V, resulting in the current density (at ITO) changes in the range 28 to 278 A/cm2 (corresponding current in the range 25 mA to 250 mA);
- absorption, relaxation (IQE = 80%), and contact losses are evaluated for each layer as presented in Section 3.1 and assigned as volumetric heat generation;
- ohmic losses are calculated with the aid of electrical simulations using Equation (2).
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ueda, T.; Ishida, M.; Tamura, S.; Fujimoto, Y.; Yuri, M.; Saito, T.; Ueda, D. Vertical InGaN-based blue light emitting diode with plated metal base fabricated using laser lift-off technique. Phys. Status Solidi C Conf. 2003, 2222, 2219–2222. [Google Scholar] [CrossRef]
- Zhou, L.; Epler, J.E.; Krames, M.R.; Goetz, W.; Gherasimova, M.; Ren, Z.; Han, J.; Kneissl, M.; Johnson, N.M. Vertical injection thin-film AlGaN/AlGaN multiple-quantum-well deep ultraviolet light-emitting diodes. Appl. Phys. Lett. 2006, 89, 1–4. [Google Scholar] [CrossRef]
- Li, C.K.; Wu, Y.R. Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs. IEEE Trans. Electron Devices 2012, 59, 400–407. [Google Scholar] [CrossRef]
- Huh, C.; Lee, J.M.; Kim, D.J.; Park, S.J. Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer. J. Appl. Phys. 2002, 92, 2248–2250. [Google Scholar] [CrossRef]
- Nguyen, X.L.; Nguyen, T.N.N.; Chau, V.T.; Dang, M.C. The fabrication of GaN-based light emitting diodes (LEDs). Adv. Nat. Sci. Nanosci. Nanotechnol. 2010, 1, 025015. [Google Scholar] [CrossRef] [Green Version]
- Sacconi, F.; Der Maur, M.A.; Di Carlo, A. Optoelectronic properties of nanocolumn InGaN/GaN LEDs. IEEE Trans. Electron Devices 2012, 59, 2979–2987. [Google Scholar] [CrossRef]
- Ra, Y.; Navamathavan, R.; Park, J.; Lee, C. High-Quality Uniaxial InxGa1−xN/GaN Multiple Quantum Well (MQW) Nanowires (NWs) on Si (111) Grown by Metal-Organic Chemical Vapor Deposition (MOCVD) and Light-Emitting Diode (LED) Fabrication. ACS Appl. Mater. Interfaces 2013, 5, 2111–2117. [Google Scholar] [CrossRef] [PubMed]
- Wasisto, H.S.; Prades, J.D.; Gülink, J.; Waag, A. Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN nano-and micro-LEDs. Appl. Phys. Rev. 2019, 6, 041315. [Google Scholar] [CrossRef] [Green Version]
- Kluczyk-Korch, K.; Moreno, S.; Canals, J.; Diéguez, A.; Gülink, J.; Hartmann, J.; Waag, A.; Di Carlo, A.; der Maur, M.A. Individually switchable InGaN/GaN nano-LED arrays as highly resolved illumination engines. Electronics 2021, 10, 1829. [Google Scholar] [CrossRef]
- Yum, W.S.; Koo, J.H.; Lee, D.H.; Kim, Y.H.; Jeong, Y.K.; Jung, S.Y.; Lee, S.Y.; Jeong, H.H.; Seong, T.Y. Improving emission uniformity of InGaN/GaN-based vertical LEDs by using reflective ITO/Ag n-contact. Electronics 2021, 10, 975. [Google Scholar] [CrossRef]
- Hang, S.; Zhang, M.; Zhang, Y.; Chu, C.; Zhang, Y.; Zheng, Q.; Li, Q.; Zhang, Z.-H. Artificially formed resistive ITO/p-GaN junction to suppress the current spreading and decrease the surface recombination for GaN-based micro-light emitting diodes. Opt. Express 2021, 29, 31201. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, J.; Manglano Clavero, I.; Nicolai, L.; Margenfeld, C.; Spende, H.; Ledig, J.; Zhou, H.; Steib, F.; Jaros, A.; Avramescu, A.; et al. 3D GaN Fins as a Versatile Platform for a-Plane-Based Devices. Phys. Status Solidi Basic Res. 2019, 256, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Togtema, G.; Georgiev, V.; Georgieva, D.; Gergova, R.; Butcher, K.S.A.; Alexandrov, D. GaN—InGaN LED efficiency reduction from parasitic electron currents in p-GaN. Solid State Electron. 2015, 103, 44–48. [Google Scholar] [CrossRef]
- Ho, W.C.; Liu, Y.H.; Wu, W.H.; Chen, S.W.H.; Tzou, J.; Kuo, H.C.; Sun, C.W. The study of high breakdown voltage vertical GaN-on-GaN p-i-n diode with modified mesa structure. Crystals 2020, 10, 712. [Google Scholar] [CrossRef]
