Failure Analysis of Some Commercial Spotlights Based on Light Emitting Diodes
Abstract
:1. Introduction
2. Methodology
3. Component Analysis
3.1. LED Heads
3.2. LED Drive Circuits
3.2.1. Bridge Rectifier
3.2.2. Filter Circuit
3.2.3. Control Circuit
4. Results and Evaluation
4.1. Analysis of Sample A Which Emits No Light
4.2. Analysis of Sample B That Showed Strong Flicker
5. Discussion
5.1. Output Current of Sample A
5.2. Influence on the Circuit of Sample B If IC Is Damaged
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, N.; Abas, N. Comparative study of energy saving light sources. Renew. Sustain. Energy Rev. 2011, 15, 296–309. [Google Scholar] [CrossRef]
- Mills, B.; Schleich, J. Household transitions to energy efficient lighting. Energy Econ. 2014, 46, 151–160. [Google Scholar] [CrossRef]
- Round, H.J. A Note on Carborundum. In Semiconductor Devices: Pioneering Papers; Sze, S.M., Ed.; World Scientific: Singapore, 1991. [Google Scholar]
- Holonyak, N.; Bevacqua, S.F. Coherent (visible) light emission from Ga(As1-xPx) junctions. Appl. Phys. Lett. 1962, 1, 82–83. [Google Scholar] [CrossRef]
- Nakamura, S.; Mukai, T.; Senoh, M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light emitting diodes. Appl. Phys. Lett. 1994, 64, 1687–1689. [Google Scholar] [CrossRef]
- Nishiura, S.; Tanabe, S.; Fujioka, K.; Fujimoto, Y. Properties of transparent Ce:YAG ceramic phosphors for white LED. Opt. Mater. 2011, 33, 688–691. [Google Scholar] [CrossRef]
- Zhang, C.; Heeger, A.J. Gallium nitride conjugated polymer hybrid light emitting diodes: Performance and lifetime. J. Appl. Phys. 1998, 83, 1579–1582. [Google Scholar] [CrossRef]
- Sun, B.; Fan, X.J.; Ye, H.Y.; Fan, J.J.; Qian, C.; van Driel, W.; Zhang, G.Q. A novel lifetime prediction for integrated LED lamps by electronic-thermal simulation. Reliab. Eng. Syst. Saf. 2017, 163, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Humphreys, C.J. Solid-state lighting. MRS Bull. 2008, 33, 459–470. [Google Scholar] [CrossRef] [Green Version]
- Lafont, U.; van Zeijl, H.; van der Zwaag, S. Increasing the reliability of solid state lighting systems via self-healing approaches: A review. Microelectron. Reliab. 2012, 52, 71–89. [Google Scholar] [CrossRef]
- Perpina, X.; Werkhoven, R.; Jakovenko, J.; Formanek, J.; Vellvehi, M.; Jorda, X.; Kunen, J.; Bancken, P.; Bolt, P.J. Design for reliability of solid state lighting systems. Microelectron. Reliab. 2012, 52, 2294–2300. [Google Scholar] [CrossRef]
- Bergh, A.A.; Dean, P.J. Light-emitting diodes. Proc. IEEE 1972, 60, 156–223. [Google Scholar] [CrossRef]
- Bakin, N.N.; Tuyev, V.I.; Yauk, E.F. LED lighting. In Proceedings of the 12th International Conference Seminar of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), Erlagol, Altai, Russia, 30 June–4 July 2011; pp. 346–348. [Google Scholar]
- Lall, P.; Sakalaukus, P.; Davis, L. Reliability and failure modes of solid-state lighting electrical drivers subjected to accelerated aging. IEEE Access 2015, 3, 531–542. [Google Scholar] [CrossRef]
- Lall, P.; Zhang, H.; Davis, L. Failure mechanisms and color stability in light-emitting diodes during operation in high-temperature environments in presence of contamination. In Proceedings of the IEEE 65th Electronic Components and Technology Conf. (ECTC), San Diego, CA, USA, 26–29 May 2015; pp. 1624–1632. [Google Scholar]
- Wang, X.X.; Jing, L.; Wang, Y.; Gao, Q.; Sun, Q. The influence of junction temperature variation of LED on the lifetime estimation during accelerated aging test. IEEE Access 2019, 7, 4773–4781. [Google Scholar] [CrossRef]
- Lall, P.; Wei, J.; Davis, L. Solid state lighting life prediction using extended Kalman filter. In Proceedings of the ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems-InterPACK2013, Burlingame, CA, USA, 16–18 July 2013; article iPACK2013-73288. pp. 1–11. [Google Scholar]
- Chen, Q.; Chen, Q.; Luo, X.B. Fast estimation of LED’s accelerated lifetime by online test method. In Proceedings of the IEEE 64th Electronic Components and Technology Conference (ECTC), Lake Buena Vista, FL, USA, 27–30 May 2014; pp. 1992–1995. [Google Scholar]
- Qian, C.; Fan, J.J.; Fan, X.J.; Chernyakov, A.E.; Zhang, G.Q. Lumen and chromacity maintenance lifetime prediction for LED lamps using a spectral power distribution method. In Proceedings of the 12th International Forum on Solid State Lighting (SSL China), Shenzhen, China, 2–4 November 2015; pp. 67–70. [Google Scholar]
- Pimputkar, S.; Speck, J.S.; Denbaars, S.P.; Nakamura, S. Prospects for LED lighting. Nat. Photonics 2009, 3, 179–181. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Chow, M.H.L. Diode rectifiers. In Power Electronics Handbook, 3rd ed.; Rashid, M.H., Ed.; Butterworth-Heinemann: Burlington, MA, USA, 2011; Chapter X; pp. 149–182. [Google Scholar]
- Storr, W. Full Wave Rectifier. Available online: https://www.electronics-tutorials.ws/diode/diode_6.html (accessed on 24 May 2021).