- Li, C.K.; Yang, H.C.; Hsu, T.C.; Shen, Y.J.; Liu, A.S.; Wu, Y.R. Three dimensional numerical study on the efficiency of a core-shell InGaN/GaN multiple quantum well nanowire light-emitting diodes. J. Appl. Phys. 2013, 113, 183104. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Gao, Y.; Lu, Y.; Chen, G.; Chen, Z. Thermal behavior and infrared properties of the vertical-electrode GaN LED. Heat Transf. Eng. 2012, 33, 255–260. [Google Scholar] [CrossRef]
- Li, C.K.; Rosmeulen, M.; Simoen, E.; Wu, Y.R. Study on the optimization for current spreading effect of lateral GaN/InGaN LEDs. IEEE Trans. Electron Devices 2014, 61, 511–517. [Google Scholar] [CrossRef]
- Kim, H.; Kim, K.K.; Choi, K.K.; Kim, H.; Song, J.O.; Cho, J.; Baik, K.H.; Sone, C.; Park, Y.; Seong, T.Y. Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry. Appl. Phys. Lett. 2007, 91, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Park, S.J.; Hwang, H.; Park, N.M. Lateral current transport path, a model for GaN-based light-emitting diodes: Applications to practical device designs. Appl. Phys. Lett. 2002, 81, 1326–1328. [Google Scholar] [CrossRef]
- Hwang, S.; Shim, J. A method for current spreading analysis and electrode pattern design in light-emitting diodes. IEEE Trans. Electron Devices 2008, 55, 1123–1128. [Google Scholar] [CrossRef]
- Chen, J.C.; Sheu, G.J.; Hwu, F.S.; Chen, H.I.; Sheu, J.K.; Lee, T.X.; Sun, C.C. Electrical-optical analysis of a GaN/sapphire LED chip by considering the resistivity of the current-spreading layer. Opt. Rev. 2009, 16, 213–215. [Google Scholar] [CrossRef]
- Hui, S.Y.; Lee, A.T.L.; Tan, S.C. New Dynamic Photo-Electro-Thermal Modeling of Light-Emitting Diodes with Phosphor Coating as Light Converter Part I: Theory, Analysis, and Modeling. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 771–779. [Google Scholar] [CrossRef]
- Jung, S.M.; Lee, T.H.; Bang, S.Y.; Han, S.D.; Shin, D.W.; Lee, S.; Choi, H.W.; Suh, Y.H.; Fan, X.B.; Jo, J.W.; et al. Modelling charge transport and electro-optical characteristics of quantum dot light-emitting diodes. NPJ Comput. Mater. 2021, 7. [Google Scholar] [CrossRef]
- Fedorova, O.A.; Bulashevich, K.A.; Karpov, S.Y. Critical aspects of AlGaInP-based LED design and operation revealed by full electrical-thermal-optical simulations. Opt. Express 2021, 29, 35792. [Google Scholar] [CrossRef] [PubMed]
- Podgorski, J.; Wozny, J.; Lisik, Z. Numerical simulations of planar InGaN/GaN LED by Sentaurus CAD package employing different quantum well models. In Proceedings of the MicroTherm 2015—Microtechnology and Thermal Problems in Electronics, Lodz, Poland, 23–25 June 2015; pp. 215–220. [Google Scholar]
- Čuntala, J.; Kondelová, A.; Hock, O.; Pridala, M. Electro-thermal modeling of power LED using COMSOL environment. In Proceedings of the ELEKTRO 2016, Strbske Pleso, Slovakia, 16–18 May 2016. [Google Scholar] [CrossRef]
- Qin, Y.; Cai, M.; Chen, X.; Li, J.; Yang, D.; Zhang, G. Thermal and Optical Modeling on Intelligent LED Headlights. In Proceedings of the 2021 22nd International Conference on Electronic Packaging Technology (ICEPT), Xiamen, China, 14–17 September 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Górecki, K.; Ptak, P. New dynamic electro-thermo-optical model of power LEDs. Microelectron. Reliab. 2018, 91, 1–7. [Google Scholar] [CrossRef]
- Górecki, K.; Ptak, P. Compact modelling of electrical, optical and thermal properties of multi-colour power LEDs operating on a common PCB. Energies 2021, 14, 1286. [Google Scholar] [CrossRef]
- Poppe, A. Multi-domain compact modeling of LEDs: An overview of models and experimental data. Microelectron. J. 2015, 46, 1138–1151. [Google Scholar] [CrossRef]
- Bender, V.C.; Iaronka, O.; Vizzotto, W.D.; Costa, M.A.D.; Do Prado, R.N.; Marchesan, T.B. Design methodology for light-emitting diode systems by considering an electrothermal model. IEEE Trans. Electron Devices 2013, 60, 3799–3806. [Google Scholar] [CrossRef]
- Poppe, A. Simulation of LED based luminaires by using multi-domain compact models of LEDs and compact thermal models of their thermal environment. Microelectron. Reliab. 2017, 72, 65–74. [Google Scholar] [CrossRef]
- Farkas, G.; Gaal, L.; Bein, M.; Poppe, A.; Ress, S.; Rencz, M. LED Characterization Within the Delphi4LED Project. In Proceedings of the 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, CA, USA, 29 May–1 June 2018; pp. 262–270. [Google Scholar] [CrossRef]
- Bornoff, R. Extraction of boundary condition independent dynamic compact thermal models of LEDs-A Delphi4LED methodology. Energies 2019, 12, 1628. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhang, L.; Zhao, Y. Light output enhancement of GaN-based light-emitting diodes based on AlN/GaN distributed bragg reflectors grown on si (111) substrates. Crystals 2020, 10, 772. [Google Scholar] [CrossRef]
- Yan, Q.X.; Zhang, S.F.; Long, X.M.; Luo, H.J.; Wu, F.; Fang, L.; Wei, D.P.; Liao, M.Y. Numerical simulation on thermal-electrical characteristics and electrode patterns of GaN LEDs with graphene/NiOx hybrid electrode. Chin. Phys. Lett. 2016, 33, 7–12. [Google Scholar] [CrossRef]
- Min, J.-H.; Son, M.; Bae, S.-Y.; Lee, J.-Y.; Yun, J.; Maeng, M.-J.; Kwon, D.-G.; Park, Y.; Shim, J.-I.; Ham, M.-H.; et al. Graphene interlayer for current spreading enhancement by engineering of barrier height in GaN-based light-emitting diodes. Opt. Express 2014, 22, A1040. [Google Scholar] [CrossRef] [PubMed]
- Piprek, J.; Li, Z.M. Electroluminescent cooling mechanism in InGaN/GaN light-emitting diodes. Opt. Quantum Electron. 2016, 48, 1–7. [Google Scholar] [CrossRef]
Layer | Thickness [nm] | Width [μm] | Doping/Carrier Concentration [cm−3] | Resistivity [W·cm] | Absorption [cm−1] | Thermal Conductivity [W/mK] |
---|---|---|---|---|---|---|
Contact Ni/Au (anode) | 200 | 80 | - | - | 150 | |
ITO | 100 | 300 | - | 4 × 10−4 | 1.17 × 104 | 11 |
p-GaN:Mg | 300 | 300 | 8 × 1017 | 2.6 | 800 | 120 |
MQW | 65 | 300 | 5 × 1016 | 17 × 10−2 | 400 | 80 |
n-GaN:Si | 350 | 300 | 8 × 1018 | 3.4 × 10−3 | 800 | 120 |
2150 | 450 | |||||
GaN | 1500 | 450 | 5 × 1016 | 17 × 10−2 | 400 | 120 |
Substrate (sapphire) | 50,000 | 450 | - | 6 × 10−4 | 24 | |
Contact Ti/Au (cathode) | 200 | 120 | - | - | 150 |
Layer | Thickness [nm] | Resistivity [Ω·cm] | Absorption [cm−1] | Losses [W/cm2] | |||
---|---|---|---|---|---|---|---|
Ohmic | Absorption | Relaxation | Total | ||||
p-contact | 0 | nondegenerate p-layer | QPmp = −3.54 10−3 W/cm2 | ||||
ITO | 100 | 4 × 10−4 | 1.17 × 104 | 4.90 × 10−6 | 8.39 | - | 8.39 |
p-GaN:Mg | 300 | 2.6 | 800 | 9.56 × 10−2 | 1.85 | - | 1.95 |
MQW | 65 | - | - | 21.00 | 21.00 | ||
- | −97.65 | - | −97.65 | ||||
MQW-contact | QP(MQW) = −0.35 W/cm2 | ||||||
n-GaN:Si | 2500 | 3.4 × 10−3 | 400 | 1.04 × 10−3 | 15.28 | - | 15.28 |
n-contact | 0 | degenerate n-layer | QPmp = 0 W/cm2 | ||||
GaN | 1500 | 17 × 10−2 | 400 | 3.12 × 10−2 | 4.52 | - | 4.55 |
Contact Ti/Au (cathode) | 200 | 10−6 Ω·cm2 | - | 1.23 × 10−3 | - | - | 1.23 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisik, Z.; Raj, E.; Podgórski, J. Numerical Model of Current Flow and Thermal Phenomena in Lateral GaN/InGaN LEDs. Electronics 2021, 10, 3127. https://doi.org/10.3390/electronics10243127
Lisik Z, Raj E, Podgórski J. Numerical Model of Current Flow and Thermal Phenomena in Lateral GaN/InGaN LEDs. Electronics. 2021; 10(24):3127. https://doi.org/10.3390/electronics10243127
Chicago/Turabian StyleLisik, Zbigniew, Ewa Raj, and Jacek Podgórski. 2021. "Numerical Model of Current Flow and Thermal Phenomena in Lateral GaN/InGaN LEDs" Electronics 10, no. 24: 3127. https://doi.org/10.3390/electronics10243127
APA StyleLisik, Z., Raj, E., & Podgórski, J. (2021). Numerical Model of Current Flow and Thermal Phenomena in Lateral GaN/InGaN LEDs. Electronics, 10(24), 3127. https://doi.org/10.3390/electronics10243127