- Williams, A.B.; Taylor, F.J. Electronic Filter Design Handbook, 4th ed.; McGraw-Hill: New York, NY, USA, 2006. [Google Scholar]
- Non-Isolated Buck Offline LED Driver, Bright Power Semiconductor Co., Data Sheet BP2832A, Rev.1.0. Available online: http://www.datasheet.es/PDF/864023/BP2832A-pdf.html (accessed on 27 May 2021).
- Freitas, P.; Navarro, D.; O’Connor, I.; Billiot, G.; Lapuyade, H.; Begueret, J.B. Analog circuit design. In Planar Double-Gate Transistor: From Technology to Circuit; Amara, A., Rozeau, O., Eds.; Springer: Berlin, Germany, 2009; Chapter 5; pp. 105–136. [Google Scholar]
- Van Driel, W.; Evertz, F.; Zhang, G.Q. Towards a system level reliability approach for solid state lighting. J. Light Vis. Env. 2011, 35, 267–273. [Google Scholar] [CrossRef] [Green Version]
- de Santi, C.; dal Lago, M.; Buffolo, M.; Monti, D.; Meneghini, M.; Meneghesso, G.; Zanoni, E. Failure causes and mechanisms of retrofit LED lamps. Microelectron. Reliab. 2015, 55, 1765–1769. [Google Scholar] [CrossRef]
- Hui, S.Y.; Li, S.N.; Tao, X.H.; Chen, W.; Ng, W.M. A novel passive offline LED driver with long lifetime. IEEE Trans. Power Electron. 2010, 25, 2665–2672. [Google Scholar] [CrossRef]
Criterion | Sample A | Sample B |
---|---|---|
Manufacturer | unknown | Diall |
Failure type | no light output | flickering |
Input voltage | 220–240 V AC | 220–240 V AC |
Rated working current | 35 mA | 44 mA |
Power consumption | 4 W | 4.5 W |
Nominal brightness | 230 lm | 230 lm |
Frequency | 50 Hz | 50 Hz |
Part Name | Function |
---|---|
Optics | Guide light from LED head to yield even illumination |
LED head | Light-emitting part of the device, usually composed of multiple sets of single LEDs |
Heat sink | Dissipates heat from LED head and drive circuits |
Drive circuit | Converts 220–240 V AC to several volts DC, at 10s of milliamps of constant current DC to drive LEDs |
Socket base | Provides electrical contact to lamp holder |
Parameter | Value |
---|---|
Turn-on voltage of VCC | 13.8 V |
Clamp voltage of VCC | 16.8 V |
Input voltage range of circuit | 176 to 265 V |
Minimum LED loading voltage | 15 V |
Internal reference voltage for CS | 400 mV |
Component | Nominal Value | Measured Value |
---|---|---|
R1 | 5.1 kΩ | 5.3 MΩ |
R2 | 470 kΩ | 430.5 kΩ |
R3 | 470 kΩ | 471.2 kΩ |
R4 | 470 kΩ | 461.6 kΩ |
R5 | 100 kΩ | 99.5 kΩ |
R6 | 2 Ω | 2.1 Ω |
R7 | 2 Ω | 2 Ω |
R8 | 470 kΩ | 451.1 kΩ |
R9 | 1 MΩ | 1.1 MΩ |
C1 | 0.1 μF | 0.1 μF |
C2 | 2.2 μF | 2.1 μF |
C3 | 2.2 μF | 1.79 μF |
C4 | 0.1 μF | 0.1 μF |
C5 | 0.1 μF | 0.1 μF |
L1 | 2.2 μH | open |
L2 | 2 mH | 2 mH |
BD1, D1, F1 | normal |
Component | Nominal Value | Measured Value |
---|---|---|
R1 | 5.1 kΩ | 5.1 kΩ |
R2 | 240 kΩ | 240.4 kΩ |
R3 | 240 kΩ | 239.2 kΩ |
R4 | 1 kΩ | 1 kΩ |
R5 | 2 Ω | 2.07 Ω |
R6 | 2 Ω | 2.1 Ω |
R7 | 330 kΩ | 327.5 kΩ |
CX1 | 0.1 μF | 0.1 μF |
C1 | 2.2 μF | 2.04 μF |
C2 | 2.2 μF | 2.06 μF |
C3 | 0.1 μF | 0.1 μF |
C4 | 2.2 μF | 2.69 μF |
C5 | 0.1 μF | Open |
L1 | 4.7 μH | 4.72 μH |
L2 | 1.25 mH | 1.24 mH |
BD1, D1, F1 | normal |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, W.; Walther, T. Failure Analysis of Some Commercial Spotlights Based on Light Emitting Diodes. Electronics 2022, 11, 48. https://doi.org/10.3390/electronics11010048
Zhong W, Walther T. Failure Analysis of Some Commercial Spotlights Based on Light Emitting Diodes. Electronics. 2022; 11(1):48. https://doi.org/10.3390/electronics11010048
Chicago/Turabian StyleZhong, Wei, and Thomas Walther. 2022. "Failure Analysis of Some Commercial Spotlights Based on Light Emitting Diodes" Electronics 11, no. 1: 48. https://doi.org/10.3390/electronics11010048
APA StyleZhong, W., & Walther, T. (2022). Failure Analysis of Some Commercial Spotlights Based on Light Emitting Diodes. Electronics, 11(1), 48. https://doi.org/10.3390/electronics11010048